½ÃÀ庸°í¼­
»óǰÄÚµå
1807518

¼¼°èÀÇ ´Ü¹éÁú ¹ßÇö ½ÃÀå : Á¦Ç° À¯Çü, ¹ßÇö ½Ã½ºÅÛ, ±â¼ú, ¿ëµµ, ÃÖÁ¾ »ç¿ëÀÚº° ¿¹Ãø(2025-2030³â)

Protein Expression Market by Product Type, Expression Systems, Technique, Application, End User - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 180 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

´Ü¹éÁú ¹ßÇö ½ÃÀåÀº 2024³â¿¡ 40¾ï 5,000¸¸ ´Þ·¯·Î Æò°¡µÇ¾ú°í, 2025³â¿¡´Â 43¾ï 7,000¸¸ ´Þ·¯, ¿¬Æò±Õ ¼ºÀå·ü(CAGR)Àº 8.17%¸¦ ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç 2030³â¿¡´Â 64¾ï 9,000¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î Àü¸ÁµË´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁØ ¿¬µµ : 2024³â 40¾ï 5,000¸¸ ´Þ·¯
ÃßÁ¤ ¿¬µµ : 2025³â 43¾ï 7,000¸¸ ´Þ·¯
¿¹Ãø¿¬µµ : 2030³â 64¾ï 9,000¸¸ ´Þ·¯
¿¬Æò±Õ ¼ºÀå·ü(CAGR)(%) 8.17%

Àü ¼¼°è ´Ü¹éÁú ¹ßÇö ±â¼ú, ÁÖ¿ä ÀÀ¿ë ºÐ¾ß ¹× »ê¾÷ ÁøÈ­¸¦ ÁÖµµÇÏ´Â ½ÅÈï ÃËÁø ¿äÀΠŽ±¸¸¦ ÅëÇÑ ±â¹Ý ±¸Ãà

´Ü¹éÁú ¹ßÇöÀº À¯Àü Á¤º¸¸¦ ±â´É¼º ´Ü¹éÁú·Î ÀüȯÇÏ¿© ÀǾàǰ, Áø´Ü, ¹é½Å ¹× »ê¾÷¿ë »ý¸í°øÇÐ Àü¹Ý¿¡ °ÉÄ£ Çõ½ÅÀ» ÃËÁøÇÏ´Â »ý¸í°øÇÐÀÇ ±âÃÊ ±âµÕ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ÇÙ½ÉÀûÀ¸·Î, ÀçÁ¶ÇÕ DNA ±â¼úÀº °úÇÐÀÚµéÀÌ ¹ÚÅ׸®¾Æ¿Í È¿¸ðºÎÅÍ °ïÃæ ¹× Æ÷À¯·ù °èÅë¿¡ À̸£´Â ´Ù¾çÇÑ ¼÷ÁÖ ¼¼Æ÷¸¦ Ȱ¿ëÇÏ¿© ³î¶ó¿î ƯÀ̼º°ú ¼öÀ²·Î ´Ü¹éÁúÀ» »ý»êÇÒ ¼ö ÀÖ°Ô ÇÕ´Ï´Ù. º¤ÅÍ ¼³°è, ÇÁ·Î¸ðÅÍ ¼±Åà ¹× ¼÷ÁÖ ¼¼Æ÷ °øÇÐÀÇ ¹ßÀüÀº Á¾ÇÕÀûÀ¸·Î ¹ßÇö ¿öÅ©Ç÷οìÀÇ È¿À²¼ºÀ» °¡¼ÓÈ­ÇÏ¿© °³¹ß ±â°£À» °¨ÃàÇÏ°í »ý»ê ºñ¿ëÀ» ³·Ãß¾ú½À´Ï´Ù.

ÆÄ±«Àû ±â¼ú Çõ½Å ºÐ¼®, ÁøÈ­ÇÏ´Â ¹ÙÀÌ¿ÀÇÁ·Î¼¼½Ì ÆÐ·¯´ÙÀÓ, ´Ü¹éÁú ¹ßÇö »ê¾÷À» ÀçÆíÇÏ´Â Àü·«Àû Çù·Â

´Ü¹éÁú ¹ßÇö ¹Ì·¡´Â ±â¼úÀû µ¹ÆÄ±¸¿Í Àü·«Àû Á¦ÈÞ¿¡ ÀÇÇØ ÃËÁøµÈ º¯ÇõÀû º¯È­¸¦ °Þ¾ú½À´Ï´Ù. ¸ðµâ½Ä Ŭ·Î´× ÇÁ·¹ÀÓ¿öÅ©¿Í CRISPR ±â¹Ý À¯Àüü ÅëÇÕ ±â¼úÀÇ µµÀÔÀº ¼÷ÁÖ ¼¼Æ÷ ¸ÂÃãÈ­¸¦ °£¼ÒÈ­ÇÏ¿© ¹ßÇö ±¸Á¶Ã¼ÀÇ ½Å¼ÓÇÑ ÇÁ·ÎÅäŸÀÌÇÎÀ» °¡´ÉÄÉ Çß½À´Ï´Ù. µ¿½Ã¿¡ ¹«¼¼Æ÷ ¹ßÇö Ç÷§ÆûÀÇ ºÎ»óÀº ¼¼Æ÷Àû Á¦¾à ¿äÀÎÀ» ¿ìȸÇÏ¿© ÃÖ¼ÒÇÑÀÇ »ó·ù °øÁ¤ °³¹ß·Î ¼ö¿ä¿¡ ¸ÂÃç ´Ü¹éÁúÀ» »ý»êÇÒ ¼ö ÀÖ´Â À¯·Ê¾ø´Â À¯¿¬¼ºÀ» Á¦°øÇÕ´Ï´Ù.

2025³â ¹Ì±¹ °ü¼¼ Á¤Ã¥ÀÌ ´Ü¹éÁú ¹ßÇö °ø±Þ¸Á, ºñ¿ë ±¸Á¶ ¹× ±¹Á¦ ¹«¿ª ¿ªÇп¡ ¹ÌÄ¡´Â ¿µÇ⠺м®

2025³â ¹Ì±¹ÀÌ µµÀÔÇÑ »õ·Î¿î °ü¼¼´Â ´Ü¹éÁú ¹ßÇö °ø±Þ¸Á Àü¹Ý¿¡ °ÉÃÄ »ó´çÇÑ ÆÄÀåÀ» ±â·ÏÇß½À´Ï´Ù. ¼öÀÔµÈ ¹ÙÀÌ¿À¸®¾×ÅÍ, °í¼º´É ¾×ü Å©·Î¸¶Åä±×·¡ÇÇ ½Ã½ºÅÛ ¹× Ư¼ö ½Ã¾à¿¡ ´ëÇÑ °ü¼¼ ÀλóÀ¸·Î ±¹³» Á¦Á¶¾÷üÀÇ ¿î¿µ ºñ¿ëÀÌ Áõ°¡Çß½À´Ï´Ù. ¸¹Àº ±â¾÷µéÀº ¾Æ½Ã¾ÆÅÂÆò¾ç ¹× À¯·´ Áö¿ªÀÇ °ø±Þ¾÷ü·ÎºÎÅÍ ´ëü ¿øÀ» ã°Å³ª Àå±â °è¾àÀ» ÀçÇù»óÇÏ¿© ¾ÈÁ¤ÀûÀÎ °¡°ÝÀ» È®º¸ÇÏ´Â ¹æ½ÄÀ¸·Î ´ëÀÀÇϰí ÀÖ½À´Ï´Ù.

Ç¥ÀûÈ­µÈ ½ÃÀå ºÐ¼®À» À§ÇÑ Á¦Ç° À¯Çü, ¹ßÇö ½Ã½ºÅÛ, ±â¼ú, ¿ëµµ, ÃÖÁ¾ »ç¿ëÀÚ ÇÁ·ÎÇÊ ±â¹Ý ÇÙ½É ¼¼ºÐÈ­ ÇÁ·¹ÀÓ¿öÅ© âÃâ

´Ù°¢ÀûÀÎ ¼¼ºÐÈ­ ÇÁ·¹ÀÓ¿öÅ©´Â ´Ü¹éÁú ¹ßÇö ½ÃÀåÀÇ ´Ù¾çÇÑ Ãø¸éÀÌ ¾î¶»°Ô ±³Â÷ÇÏ¿© µ¶Æ¯ÇÑ °¡Ä¡ Ç®À» âÃâÇÏ´ÂÁö º¸¿©ÁÝ´Ï´Ù. Á¦Ç° À¯Çüº°·Î ºÐ¼®ÇÒ ¶§, ÀÌ »ê¾÷Àº ¹ÙÀÌ¿À¸®¾×ÅÍ, ¹ßÈ¿±â, °í¼º´É ¾×ü Å©·Î¸¶Åä±×·¡ÇÇ ½Ã½ºÅÛ°ú °°Àº °íÁ¤¹Ð ÀåÄ¡ºÎÅÍ ¹ßÇö ŰƮ, ¿ëÇØ ¿ÏÃæ¾×, ÇüÁú µµÀÔ ½Ã¾à°ú °°Àº ¼Ò¸ðǰ, ±×¸®°í ºÐ¼® Å×½ºÆ®, À¯ÀüÀÚ ÇÕ¼º, Á¤Á¦¸¦ Æ÷°ýÇÏ´Â Àü¹® ¼­ºñ½º¿¡ À̸£±â±îÁö ±¤¹üÀ§ÇÕ´Ï´Ù. °¢ ¹üÁÖ´Â ¸ÂÃãÇü ¿µ¾÷, Áö¿ø ¹× ±â¼ú ¾÷µ¥ÀÌÆ® Á¢±Ù ¹æ½ÄÀ» ¿ä±¸ÇÕ´Ï´Ù.

¾Æ¸Þ¸®Ä«, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«, ¾Æ½Ã¾ÆÅÂÆò¾ç Áö¿ª µ¿Ç⠺м®À» ÅëÇÑ ¼ºÀå ÃËÁø ¿äÀÎ ¹× µµÀÔ µ¿Çâ ÆÄ¾Ç

´Ü¹éÁú ¹ßÇö ºÐ¾ßÀÇ Áö¿ªº° ¿ªÇÐÀº ÀÎÇÁ¶ó ¼º¼÷µµ, ±ÔÁ¦ Á¶È­ ¼öÁØ, ¿¬±¸ ÁýÁßµµ Â÷À̸¦ ¹Ý¿µÇÕ´Ï´Ù. ¾Æ¸Þ¸®Ä« Áö¿ªÀº ±¤¹üÀ§ÇÑ ¹ÙÀÌ¿ÀÀǾàǰ »ýŰè, źźÇÑ ÀÚ±Ý Á¶´Þ ä³Î, Çаè¿Í »ê¾÷°èÀÇ ÅëÇÕÀ» ¹ÙÅÁÀ¸·Î Çõ½ÅÀ» ÁÖµµÇϰí ÀÖ½À´Ï´Ù. ºÏ¹Ì ½Ã¼³µéÀº °í±Þ ¹«¼¼Æ÷ ½Ã½ºÅÛ°ú Æ÷À¯·ù ¹ßÇö Ç÷§ÆûÀ» ¼±µµÇÏ´Â ¹Ý¸é, ¶óƾ ¾Æ¸Þ¸®Ä« ½ÃÀåÀº ³ó¾÷ ¹× ½Äǰ ¿ëµµ¸¦ À§ÇÑ ºñ¿ë È¿À²ÀûÀÎ ¹Ì»ý¹° »ý»ê ±â¼ú¿¡ ´ëÇÑ °ü½ÉÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.

½ÃÀå °æÀï·ÂÀ» ÃËÁøÇÏ´Â ÁÖ¿ä ´Ü¹éÁú ¹ßÇö ±â¼ú °ø±Þ¾÷ü, Àü·«Àû »ç¾÷, Çù·Â °ü°è ¹× Çõ½Å ÆÄÀÌÇÁ¶óÀÎ ºÐ¼®

¼±µµÀû °ø±Þ¾÷üµéÀº Çϵå¿þ¾î, ¼Ò¸ðǰ, ¼ÒÇÁÆ®¿þ¾î ºÐ¼®À» °áÇÕÇÑ ÅëÇÕ ¼Ö·ç¼ÇÀ¸·Î Â÷º°È­¸¦ ²ÒÇϰí ÀÖ½À´Ï´Ù. Thermo Fisher Scientific ¹× Merck¿Í °°Àº Àü ¼¼°è °Å´ë ±â¾÷µéÀº ±¤¹üÀ§ÇÑ Á¦Ç° Æ÷Æ®Æú¸®¿À¿Í ½ÉÃþÀûÀÎ R&D ÆÄÀÌÇÁ¶óÀÎÀ» Ȱ¿ëÇÏ¿© ÇâÈÄ ¹ÙÀÌ¿À¸®¾×ÅÍ ¹× ÀÏȸ¿ë ½Ã½ºÅÛÀ» µµÀÔÇϰí ÀÖ½À´Ï´Ù. Danaher¿Í GE Healthcare´Â ±Ô¸ð È®´ë¸¦ °£¼ÒÈ­ÇÏ°í ¿À¿° À§ÇèÀ» °¨ÃàÇÏ´Â ¸ðµâ½Ä Ç÷§Æû¿¡ ÁÖ·ÂÇÏ´Â ¹Ý¸é, Bio-Rad Laboratories´Â È®´ëµÈ ½Ã¾à ¶óÀΰú °í±Þ Á¤Á¦ Ä÷³À» ÅëÇØ °¡Ä¡ Á¦¾ÈÀ» °­È­Çϰí ÀÖ½À´Ï´Ù.

»ê¾÷ ¸®´õ¸¦ À§ÇÑ ´Ü¹éÁú ¹ßÇö È¿À²¼º, ±ÔÁ¦ Áؼö ¹× Çõ½Å °­È­¸¦ À§ÇÑ Àü·«Àû ±Ç°í ¹× ¸ð¹ü »ç·Ê Á¦°ø

°¡¼ÓÈ­µÇ´Â º¹À⼺À» ÇìÃÄ ³ª°¡±â À§ÇØ »ê¾÷ ¸®´õµéÀº °øÁ¤ ÃÖÀûÈ­¿Í Àü·«Àû Á¦ÈÞ ±¸ÃàÀ̶ó´Â ÀÌÁß Á¢±Ù ¹æ½ÄÀ» äÅÃÇØ¾ß ÇÕ´Ï´Ù. ÀÚµ¿È­ ¹× µðÁöÅÐ Æ®À©¿¡ ´ëÇÑ ÅõÀÚ´Â °øÁ¤ Á¦¾î ¼öÁØÀ» ³ôÀ̰í, ÀÎÀû ¿À·ù¸¦ °¨ÃàÇϸç, ½Ç½Ã°£ Á¶Á¤À» ¿ëÀÌÇÏ°Ô ÇÒ ¼ö ÀÖ½À´Ï´Ù. µ¿½Ã¿¡ °è¾à ¿¬±¸ ¹× Á¦Á¶ ±â°ü°úÀÇ ÆÄÆ®³Ê½Ê ±¸ÃàÀº À¯¿¬¼ºÀ» °­È­ÇÏ¿© ÆÄÀÏ·µ °øÁ¤ÀÇ ½Å¼ÓÇÑ È®Àå ¹× »ó¾÷ »ý»êÀ¸·ÎÀÇ ¿øÈ°ÇÑ ÀüȯÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù.

´Ü¹éÁú ¹ßÇö ½ÃÀå ÀλçÀÌÆ®¸¦ À§ÇÑ °ß°íÇÑ ¿¬±¸ ¹æ¹ý·Ð : 1Â÷ ÀÎÅͺä, 2Â÷ µ¥ÀÌÅÍ ¼Ò½º ¹× ºÐ¼® ÇÁ·¹ÀÓ¿öÅ©ÀÇ °áÇÕ

º» ¿¬±¸´Â ÁÖ¿ä ÀÇ°ß ¸®´õ¿ÍÀÇ 1Â÷ ÀÎÅͺä, °úÇÐ ÃâÆÇ¹° ¹× ƯÇã µ¥ÀÌÅͱâ¹ÝÀÇ 2Â÷ µ¥ÀÌÅÍ ºÐ¼®, µ¶ÀÚÀû ºÐ¼® ÇÁ·¹ÀÓ¿öÅ©¸¦ °áÇÕÇÑ ¾ö°ÝÇÑ ¹æ¹ý·ÐÀ» äÅÃÇß½À´Ï´Ù. ÁÖ¿ä Áö¿ªÀÇ °øÁ¤ ¿£Áö´Ï¾î, R&D Ã¥ÀÓÀÚ, ±ÔÁ¦ Àü¹®°¡¿ÍÀÇ 1Â÷ Á¢ÃËÀ» ÅëÇØ ¿î¿µ °úÁ¦¿Í ±â¼ú µµÀÔ·ü¿¡ ´ëÇÑ ÁúÀû ÀλçÀÌÆ®¸¦ È®º¸Çß½À´Ï´Ù. µ¿·á °ËÅä Àú³Î ¹× °ø°ø ±ÔÁ¦ ¼­·ù µî 2Â÷ ÀÚ·á´Â µ¿Çâ °ËÁõ°ú º¥Ä¡¸¶Å© ºñ±³¸¦ À§ÇÑ Á¤·®Àû ¸Æ¶ôÀ» Á¦°øÇß½À´Ï´Ù.

´Ü¹éÁú ¹ßÇö ±â¼ú ¹× »ê¾÷ Çù·ÂÀÇ ¹Ì·¡ ±ËÀûÀ» Á¤ÀÇÇÏ´Â ÇÙ½É ÀλçÀÌÆ®¿Í Àü·«Àû Çʼö ¿ä°Ç ¿ä¾à

º» º¸°í¼­ÀÇ Á¾ÇÕÀû ÀλçÀÌÆ®Àº ´Ü¹éÁú ¹ßÇöÀÇ ¹Ì·¡¸¦ Çü¼ºÇÏ´Â ±â¼ú Çõ½Å, ±ÔÁ¦ ÁøÈ­, °ø±Þ¸Á ȸº¹Åº·Â¼º °£ÀÇ ¿ªµ¿Àû »óÈ£ÀÛ¿ëÀ» °­Á¶ÇÕ´Ï´Ù. ¸ðµâ½Ä Ŭ·Î´×, ¹«¼¼Æ÷ Ç÷§Æû, ÀÏȸ¿ë ¹ÙÀÌ¿À¸®¾×ÅÍ ½Ã½ºÅÛÀÇ ¹ßÀüÀº ´õ ºü¸¥ °³¹ß ÁÖ±â, ³ôÀº ¼öÀ², Á¦Á¶ À¯¿¬¼º Çâ»óÀ» ¾à¼ÓÇÕ´Ï´Ù. µ¿½Ã¿¡ ÁøÈ­ÇÏ´Â °ü¼¼ Á¤Ã¥°ú Áö¿ªÀû ¿ªÇÐÀº Àü·«Àû °ø±Þ¸Á ´Ù°¢È­¿Í ±Ù°Å¸® ¾Æ¿ô¼Ò½Ì(nearshoring) ÃßÁøÀ» ÇÊ¿ä·Î ÇÕ´Ï´Ù.

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ¿ªÇÐ

  • ¸ÂÃãÇü Ä¡·á ¼Ö·ç¼Ç ÃËÁøÇÏ´Â ÀçÁ¶ÇÕ ´Ü¹éÁú ±â¼úÀÇ ¹ßÀü
  • ¹ÙÀÌ¿ÀÁ¦Á¶¾÷¿¡ Çõ½ÅÀ» °¡Á®¿Â ¹«¼¼Æ÷ ´Ü¹éÁú ÇÕ¼º ½Ã½ºÅÛÀÇ µîÀå
  • °í󸮷® ´Ü¹éÁú ¹ßÇö ½ºÅ©¸®´× ¹æ¹ýÀÇ Áõ°¡Çϴ äÅÃ
  • ´Ü¹éÁú ¹ßÇö °øÁ¤ ÃÖÀûÈ­¿¡ ÀΰøÁö´ÉÀÇ È®´ë Àû¿ë
  • ¸ÂÃãÇü ÀǾàǰ °³¹ß¿¡¼­ÀÇ ´Ü¹éÁú ¹ßÇö ¿ëµµ È®Àå
  • ½Ä¹° ±â¹Ý ¹ßÇö Ç÷§ÆûÀ» Ȱ¿ëÇÑ Áö¼Ó °¡´ÉÇÑ ´Ü¹éÁú »ý»ê µ¿Çâ
  • ¹Ì»ý¹° ¼÷ÁÖ¿¡¼­ÀÇ ¹ßÇö È¿À²À» Çâ»ó½ÃŰ´Â »õ·Î¿î º¤ÅÍ ¹× ÇÁ·Î¸ðÅÍÀÇ ºÎ»ó
  • Á¤¹Ð ´Ü¹éÁú °øÇÐ ¹× ¹ßÇö Á¦¾î¿¡ ´ëÇÑ CRISPR ±â¼úÀÇ ¿µÇâ
  • Áø´Ü¿ë ÀçÁ¶ÇÕ Ç×ü ¼ö¿ä Áõ°¡¿¡ µû¸¥ ½ÃÀå ¼ºÀå
  • ¾à¹° Àü´Þ Á¢±Ù¹ýÀ» Çõ½ÅÇÏ´Â ´Ù±â´É À¶ÇÕ ´Ü¹éÁú °³¹ß

Á¦6Àå ½ÃÀå ÀλçÀÌÆ®

  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®

Á¦7Àå ¹Ì±¹ °ü¼¼ÀÇ ´©Àû ¿µÇâ(2025³â)

Á¦8Àå ´Ü¹éÁú ¹ßÇö ½ÃÀå : Á¦Ç° À¯Çüº°

  • ±â±â
    • »ý¹°¹ÝÀÀ±â
    • ¹ßÈ¿±â
    • HPLC ½Ã½ºÅÛ
  • ½Ã¾à ¹× ŰƮ
    • ¹ßÇö ŰƮ
    • ¿ëÇØ ¿ÏÃæ¾×
    • ÇüÁú µµÀÔ ½Ã¾à
  • ¼­ºñ½º
    • ºÐ¼® ¼­ºñ½º
    • À¯ÀüÀÚ ÇÕ¼º
    • ´Ü¹éÁú Á¤Á¦

Á¦9Àå ´Ü¹éÁú ¹ßÇö ½ÃÀå : ¹ßÇö ½Ã½ºÅÛº°

  • °ïÃæ°è
    • Drosophila
    • Sf9/¹Ùŧ·Î¹ÙÀÌ·¯½º
  • Æ÷À¯·ù°è
    • CHO ¼¼Æ÷
    • HEK293 ¼¼Æ÷
    • HeLa ¼¼Æ÷
  • ¹Ì»ý¹°°è
    • ´ëÀå±Õ
    • È¿¸ð
  • ½Ä¹°°è
    • ½Ò
    • ´ã¹è

Á¦10Àå ´Ü¹éÁú ¹ßÇö ½ÃÀå : ±â¼úº°

  • ¹«¼¼Æ÷ ¹ßÇö
    • ¼±Çü ¹ßÇö
    • ½Å¼Ó ÇÁ·ÎÅäŸÀÌÇÎ
  • ¾ÈÁ¤ ¹ßÇö
  • Àϰú¼º ¹ßÇö

Á¦11Àå ´Ü¹éÁú ¹ßÇö ½ÃÀå : ¿ëµµº°

  • ³ó¾÷
  • Áø´Ü
  • ½Äǰ
  • Ä¡·áÁ¦
    • »ý¹°ÇÐÀû Á¦Çü
    • À¯ÀüÀÚ Ä¡·á
  • ¹é½Å

Á¦12Àå ´Ü¹éÁú ¹ßÇö ½ÃÀå : ÃÖÁ¾ »ç¿ëÀÚº°

  • Çмú¿¬±¸±â°ü
    • Á¤ºÎ ¿¬±¸¼Ò
    • ´ëÇÐ
  • °è¾à ¿¬±¸ ±â°ü
    • CMO
    • CRO
  • Á¦¾àȸ»ç
    • »ý¸í°øÇÐ ±â¾÷
    • ÁÖ¿ä Á¦¾à ȸ»ç

Á¦13Àå ¾Æ¸Þ¸®Ä«ÀÇ ´Ü¹éÁú ¹ßÇö ½ÃÀå

  • ¹Ì±¹
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ºê¶óÁú
  • ¾Æ¸£ÇîÆ¼³ª

Á¦14Àå À¯·´, Áßµ¿, ¾ÆÇÁ¸®Ä«ÀÇ ´Ü¹éÁú ¹ßÇö ½ÃÀå

  • ¿µ±¹
  • µ¶ÀÏ
  • ÇÁ¶û½º
  • ·¯½Ã¾Æ
  • ÀÌÅ»¸®¾Æ
  • ½ºÆäÀÎ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«
  • µ§¸¶Å©
  • ³×´ú¶õµå
  • īŸ¸£
  • Çɶõµå
  • ½º¿þµ§
  • ³ªÀÌÁö¸®¾Æ
  • ÀÌÁýÆ®
  • Æ¢¸£Å°¿¹
  • À̽º¶ó¿¤
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • ½ºÀ§½º

Á¦15Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ´Ü¹éÁú ¹ßÇö ½ÃÀå

  • Áß±¹
  • Àεµ
  • ÀϺ»
  • È£ÁÖ
  • Çѱ¹
  • Àεµ³×½Ã¾Æ
  • ű¹
  • Çʸ®ÇÉ
  • ¸»·¹À̽þÆ
  • ½Ì°¡Æ÷¸£
  • º£Æ®³²
  • ´ë¸¸

Á¦16Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼®(2024³â)
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º(2024³â)
  • °æÀï ºÐ¼®
    • Agilent Technologies, Inc.
    • Artes Biotechnology GmbH
    • ARVYS Proteins, Inc.
    • Bio-Rad Laboratories, Inc.
    • Bioneer Corporation
    • Boster Biological Technology
    • BPS Bioscience, Inc.
    • Charles River Laboratories International, Inc.
    • Cusabio Technology LLC
    • Danaher Corporation
    • Eurofins Scientific SE
    • F. Hoffmann-La Roche AG
    • Genscript Biotech Corporation
    • Jena Bioscience GmbH
    • Jubilant Pharmova Limited
    • Leniobio GmbH
    • LGC Genomics Limited
    • Lifesensors Inc.
    • Lonza Group Ltd.
    • Merck KgaA
    • New England Biolabs, Inc.
    • Novoprotein Scientific Inc.
    • Oxford Expression Technologies Ltd.
    • Promega Corporation
    • Proteos, Inc. by NanoImaging Services, Inc.
    • Qiagen NV
    • RayBiotech Life, Inc.
    • Sino Biological, Inc.
    • Sygnature Discovery Limited
    • Synbio Technologies
    • Syngene International Limited
    • Takara Bio Inc.
    • Thermo Fisher Scientific, Inc.

Á¦17Àå ¸®¼­Ä¡ AI

Á¦18Àå ¸®¼­Ä¡ Åë°è

Á¦19Àå ¸®¼­Ä¡ ÄÁÅÃ

Á¦20Àå ¸®¼­Ä¡ ±â»ç

Á¦21Àå ºÎ·Ï

HBR 25.09.22

The Protein Expression Market was valued at USD 4.05 billion in 2024 and is projected to grow to USD 4.37 billion in 2025, with a CAGR of 8.17%, reaching USD 6.49 billion by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 4.05 billion
Estimated Year [2025] USD 4.37 billion
Forecast Year [2030] USD 6.49 billion
CAGR (%) 8.17%

Establishing the Foundation by Exploring Global Protein Expression Technologies, Key Application Domains, and Emerging Drivers Shaping Industry Evolution

Protein expression serves as a foundational pillar in biotechnology, translating genetic information into functional proteins that drive innovation across pharmaceuticals, diagnostics, vaccines, and industrial biotechnology. At its core, recombinant DNA techniques enable scientists to harness host cells-ranging from bacteria and yeast to insect and mammalian lines-to produce proteins with remarkable specificity and yield. Advances in vector design, promoter selection, and host cell engineering have collectively accelerated the efficiency of expression workflows, reducing development timelines and lowering production costs.

Over the past decade, the convergence of synthetic biology, high-throughput screening, and advanced bioinformatics has reshaped how researchers approach protein production. Integration of automated platforms and lab-on-a-chip technologies now allows parallel evaluation of expression constructs, optimizing conditions for solubility, folding, and post-translational modifications. As organizations shift toward personalized therapeutics and novel biologics, the demand for robust, scalable protein expression systems has never been greater. This introduction lays the groundwork for understanding critical processes that guide expression strategies and sets the stage for exploring emerging trends, regulatory influences, and strategic imperatives shaping the industry's future.

Analyzing Disruptive Technological Innovations, Evolving Bioprocessing Paradigms, Strategic Collaborations Reshaping the Protein Expression Industry

The protein expression landscape has undergone transformative shifts driven by technological breakthroughs and strategic alliances. Adoption of modular cloning frameworks and CRISPR-based genomic integrations has streamlined host cell customization, enabling rapid prototyping of expression constructs. Concurrently, the rise of cell-free expression platforms offers unparalleled flexibility, bypassing cellular constraints to produce proteins on demand with minimal upstream development.

Strategic collaborations between biotech innovators and contract development and manufacturing organizations have further accelerated commercial readiness. By pooling expertise in process development, scale-up, and regulatory navigation, these partnerships mitigate risks associated with late-stage failures. Regulatory bodies are also responding with updated guidelines tailored to novel modalities, ensuring safety without stifling innovation. As the complexity of protein therapeutics grows, cross-sector consortia are emerging to standardize analytical assays and quality frameworks, reinforcing confidence in multicenter studies. The net result is an industry in dynamic flux, where agility, collaboration, and technological prowess converge to redefine what is possible in protein expression.

Examining the Implications of 2025 United States Tariff Policies on Protein Expression Supply Chains, Cost Structures, and International Trade Dynamics

The introduction of new United States tariffs in 2025 has generated significant reverberations across protein expression supply chains. Elevated duties on imported bioreactors, high-performance liquid chromatography systems, and specialized reagents have increased operational costs for domestic manufacturers. Many organizations have responded by seeking alternative sources from regional suppliers in Asia-Pacific and Europe or by renegotiating long-term contracts to lock in stable pricing.

Simultaneously, the shifting tariff regime has prompted a reassessment of manufacturing footprints. Some enterprises are exploring nearshoring opportunities to establish production closer to end markets, thereby reducing logistics expenses and exposure to cross-border trade risks. Others have invested in modular, flexible facilities capable of rapid reconfiguration in response to evolving tariff schedules. Although the full impact of these measures will unfold over multiple quarters, it is clear that strategic supply chain resilience has ascended as a priority. Firms that proactively diversify sourcing and optimize their distribution frameworks are best positioned to navigate this new trade environment.

Uncovering Critical Segmentation Frameworks Based on Product Types, Expression Systems, Techniques, Application Verticals, and End User Profiles for Targeted

A multifaceted segmentation framework illuminates how different facets of the protein expression market intersect to create distinct value pools. When dissected by product type, the industry spans high-precision instruments such as bioreactors, fermenters, and high-performance liquid chromatography systems, consumables including expression kits, lysis buffers, and transfection reagents, and specialized services encompassing analytical testing, gene synthesis, and purification. Each category demands tailored approaches to sales, support, and technological updates.

Diving deeper into expression systems reveals diverse host platforms: insect cell lines like Drosophila and Sf9/Baculovirus; mammalian cultures such as CHO, HEK293, and HeLa cells; microbial frameworks built on Escherichia coli and yeast; and plant-based systems exemplified by rice and tobacco. These systems vary in post-translational processing capabilities, glycosylation patterns, and scale-up feasibility. Techniques layer another dimension, contrasting cell-free methods-both linear expression and rapid prototyping-with stable and transient expression strategies. Application areas from agriculture to diagnostics, food science, therapeutics including biologics and gene therapies, and vaccines each impose unique performance and regulatory criteria. Finally, end users range from academic and government research institutes to contract research and manufacturing organizations, as well as biotech firms and large pharmaceutical companies, each pursuing discrete goals and service expectations. Understanding these segmentation layers is critical for targeting investment, guiding product roadmaps, and refining go-to-market tactics.

Mapping Regional Dynamics Across the Americas Middle East and Africa and Asia Pacific to Reveal Growth Drivers Adoption Trends

Regional dynamics in protein expression reflect varied levels of infrastructure maturity, regulatory alignment, and research intensity. The Americas continue to lead in innovation, supported by extensive biopharmaceutical ecosystems, robust funding channels, and close integration between academia and industry. North American facilities pioneer advanced cell-free systems and mammalian expression platforms, while Latin American markets show growing interest in cost-effective microbial production for agricultural and food applications.

In Europe, the Middle East, and Africa, regulatory harmonization efforts within the European Union and collaborative consortia across the Middle East are enhancing standardization in analytical methodologies and quality controls. Leading European biomanufacturers drive investment in single-use technologies and continuous processing, while select markets in Africa focus on capacity building for vaccine-related antigen expression. Across Asia-Pacific, rapid industrialization in China, Japan, India, and South Korea fuels demand for scalable microbial and plant-based platforms. Government initiatives are expanding local production capabilities, and regional partnerships are emerging to transfer know-how and accelerate technology adoption. Together, these regional insights offer a roadmap for prioritizing market entry, resource allocation, and partnership strategies in diverse geographies.

Highlighting Leading Protein Expression Technology Providers, Strategic Initiatives, Partnerships, and Innovation Pipelines Driving Market Competitiveness

Leading suppliers are differentiating through integrated solutions that combine hardware, consumables, and software analytics. Global giants such as Thermo Fisher Scientific and Merck leverage broad product portfolios and deep R&D pipelines to introduce next-generation bioreactors and single-use systems. Danaher and GE Healthcare focus on modular platforms that streamline scale-up and reduce contamination risks, while Bio-Rad Laboratories enhances its value proposition through expanded reagent lines and advanced purification columns.

Emerging players are carving niche positions by specializing in cell-free expression kits or proprietary transfection reagents. Agilent Technologies and Sartorius extend their service offerings with end-to-end analytical support, from gene synthesis through final protein characterization. Strategic collaborations between established firms and innovative startups accelerate the co-development of microfluidic devices and in situ monitoring tools. Collectively, these competitive moves underscore the importance of agile product development, robust quality systems, and adaptive go-to-market models to maintain leadership in an evolving environment.

Delivering Strategic Recommendations and Best Practices to Enhance Protein Expression Efficiency, Regulatory Compliance, and Innovation for Industry Leaders

To navigate accelerating complexity, industry leaders should adopt a dual approach of process optimization and strategic alliance formation. Investing in automation and digital twins can elevate process control, reduce human error, and facilitate real-time adjustments. At the same time, establishing partnerships with contract research and manufacturing organizations enhances flexibility, enabling rapid scale-out of pilot processes and seamless transitions to commercial production.

Regulatory landscapes are tightening around product quality and traceability. Organizations must implement end-to-end documentation systems that integrate laboratory information management with electronic batch records. Benchmarking against emerging standards in continuous manufacturing and single-use technologies will safeguard compliance while driving down operational expenditures. Lastly, fostering open innovation through academic collaborations and cross-industry consortia will accelerate breakthroughs in host cell engineering and downstream processing. By blending technological diligence with collaborative foresight, industry leaders can secure sustainable growth and preempt competitive threats.

Combining Primary Interviews, Secondary Data Sources, and Analytical Frameworks in a Robust Research Methodology for Protein Expression Market Insights

This research employs a rigorous methodology that weaves together primary interviews with key opinion leaders, secondary data analysis from scientific publications and patent databases, and proprietary analytical frameworks. Primary engagement with process engineers, R&D heads, and regulatory experts across major regions provided qualitative insights into operational challenges and technology adoption rates. Secondary sources, including peer-reviewed journals and publicly available regulatory filings, offered quantitative context for trend validation and benchmark comparisons.

An iterative triangulation process ensured that findings reflect both market realities and emerging scientific breakthroughs. Our analytical framework integrates value chain mapping to identify cost drivers, SWOT assessments to evaluate competitive positions, and scenario planning to anticipate regulatory shifts and supply chain disruptions. This holistic approach ensures that conclusions and recommendations rest on a foundation of robust evidence, enabling decision-makers to pursue well-informed strategies in the dynamic field of protein expression.

Summarizing Key Insights and Strategic Imperatives That Define the Future Trajectory of Protein Expression Technologies and Industry Collaboration

The collective insights presented herein underscore the dynamic interplay between technological innovation, regulatory evolution, and supply chain resilience in shaping the future of protein expression. Advancements in modular cloning, cell-free platforms, and single-use bioreactor systems promise faster development cycles, higher yields, and greater flexibility in manufacturing. At the same time, evolving tariff policies and regional dynamics necessitate strategic supply chain diversification and nearshoring initiatives.

Segmentation analysis reveals that market potential spans multiple layers-from instruments and consumables to service offerings across diverse host systems and application domains. Leading suppliers are responding with integrated solutions and collaborative partnerships, while emerging entrants focus on specialized niches. For industry leaders, the path forward lies in harmonizing advanced automation, stringent quality controls, and open innovation networks. By synthesizing these imperatives, organizations can navigate complexities and position themselves at the forefront of a rapidly evolving protein expression landscape.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

  • 4.1. Introduction
  • 4.2. Market Sizing & Forecasting

5. Market Dynamics

  • 5.1. Advancements in recombinant protein technology driving custom therapeutic solutions
  • 5.2. Emergence of cell-free protein synthesis systems revolutionizing biomanufacturing
  • 5.3. Increasing adoption of high-throughput protein expression screening methods
  • 5.4. Growing integration of artificial intelligence in optimizing protein expression processes
  • 5.5. Expansion of protein expression applications in personalized medicine development
  • 5.6. Trends in sustainable protein production using plant-based expression platforms
  • 5.7. Rise of novel vectors and promoters enhancing expression efficiency in microbial hosts
  • 5.8. Impact of CRISPR technology on precise protein engineering and expression control
  • 5.9. Market growth fueled by rising demand for recombinant antibodies in diagnostics
  • 5.10. Development of multifunctional fusion proteins transforming drug delivery approaches

6. Market Insights

  • 6.1. Porter's Five Forces Analysis
  • 6.2. PESTLE Analysis

7. Cumulative Impact of United States Tariffs 2025

8. Protein Expression Market, by Product Type

  • 8.1. Introduction
  • 8.2. Instruments
    • 8.2.1. Bioreactors
    • 8.2.2. Fermenters
    • 8.2.3. HPLC Systems
  • 8.3. Reagents & Kits
    • 8.3.1. Expression Kits
    • 8.3.2. Lysis Buffers
    • 8.3.3. Transfection Reagents
  • 8.4. Services
    • 8.4.1. Analytical Services
    • 8.4.2. Gene Synthesis
    • 8.4.3. Protein Purification

9. Protein Expression Market, by Expression Systems

  • 9.1. Introduction
  • 9.2. Insect Systems
    • 9.2.1. Drosophila
    • 9.2.2. Sf9/Baculovirus
  • 9.3. Mammalian Systems
    • 9.3.1. CHO Cells
    • 9.3.2. HEK293 Cells
    • 9.3.3. HeLa Cells
  • 9.4. Microbial Systems
    • 9.4.1. E. Coli
    • 9.4.2. Yeast
  • 9.5. Plant Systems
    • 9.5.1. Rice
    • 9.5.2. Tobacco

10. Protein Expression Market, by Technique

  • 10.1. Introduction
  • 10.2. Cell-Free Expression
    • 10.2.1. Linear Expression
    • 10.2.2. Rapid Prototyping
  • 10.3. Stable Expression
  • 10.4. Transient Expression

11. Protein Expression Market, by Application

  • 11.1. Introduction
  • 11.2. Agricultural
  • 11.3. Diagnostics
  • 11.4. Food
  • 11.5. Therapeutics
    • 11.5.1. Biologics
    • 11.5.2. Gene Therapy
  • 11.6. Vaccines

12. Protein Expression Market, by End User

  • 12.1. Introduction
  • 12.2. Academic & Research Institutes
    • 12.2.1. Government Labs
    • 12.2.2. Universities
  • 12.3. Contract Research Organizations
    • 12.3.1. CMOs
    • 12.3.2. CROs
  • 12.4. Pharmaceutical Companies
    • 12.4.1. Biotech Firms
    • 12.4.2. Large Pharma

13. Americas Protein Expression Market

  • 13.1. Introduction
  • 13.2. United States
  • 13.3. Canada
  • 13.4. Mexico
  • 13.5. Brazil
  • 13.6. Argentina

14. Europe, Middle East & Africa Protein Expression Market

  • 14.1. Introduction
  • 14.2. United Kingdom
  • 14.3. Germany
  • 14.4. France
  • 14.5. Russia
  • 14.6. Italy
  • 14.7. Spain
  • 14.8. United Arab Emirates
  • 14.9. Saudi Arabia
  • 14.10. South Africa
  • 14.11. Denmark
  • 14.12. Netherlands
  • 14.13. Qatar
  • 14.14. Finland
  • 14.15. Sweden
  • 14.16. Nigeria
  • 14.17. Egypt
  • 14.18. Turkey
  • 14.19. Israel
  • 14.20. Norway
  • 14.21. Poland
  • 14.22. Switzerland

15. Asia-Pacific Protein Expression Market

  • 15.1. Introduction
  • 15.2. China
  • 15.3. India
  • 15.4. Japan
  • 15.5. Australia
  • 15.6. South Korea
  • 15.7. Indonesia
  • 15.8. Thailand
  • 15.9. Philippines
  • 15.10. Malaysia
  • 15.11. Singapore
  • 15.12. Vietnam
  • 15.13. Taiwan

16. Competitive Landscape

  • 16.1. Market Share Analysis, 2024
  • 16.2. FPNV Positioning Matrix, 2024
  • 16.3. Competitive Analysis
    • 16.3.1. Agilent Technologies, Inc.
    • 16.3.2. Artes Biotechnology GmbH
    • 16.3.3. ARVYS Proteins, Inc.
    • 16.3.4. Bio-Rad Laboratories, Inc.
    • 16.3.5. Bioneer Corporation
    • 16.3.6. Boster Biological Technology
    • 16.3.7. BPS Bioscience, Inc.
    • 16.3.8. Charles River Laboratories International, Inc.
    • 16.3.9. Cusabio Technology LLC
    • 16.3.10. Danaher Corporation
    • 16.3.11. Eurofins Scientific SE
    • 16.3.12. F. Hoffmann-La Roche AG
    • 16.3.13. Genscript Biotech Corporation
    • 16.3.14. Jena Bioscience GmbH
    • 16.3.15. Jubilant Pharmova Limited
    • 16.3.16. Leniobio GmbH
    • 16.3.17. LGC Genomics Limited
    • 16.3.18. Lifesensors Inc.
    • 16.3.19. Lonza Group Ltd.
    • 16.3.20. Merck KgaA
    • 16.3.21. New England Biolabs, Inc.
    • 16.3.22. Novoprotein Scientific Inc.
    • 16.3.23. Oxford Expression Technologies Ltd.
    • 16.3.24. Promega Corporation
    • 16.3.25. Proteos, Inc. by NanoImaging Services, Inc.
    • 16.3.26. Qiagen N.V.
    • 16.3.27. RayBiotech Life, Inc.
    • 16.3.28. Sino Biological, Inc.
    • 16.3.29. Sygnature Discovery Limited
    • 16.3.30. Synbio Technologies
    • 16.3.31. Syngene International Limited
    • 16.3.32. Takara Bio Inc.
    • 16.3.33. Thermo Fisher Scientific, Inc.

17. ResearchAI

18. ResearchStatistics

19. ResearchContacts

20. ResearchArticles

21. Appendix

»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦