½ÃÀ庸°í¼­
»óǰÄÚµå
1807538

¹æ»ç¼± °¨Áö, ¸ð´ÏÅ͸µ ¹× ¾ÈÀü ½ÃÀå : Á¦Ç° À¯Çü, °¨Áö À¯Çü, ±â¼ú À¯Çü, ±¸¼º, ¿ëµµ, ÆÇ¸Åä³Îº° - ¼¼°è ¿¹Ãø(2025-2030³â)

Radiation Detection, Monitoring & Safety Market by Product Type, Detection Type, Technology, Technology Type, Composition, Application, Sales Channel - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 181 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

¹æ»ç¼± °¨Áö, ¸ð´ÏÅ͸µ ¹× ¾ÈÀü ½ÃÀåÀº 2024³â¿¡´Â 34¾ï 1,000¸¸ ´Þ·¯·Î Æò°¡µÇ¾ú½À´Ï´Ù. 2025³â¿¡ 36¾ï 8,000¸¸ ´Þ·¯¿¡ À̸£°í, CAGR 7.82%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 53¾ï 7,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁØ ¿¬µµ : 2024³â 34¾ï 1,000¸¸ ´Þ·¯
ÃßÁ¤ ¿¬µµ : 2025³â 36¾ï 8,000¸¸ ´Þ·¯
¿¹Ãø ¿¬µµ : 2030³â 53¾ï 7,000¸¸ ´Þ·¯
CAGR(%) 7.82%

¹æ»ç¼± °¨Áö ¹× ¾ÈÀüÀº Çö´ë »ê¾÷, ÀÇ·á, º¸¾È ¾÷¹«¿¡ ÇʼöÀûÀÎ ¿ä¼Ò·Î ÀÚ¸® Àâ¾Ò½À´Ï´Ù. ¿øÀÚ·Â ¹ßÀüÀÇ ±Þ¼ÓÇÑ ¹ßÀü°ú ÇÔ²² ÀÇ·á Áø´Ü¿¡ ÀÌ¿ÂÈ­ ¹æ»ç¼±ÀÇ ÀÀ¿ëÀÌ È®´ëµÊ¿¡ µû¶ó °­·ÂÇÑ °¨½Ã ü°è¿Í º¸È£ ÀåºñÀÇ Çʿ伺ÀÌ ºÎ°¢µÇ°í ÀÖ½À´Ï´Ù. µ¿½Ã¿¡ ±¹¹ÎµéÀÇ ÀνÄÀÌ ³ô¾ÆÁö°í ¾ö°ÝÇÑ ±ÔÁ¦ °¨µ¶À¸·Î ÀÎÇØ ÀÌÇØ°ü°èÀÚµéÀº À§Çè °¨¼Ò¿Í ȯ°æ º¸È£¿¡ ´ëÇÑ Àû±ØÀûÀÎ ÀÚ¼¼¸¦ ÃëÇØ¾ß ÇÕ´Ï´Ù.

¹ßÀü¿¡¼­ Á¦¾à¿¡ À̸£±â±îÁö ¸ðµç ÁÖ¿ä ºÐ¾ß¿¡¼­ Á¶Á÷µéÀº ¼¾¼­ °¨µµ, µ¥ÀÌÅÍ ÅëÇÕ, ÀÎÀç À°¼º°ú °ü·ÃµÈ º¹ÀâÇÑ ¹®Á¦¸¦ ÇØ°áÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ °úÁ¦´Â °¨Áö Á¤È®µµ Çâ»ó°ú ÄÄÇöóÀ̾𽺠º¸°í °£¼ÒÈ­¸¦ ¾à¼ÓÇÏ´Â µðÁöÅÐ Çõ½ÅÀÌ °¡Á®´ÙÁÖ´Â ±âȸ¿Í °øÁ¸Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¹è°æ¿¡¼­ ¾÷¹« È¿À²¼ºÀ» ÃÖÀûÈ­Çϸ鼭 ¾ÈÀü ÇÁ·ÎÅäÄÝÀ» °­È­ÇϰíÀÚ ÇÏ´Â ÀÇ»ç °áÁ¤±ÇÀÚ¿¡°Ô´Â ÁøÈ­ÇÏ´Â ±â¼ú ¿ª·®, º¯È­ÇÏ´Â ±ÔÁ¦ ȯ°æ ¹× º¯È­ÇÏ´Â ÃÖÁ¾ »ç¿ëÀÚ ¿ä±¸ »çÇ×À» ¸íÈ®ÇÏ°Ô ÀÌÇØÇÏ´Â °ÍÀÌ ÇʼöÀûÀÔ´Ï´Ù.

ÀÌ Executive Summary´Â ´Ù°¢ÀûÀÎ ¹æ»ç¼± °¨Áö ¹× ¸ð´ÏÅ͸µ »ýŰ踦 Ž»öÇÒ ¼ö ÀÖ´Â ±ÇÀ§ ÀÖ´Â ±âÃʸ¦ Á¦°øÇÕ´Ï´Ù. ½ÃÀåÀ» Çü¼ºÇÏ´Â ÁÖ¿ä ÃËÁø¿äÀÎ, ±â¼ú Çõ½Å, Àü·«Àû Çʼö »çÇ×ÀÌ ¹àÇôÁ³À¸¸ç, Àü¹®°¡¿Í °æ¿µÁøÀº Á¡Á¡ ´õ ¿ªµ¿ÀûÀÌ°í ¸®½ºÅ©°¡ Å« ȯ°æ¿¡¼­ È®½ÇÇÑ °æ·Î¸¦ ±×¸± ¼ö ÀÖ´Â ½Ç¿ëÀûÀÎ ÅëÂû·ÂÀ» ¾òÀ» ¼ö ÀÖ½À´Ï´Ù.

±â¼ú, ±ÔÁ¦ ¹× ½ÃÀå ÁÖµµÀÇ ¸Å¿ì Áß¿äÇÑ º¯È­¸¦ ÇìÃijª°¨À¸·Î½á ¾÷°è Àü¹Ý¿¡ °ÉÃÄ ¼¼°è ¹æ»ç¼± °¨Áö ¹× ¾ÈÀü ¼Ö·ç¼ÇÀ» Çü¼ºÇÕ´Ï´Ù.

±â¼úÀÇ ºñ¾àÀûÀÎ ¹ßÀü°ú ±ÔÁ¦ »óȲÀÇ °³ÇõÀº ¹æ»ç¼± °¨Áö°ú ¾ÈÀüÀÇ Àü¸ÁÀ» ÀçÁ¤ÀÇÇϰí Á¤È®¼º, ¿¬°á¼º, »ç¿ëÀÚ Á᫐ ¼³°èÀÇ »õ·Î¿î ½Ã´ë¸¦ ¿­¾ú½À´Ï´Ù. ±â¼úÀûÀ¸·Î´Â ¾Æ³¯·Î±×¿¡¼­ µðÁöÅзΠ°¨Áö ¾ÆÅ°ÅØÃ³¸¦ ÀüȯÇÔÀ¸·Î½á Àü·Ê ¾ø´Â ¼öÁØÀÇ µ¥ÀÌÅÍ Ãæ½Çµµ¸¦ ´Þ¼ºÇϰí, ¼ÒÇüÈ­µÈ °íü ¼¾¼­¿Í ½ÅÆ¿·¹ÀÌÅÍ ±â¹Ý ¼¾¼­¸¦ ÅëÇØ ÁøÁ¤ÇÑ ÈÞ´ë¿ë ¸ð´ÏÅ͸µ ¼Ö·ç¼ÇÀ» ±¸ÇöÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. µ¿½Ã¿¡ »ç¹°ÀÎÅÍ³Ý ÇÁ·¹ÀÓ¿öÅ©¿Í Ŭ¶ó¿ìµå ±â¹Ý ºÐ¼®ÀÇ ÅëÇÕÀº ¿ø½Ã °¨Áö µ¥ÀÌÅ͸¦ ½Ç½Ã°£ ÀÇ»ç°áÁ¤ Áö¿øÀ» À§ÇÑ ½Ç¿ëÀûÀÎ ÀÎÅÚ¸®Àü½º·Î ÀüȯÇß½À´Ï´Ù.

¹Ì±¹ÀÌ »õ·Î ¹ßµ¿ÇÑ ¹æ»ç¼± °¨Áö ¹× ¾ÈÀü Àåºñ¿¡ ´ëÇÑ °ü¼¼ÀÇ Àü·«Àû ¿µÇâ ¹× 2025³â ½ÃÀå ¿ªÇÐ Æò°¡

2025³â ¹Ì±¹À» °Ü³ÉÇÑ °ü¼¼ µµÀÔÀº ¹æ»ç¼± °¨Áö ¹× ¾ÈÀü ÀåºñÀÇ ¼¼°è °ø±Þ¸Á Àüü¿¡ ÆÄÀåÀ» ºÒ·¯ÀÏÀ¸Å°°í ÀÖ½À´Ï´Ù. ¼öÀÔ ºÎǰ ¹× ¿ÏÁ¦Ç° Á¶¸³Ç°¿¡ Ãß°¡ °ü¼¼¸¦ ºÎ°úÇÔÀ¸·Î½á ±ÔÁ¦ ´ç±¹Àº Á¦Á¶¾÷ü¿¡ Á¶´Þ Àü·«°ú ºñ¿ë ±¸Á¶¸¦ Àç°ËÅäÇϵµ·Ï ¾Ð¹ÚÇß½À´Ï´Ù. ±× °á°ú, Á¶´ÞÆÀÀº ±¹³» ½ÃÀå¿¡¼­ ´ëü °ø±Þ¾÷ü¸¦ ã´Â µ¿½Ã¿¡ °¡°Ý º¯µ¿À» ¿ÏÈ­Çϱâ À§ÇØ »õ·Î¿î ¹«¿ª ÇùÁ¤À» Çù»óÇϰí ÀÖ½À´Ï´Ù.

Â÷º°È­¸¦ ÃËÁøÇÏ´Â Á¦Ç° Æ÷Æ®Æú¸®¿À, °¨Áö ¹æ½Ä, ±â¼ú Ç÷§Æû, ±¸¼º ÇÁ·ÎÆÄÀÏ, ÀÀ¿ë ºÐ¾ß Àü¹Ý¿¡ °ÉÄ£ ÇÙ½É ¼¼ºÐÈ­ ÀλçÀÌÆ®¸¦ ÆÄ¾ÇÇÒ ¼ö ÀÖ½À´Ï´Ù.

½ÃÀå ¼¼ºÐÈ­¸¦ Á¾ÇÕÀûÀ¸·Î ÀÌÇØÇϸé Àü·«Àû Â÷º°È­¸¦ Áö¿øÇÏ´Â Á¦Ç° ¾ÆÅ°ÅØÃ³, °¨Áö ¹æ½Ä, ÃÖÁ¾ »ç¿ë ¿ä±¸ »çÇ×ÀÇ º¹ÀâÇÑ »óÈ£ ÀÛ¿ëÀ» ÆÄ¾ÇÇÒ ¼ö ÀÖ½À´Ï´Ù. Á¦Ç° Æ÷Æ®Æú¸®¿À´Â Áö¿ª ¸ð´ÏÅ͸µ, °³ÀÎ ¼±·®°è, Ư¼ö ¹°Áú ¸ð´ÏÅ͸¦ Æ÷ÇÔÇÑ ¹æ»ç¼± °¨Áö ¹× ¸ð´ÏÅ͸µ ½Ã½ºÅÛ°ú ¹æ»ç¼± ȯ°æ¿ëÀ¸·Î ¼³°èµÈ º¸È£ ¾È°æ, ¾È¸é º¸È£´ë, Àå°©, ½Å¹ß µîÀÇ ¾ÈÀü Àåºñ·Î ³ª´¹´Ï´Ù. °ËÃâ ¹æ½ÄÀº ¾ËÆÄ¼±, º£Å¸¼±, °¨¸¶¼± ¹Î°¨µµ ÇÁ·ÎÆÄÀÏ·Î ±¸ºÐµÇ¸ç, °¢°¢ ´Ù¸¥ ÇÇÆø ½Ã³ª¸®¿À¿Í ÄÄÇöóÀ̾𽺿¡ ´ëÀÀÇÕ´Ï´Ù.

¹æ»ç¼± ¾ÈÀüÀÇ Àü·«Àû Æ÷Áö¼Å´×À» À§ÇÑ Áöħ, ¾Æ½Ã¾ÆÅÂÆò¾ç, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ Áö¿ªÀû ¿ªÇÐ °ü°è ÆÄ¾Ç

¹æ»ç¼± °¨Áö ¹× ¾ÈÀü¿¡ ´ëÇÑ Áö¿ªÀû ¿ªÇаü°è´Â °¢±â ´Ù¸¥ ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©, ÀÎÇÁ¶ó ÅõÀÚ ÁÖ±â, À§Çù ÀνĿ¡ µû¶ó Çü¼ºµË´Ï´Ù. ¹ÌÁÖ ´ë·ú¿¡¼­´Â ¹Ì±¹ÀÌ ¾ö°ÝÇÑ ¿¬¹æ ±âÁØ¿¡ µû¶ó ¿øÀÚ·Â ½Ã¼³, ÀÇ·á½Ã¼³, ±¹°æ °¨½Ã ½Ã¼³¿¡ ÷´Ü ¼¾¼­¸¦ ¹èÄ¡ÇÏ´Â µ¥ ¾ÕÀå¼­°í ÀÖÀ¸¸ç, ij³ª´Ù´Â ȯ°æ °ü¸®ÀÇ Á߿伺À» °­Á¶ÇÏ¸ç ´ë±â, Åä¾ç, ¼öÁú ¸ð´ÏÅ͸µ¿¡ ´ëÇÑ ±¤¹üÀ§ÇÑ ³ë·ÂÀ» Áö¿øÇϰí ÀÖ½À´Ï´Ù. ¶óƾ¾Æ¸Þ¸®Ä« ±¹°¡µéÀº »ê¾÷ ¼ºÀåÀ» °­È­Çϱâ À§ÇØ, ƯÈ÷ ÆÄÀÌÇÁ¶óÀÎ ¹«°á¼º ¹× ä±¼ ÀÛ¾÷À» À§ÇØ ÃֽŠ°Ë»ç Àåºñ¸¦ Á¡ÁøÀûÀ¸·Î äÅÃÇϰí ÀÖ½À´Ï´Ù.

¾÷°è ¼±µµ ±â¾÷ÀÇ °æÀï Àü·« ¹æ»ç¼± °¨Áö ¹× ¾ÈÀü Àåºñ »ýŰ踦 Çü¼ºÇÏ´Â Çù¾÷°ú Çõ½ÅÀÇ ±ËÀû

¹æ»ç¼± °¨Áö ¹× ¾ÈÀü Àåºñ »ýŰèÀÇ ÁÖ¿ä ±â¾÷µéÀº Àü·«Àû Àμö, ºÐ¾ß °£ ÆÄÆ®³Ê½Ê, ²÷ÀÓ¾ø´Â Çõ½ÅÀ» ÅëÇØ Â÷º°È­¸¦ ²ÒÇϰí ÀÖ½À´Ï´Ù. ÁÖ¿ä ´Ù±¹Àû ±â¾÷µéÀº ¼¼°è À¯Åë ³×Æ®¿öÅ©¿Í ±ÔÁ¦¿¡ ´ëÇÑ ±íÀº Àü¹®¼ºÀ» ¹ÙÅÁÀ¸·Î º¹ÀâÇÑ ÄÄÇöóÀ̾𽺠¹× ¿î¿µ ¿ä°ÇÀ» ÃæÁ·ÇÏ´Â ¿£µåÅõ¿£µå ¼Ö·ç¼ÇÀ» Á¦°øÇÕ´Ï´Ù. ÀÌµé ±â¾÷Àº ¼¾¼­ ¼ÒÀ縦 °³¼±ÇÏ°í ½ÅÈ£ ó¸® ¾Ë°í¸®ÁòÀ» °­È­Çϱâ À§ÇØ ÇÐ°è ¹× ±¹¸³ ¿¬±¸¼Ò¿ÍÀÇ °øµ¿ ¿¬±¸¿¡ ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖÀ¸¸ç, Á¦Ç° ·Îµå¸ÊÀÌ ÁøÈ­ÇÏ´Â ¼º´É ±âÁØ¿¡ ºÎÇÕÇÒ ¼ö ÀÖµµ·Ï ³ë·ÂÇϰí ÀÖ½À´Ï´Ù.

¹æ»ç¼± °¨Áö ¹× ¾ÈÀü ºÐ¾ßÀÇ ¸®´õ½ÊÀ» ¼±µµÇÏ´Â Çõ½ÅÀÇ Ã¤Åðú Áö¼Ó °¡´ÉÇÑ ¼ºÀåÀ» °¡¼ÓÇϱâ À§ÇÑ ½ÇÇà °¡´ÉÇÑ Àü·«Àû Á¦¾È

¾÷°è ¸®´õµéÀº ÈÞ´ë¿ë ¹× °íÁ¤½Ä ¸ð´ÏÅ͸µ ¼Ö·ç¼Ç¿¡ °í±Þ ºÐ¼®°ú Ŭ¶ó¿ìµå ¿¬°áÀ» ÅëÇÕÇÏ¿© ½Ç½Ã°£ ÅëÂû·Â°ú ¿¹Áöº¸Àü ±â´ÉÀ» Á¦°øÇÏ´Â °ÍÀ» ¿ì¼±¼øÀ§¿¡ µÎ¾î¾ß ÇÕ´Ï´Ù. È®Àå °¡´ÉÇÑ Á¦Á¶ ±â¼ú°ú ¸ðµâÈ­µÈ Á¦Ç° ¼³°è¿¡ ÅõÀÚÇÔÀ¸·Î½á ÇâÈÄ °ø±Þ¸Á ´ÜÀýÀÇ À§ÇèÀ» ÁÙÀÌ´Â µ¿½Ã¿¡ ÃÖÁ¾ »ç¿ëÀÚÀÇ ´Ù¾çÇÑ ¿ä±¸»çÇ׿¡ ¸ÂÃß¾î Àåºñ¸¦ ½Å¼ÓÇÏ°Ô ±¸¼ºÇÒ ¼ö ÀÖ½À´Ï´Ù. ±ÔÁ¦ ±â°ü ¹× Ç¥ÁØÈ­ ´Üü¿ÍÀÇ Àü·«Àû ÆÄÆ®³Ê½ÊÀ» ±¸ÃàÇÏ¿© »õ·Î¿î ÄÄÇöóÀ̾𽺠ÇÁ·¹ÀÓ¿öÅ©¿ÍÀÇ Á¶±â ¿¬°è¸¦ ÃËÁøÇϰí Á¦Ç° ÀÎÁõ °æ·Î¸¦ °£¼ÒÈ­ÇÕ´Ï´Ù.

Àü¹®°¡º° 1Â÷ Á¶»ç 2Â÷ µ¥ÀÌÅÍ »ï°¢Ãø·® ¹× ¾ö°ÝÇÑ ºÐ¼® ÇÁ·¹ÀÓ¿öÅ©¸¦ ÅëÇÕÇÑ Á¾ÇÕÀûÀÎ Á¶»ç ¹æ¹ýÀ» ÅëÇØ È®½ÇÇÑ ÅëÂû·Â Á¦°ø

º» ºÐ¼®Àº 1Â÷ Àü¹®°¡ ÀÚ¹®, ±¤¹üÀ§ÇÑ 2Â÷ Á¶»ç, ¾ö°ÝÇÑ µ¥ÀÌÅÍ °ËÁõÀ» °áÇÕÇÑ Ã¼°èÀûÀÎ Á¶»ç¹æ¹ýÀ» ±â¹ÝÀ¸·Î Çϰí ÀÖ½À´Ï´Ù. ÁÖ¿ä ºÐ¾ßÀÇ ¾÷°è º£Å×¶û, ±ÔÁ¦ ´ç±¹ ¹× ÃÖÁ¾ »ç¿ëÀÚ Á¶Á÷°úÀÇ ½ÉÃþ ÀÎÅͺ並 ÅëÇØ 1Â÷ÀûÀÎ ÀǰßÀ» ¼öÁýÇÏ¿© ±â¼ú ¿ä±¸ »çÇ× ¹× ÄÄÇöóÀ̾𽺠Çʼö ¿ä°Ç¿¡ ´ëÇÑ ´Ù¾çÇÑ °üÁ¡À» È®º¸Çß½À´Ï´Ù. 2Â÷ Á¤º¸¿øÀ¸·Î´Â ±â¼ú Àú³Î, ±¹Á¦±â±¸ ¹ßÇ¥ Ç¥ÁØ, ÀϹݿ¡ °ø°³µÈ ±â¾÷ Á¤º¸ µîÀÌ ÀÖÀ¸¸ç, ÀÌ ¸ðµç °ÍÀ» ÅëÇÕÇÏ¿© źźÇÑ Áõ°Å ±â¹ÝÀ» ±¸ÃàÇß½À´Ï´Ù.

ÁøÈ­ÇÏ´Â ¹æ»ç¼± °¨Áö ¹× ¾ÈÀü »óȲÀ» È®½ÇÇÏ°Ô ±Øº¹Çϱâ À§ÇØ Áß¿äÇÑ ¹ß°ßÀÇ ÀÇ¹Ì¿Í ¹Ì·¡ Àü¸ÁÀ» ÅëÇÕÇÕ´Ï´Ù.

À̹ø Executive Summary¸¦ ÅëÇØ ¹æ»ç¼± °¨Áö°ú ¾ÈÀüÀÇ ¿µ¿ªÀ» Çü¼ºÇÏ´Â ´Ù¸éÀûÀÎ Èû¿¡ ´ëÇØ ¾Ë¾Æº¸¾Ò½À´Ï´Ù. ¾Æ³¯·Î±×¿¡¼­ µðÁöÅÐ ¾ÆÅ°ÅØÃ³·Î, °íÁ¤Çü¿¡¼­ ÁøÁ¤ÇÑ ÈÞ´ë¿ë ½Ã½ºÅÛÀ¸·Î ±â¼úÀÌ ÁøÈ­ÇÏ¿© °¨Áö Á¤È®µµ¿Í Á¶ÀÛÀÇ ¹Îø¼ºÀÌ Çâ»óµÇ¾ú½À´Ï´Ù. ±ÔÁ¦ ȯ°æÀÇ º¯È­¿Í ÁöÁ¤ÇÐÀû ¿äÀÎÀº °ø±Þ¸Á Àü·«ÀÇ Àüȯ°ú Á¦Á¶ ÅõÀÚÀÇ ÇöÁöÈ­¸¦ ÃËÁøÇÏ°í °æÀï ±¸µµ¸¦ ÀçÁ¤ÀÇÇϰí ÀÖ½À´Ï´Ù. ÇÑÆí, »ó¼¼ÇÑ ¼¼ºÐÈ­ ºÐ¼®À» ÅëÇØ Á¦Ç° À¯Çü, °ËÃâ ¹æ½Ä, ±¸¼º ÇÁ·ÎÆÄÀÏ, ÀÀ¿ë ºÐ¾ß¿¡ °ÉÄ£ ¸ÂÃãÇü ¼Ö·ç¼ÇÀÇ Á߿伺ÀÌ °­Á¶µÇ°í ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ¿ªÇÐ

Á¦6Àå ½ÃÀå ÀλçÀÌÆ®

  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®

Á¦7Àå ¹Ì±¹ °ü¼¼ÀÇ ´©Àû ¿µÇâ 2025

Á¦8Àå ¹æ»ç¼± °¨Áö, ¸ð´ÏÅ͸µ ¹× ¾ÈÀü ½ÃÀå : Á¦Ç° À¯Çüº°

  • ¹æ»ç¼± °¨Áö ¹× ¸ð´ÏÅ͸µ Àåºñ
    • ¿¡¾î¸®¾î ¸ð´ÏÅ͸µ ½Ã½ºÅÛ
    • ¼±·®°è
    • ¸ÅÆ®¸®¾ó ¸ð´ÏÅÍ
  • ¾ÈÀü Àåºñ
    • ¾È°æ/ÆäÀ̽º ½¯µå
    • Àå°© ¹× ½Å¹ß

Á¦9Àå ¹æ»ç¼± °¨Áö, ¸ð´ÏÅ͸µ ¹× ¾ÈÀü ½ÃÀå : °¨Áö À¯Çüº°

  • ¾ËÆÄ¼±
  • º£Å¸¼±
  • °¨¸¶¼±

Á¦10Àå ¹æ»ç¼± °¨Áö, ¸ð´ÏÅ͸µ ¹× ¾ÈÀü ½ÃÀå : ±â¼úº°

  • ÈÞ´ë¿ë
  • °íÁ¤Çü

Á¦11Àå ¹æ»ç¼± °¨Áö, ¸ð´ÏÅ͸µ ¹× ¾ÈÀü ½ÃÀå : ±â¼ú À¯Çüº°

  • ¾Æ³¯·Î±× °¨Áö ±â¼ú
  • µðÁöÅÐ °¨Áö ±â¼ú

Á¦12Àå ¹æ»ç¼± °¨Áö, ¸ð´ÏÅ͸µ ¹× ¾ÈÀü ½ÃÀå : ±¸¼ºº°

  • °¡½º °¨Áö±â
  • ½ÅÆ¿·¹ÀÌÅÍ
  • °íü °ËÃâ±â

Á¦13Àå ¹æ»ç¼± °¨Áö, ¸ð´ÏÅ͸µ ¹× ¾ÈÀü ½ÃÀå : ¿ëµµº°

  • ȯ°æ ¸ð´ÏÅ͸µ
    • °ø±â ¸ð´ÏÅ͸µ
    • Åä¾ç ¸ð´ÏÅ͸µ
    • ¼öÁú ¸ð´ÏÅ͸µ
  • ±¹Åä¾Èº¸ ¹× ¹æÀ§
    • ±¹°æ °æºñ
    • È­¹° ½ºÄµ
  • »ê¾÷ °Ë»ç
    • ÀüÀÚºÎǰ °Ë»ç
    • ÆÄÀÌÇÁ¶óÀÎ °Ë»ç
  • ÀÇ·á ¿µ»ó
  • ¿¬±¸ ¹× Çмú

Á¦14Àå ¹æ»ç¼± °¨Áö, ¸ð´ÏÅ͸µ ¹× ¾ÈÀü ½ÃÀå : ÆÇ¸Åä³Îº°

  • ¿ÀÇÁ¶óÀÎ ÆÇ¸Å
  • ¿Â¶óÀÎ ÆÇ¸Å
    • ºê·£µå À¥»çÀÌÆ®
    • E-Commerce Ç÷§Æû

Á¦15Àå ¾Æ¸Þ¸®Ä«ÀÇ ¹æ»ç¼± °¨Áö, ¸ð´ÏÅ͸µ ¹× ¾ÈÀü ½ÃÀå

  • ¹Ì±¹
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ºê¶óÁú
  • ¾Æ¸£ÇîÆ¼³ª

Á¦16Àå À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ ¹æ»ç¼± °¨Áö, ¸ð´ÏÅ͸µ ¹× ¾ÈÀü ½ÃÀå

  • ¿µ±¹
  • µ¶ÀÏ
  • ÇÁ¶û½º
  • ·¯½Ã¾Æ
  • ÀÌÅ»¸®¾Æ
  • ½ºÆäÀÎ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
  • µ§¸¶Å©
  • ³×´ú¶õµå
  • īŸ¸£
  • Çɶõµå
  • ½º¿þµ§
  • ³ªÀÌÁö¸®¾Æ
  • ÀÌÁýÆ®
  • Æ¢¸£Å°¿¹
  • À̽º¶ó¿¤
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • ½ºÀ§½º

Á¦17Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ¹æ»ç¼± °¨Áö, ¸ð´ÏÅ͸µ ¹× ¾ÈÀü ½ÃÀå

  • Áß±¹
  • Àεµ
  • ÀϺ»
  • È£ÁÖ
  • Çѱ¹
  • Àεµ³×½Ã¾Æ
  • ű¹
  • Çʸ®ÇÉ
  • ¸»·¹À̽þÆ
  • ½Ì°¡Æ÷¸£
  • º£Æ®³²
  • ´ë¸¸

Á¦18Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼®, 2024³â
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º, 2024³â
  • °æÀï ºÐ¼®
    • AMETEK, Inc.
    • Berthold Technologies GmbH & Co. KG
    • Bertin Technologies SAS
    • Bruker Corporation
    • Cobham Limited
    • Cole-Parmer Instrument Company, LLC
    • ECOTEST Group
    • Exosens
    • Fluke Corporation
    • Fuji Electric Co. Ltd.
    • General Electric Company
    • Hamamatsu Photonics K.K.
    • Kromek Group PLC
    • Landauer, Inc.
    • LAURUS Systems
    • Leonardo DRS, Inc.
    • LND, Inc.
    • Ludlum Measurements, Inc.
    • Malvern Panalytical Ltd.
    • Mirion Technologies, Inc.
    • Oxford Instruments plc
    • PCE Instruments UK Ltd.
    • Scionix Holland B.V.
    • SciWise Solutions Inc.
    • Symetrica Inc.
    • Teledyne Technologies, Inc.

Á¦19Àå ¸®¼­Ä¡ AI

Á¦20Àå ¸®¼­Ä¡ Åë°è

Á¦21Àå ¸®¼­Ä¡ ÄÁÅÃÆ®

Á¦22Àå ¸®¼­Ä¡ ±â»ç

Á¦23Àå ºÎ·Ï

LSH

The Radiation Detection, Monitoring & Safety Market was valued at USD 3.41 billion in 2024 and is projected to grow to USD 3.68 billion in 2025, with a CAGR of 7.82%, reaching USD 5.37 billion by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 3.41 billion
Estimated Year [2025] USD 3.68 billion
Forecast Year [2030] USD 5.37 billion
CAGR (%) 7.82%

Radiation detection and safety have emerged as indispensable components of modern industrial, medical, and security operations. Rapid advancements in nuclear energy generation, coupled with expanded applications of ionizing radiation in healthcare diagnostics, have underscored the need for robust monitoring frameworks and protective equipment. At the same time, heightened public awareness and rigorous regulatory oversight have compelled stakeholders to adopt a proactive stance on risk mitigation and environmental stewardship.

Throughout critical sectors-from power generation to pharmaceuticals-organizations are grappling with complex challenges related to sensor sensitivity, data integration, and workforce training. These challenges coexist alongside opportunities presented by digital innovation, which promise to enhance detection accuracy and streamline compliance reporting. Against this backdrop, a clear understanding of evolving technical capabilities, shifting regulatory landscapes, and emergent end-user requirements is essential for decision makers seeking to reinforce safety protocols while optimizing operational efficiency.

This executive summary offers an authoritative foundation for navigating the multifaceted radiation detection and monitoring ecosystem. It illuminates key drivers, technological breakthroughs, and strategic imperatives that shape the market, equipping experts and executives with actionable insights to chart a confident course through an increasingly dynamic and high-stakes environment.

Navigating Pivotal Technological, Regulatory, and Market-Driven Shifts Reshaping Global Radiation Detection and Safety Solutions Across Industries

Technological breakthroughs and regulatory reforms have converged to redefine the radiation detection and safety landscape, ushering in a new era of precision, connectivity, and user-centric design. On the technological front, the transition from analog to digital detection architectures has unlocked unprecedented levels of data fidelity, while miniaturized solid-state and scintillator-based sensors have enabled truly portable monitoring solutions. Concurrently, the integration of Internet of Things frameworks and cloud-based analytics has transformed raw detection data into actionable intelligence for real-time decision support.

Meanwhile, global regulatory bodies are revising exposure thresholds and certification requirements, prompting equipment manufacturers to accelerate product validation cycles and pursue harmonized compliance pathways. These shifts have been further intensified by heightened geopolitical tensions and the prioritization of homeland security, which have expanded funding for border security screening and critical infrastructure protection.

Moreover, emerging end-user demands-spanning environmental monitoring, industrial inspection, medical imaging, and academic research-are driving bespoke solutions that blend multi-modal detection capabilities with ergonomic design and interoperability across legacy platforms. Taken together, these transformative dynamics are reshaping competitive strategies, fostering cross-sector collaborations, and accelerating the diffusion of next-generation safety solutions across a broadening array of application domains.

Assessing the Strategic Impact of Newly Imposed United States Tariffs on Radiation Detection and Safety Equipment and Market Dynamics in 2025

The introduction of targeted United States tariffs in 2025 has sent ripples throughout the global supply chain for radiation detection and safety equipment. By imposing additional duties on imported components and finished assemblies, regulatory authorities have compelled manufacturers to reevaluate sourcing strategies and cost structures. As a result, procurement teams are seeking alternative suppliers within domestic markets while simultaneously negotiating new trade agreements to mitigate price volatility.

This shift in trade policy has also accelerated investments in local manufacturing capabilities, prompting several established firms to expand plant footprints and pursue vertical integration. In parallel, downstream end users are recalibrating capital expenditure plans, balancing the need for advanced detection suites against the financial impact of higher import costs. The combined effect has been a realignment of distribution networks, with distributors and system integrators reconfiguring inventory levels and adjusting service models to maintain competitive margins.

Importantly, the tariffs have catalyzed innovation in cost optimization, driving research into lower-cost materials and modular designs that reduce reliance on tariff-vulnerable components. While short-term headwinds have tested industry resilience, there is growing momentum toward diversified supply chains and regionally focused production ecosystems that diminish exposure to future trade disruptions.

Unveiling Core Segmentation Insights Spanning Product Portfolios Detection Modalities Technological Platforms Composition Profiles and Application Domains Driving Differentiation

A comprehensive understanding of market segmentation reveals the intricate interplay of product architectures, detection modalities, and end-use requirements that underpin strategic differentiation. Product portfolios are bifurcated into radiation detection and monitoring systems-encompassing area monitoring solutions, personal dosimeters, and specialized material monitors-and safety equipment, which ranges from protective eyewear and face shields to gloves and footwear designed for radiation environments. Detection modalities are further distinguished by alpha, beta, and gamma sensitivity profiles, each catering to distinct exposure scenarios and compliance mandates.

Technological platforms span both portable and stationary applications, offering field-deployable instruments as well as fixed-site installations that support continuous environmental surveillance and security checkpoints. Within these platforms, analog detection technologies still hold relevance for certain legacy use cases, while digital detection solutions deliver unprecedented dynamic range and networked visibility. Composition profiles are defined by gas-filled detectors, scintillators, and solid-state semiconductors, each presenting unique trade-offs in sensitivity, response time, and durability.

Applications cross multiple industry verticals-including environmental monitoring of air, soil, and water; homeland security and defense functions such as border security and cargo scanning; industrial inspection of electronic components and pipelines; medical imaging workflows; and academic research. Finally, sales channels balance offline distribution through established OEM and distributor networks with an expanding online presence via branded websites and e-commerce platforms, enabling end users to access both standardized instruments and tailored service offerings.

Illuminating Regional Dynamics Across the Americas Europe Middle East and Africa and Asia Pacific to Guide Strategic Positioning in Radiation Safety

Regional dynamics in radiation detection and safety are shaped by distinct regulatory frameworks, infrastructure investment cycles, and threat perceptions. Within the Americas, the United States leads with rigorous federal standards that drive advanced sensor deployment across nuclear facilities, healthcare institutions, and border surveillance installations, while Canada's focus on environmental stewardship supports widespread air, soil, and water monitoring initiatives. Latin American countries, seeking to bolster industrial growth, are gradually embracing modern inspection equipment, particularly for pipeline integrity and mining operations.

In Europe, Middle East, and Africa, the European Union's harmonized directives accelerate cross-border collaboration on mobile detection units and interoperable data platforms. Regulatory alignment across member states fosters scalable procurement programs, while Middle Eastern investments in critical infrastructure and nuclear energy projects stimulate demand for robust area monitoring and cargo scanning solutions. In Africa, nascent nuclear research and increasing emphasis on radiological risk management are creating pockets of rapid growth, especially in environmental applications.

The Asia-Pacific region exhibits uneven adoption trajectories. Japan and South Korea continue to pioneer high-precision, digital detection systems driven by advanced healthcare and nuclear power sectors, whereas China's supportive policy environment fuels domestic manufacturer expansion and large-scale environmental surveillance deployments. India's modernization of industrial inspection protocols and growing research capabilities are also driving incremental demand, positioning the region as a pivotal growth frontier.

Highlighting Leading Industry Players Competitive Strategies Collaborations and Innovation Trajectories Shaping the Radiation Detection and Safety Equipment Ecosystem

Leading players in the radiation detection and safety equipment ecosystem have differentiated themselves through a combination of strategic acquisitions, cross-sector partnerships, and relentless innovation. Key multinational corporations leverage global distribution networks and deep regulatory expertise to deliver end-to-end solutions that address complex compliance and operational requirements. These firms invest heavily in research collaborations with academic institutions and national laboratories to refine sensor materials and enhance signal processing algorithms, ensuring that product roadmaps remain aligned with evolving performance standards.

Meanwhile, specialized technology providers focus on niche segments-such as high-resolution scintillation detectors or integrated portal monitoring systems-to capture vertical-specific opportunities. Through collaborative ventures with software developers, they are embedding predictive analytics and machine learning capabilities into detection suites, enabling predictive maintenance and anomaly detection in real time. At the same time, emerging companies are disrupting traditional models by offering modular, cloud-native platforms and subscription-based service models that lower barriers to adoption for smaller organizations.

Collectively, these competitive strategies underscore the importance of agility, cross-functional expertise, and customer-centric innovation. By fostering robust ecosystems of OEMs, integrators, and end-users, leading companies are expanding the addressable market, enhancing product interoperability, and reinforcing the critical role of radiation safety in safeguarding people and environments.

Actionable Strategic Recommendations to Propel Leadership Advancement Innovation Adoption and Sustainable Growth within the Radiation Detection and Safety Sector

Industry leaders should prioritize the integration of advanced analytics and cloud connectivity into both portable and fixed monitoring solutions to deliver real-time insights and predictive maintenance capabilities. Investing in scalable manufacturing techniques and modular product designs will reduce exposure to future supply chain disruptions while enabling rapid configuration of instruments to meet diverse end-user requirements. Establishing strategic partnerships with regulatory bodies and standards organizations will facilitate early alignment with emerging compliance frameworks and streamline product certification pathways.

Furthermore, expanding presence in high-growth regions through targeted pilot programs and localized support centers can accelerate adoption in underserved markets such as Latin America and Africa. Companies can also differentiate by offering comprehensive training and workforce development initiatives, equipping end users with the technical proficiency required for accurate data interpretation and safety protocol execution. Finally, embedding sustainability principles-such as energy-efficient sensor operation and recyclable component design-will resonate with increasingly eco-conscious stakeholders and create long-term competitive advantage.

Comprehensive Research Methodology Integrating Primary Expert Consultations Secondary Data Triangulation and Rigorous Analytical Frameworks for Robust Insights

This analysis draws upon a structured research methodology that combines primary expert consultations, extensive secondary research, and rigorous data validation. Primary inputs were gathered through in-depth interviews with industry veterans, regulatory authorities, and end-user organizations across key sectors, ensuring diverse perspectives on technological requirements and compliance imperatives. Secondary sources included technical journals, published standards from international bodies, and publicly available corporate disclosures, all synthesized to establish a robust evidentiary foundation.

Data triangulation techniques were employed to cross-verify quantitative and qualitative insights, minimizing bias and enhancing reliability. Advanced analytical frameworks were applied to map segmental drivers, assess competitive intensity, and benchmark regional adoption patterns. Finally, an internal review by a panel of subject matter experts ensured that findings accurately reflect real-world dynamics and are aligned with the latest regulatory updates, technological advancements, and market trends.

Synthesis of Critical Findings Implications and Forward Looking Perspectives to Navigate the Evolving Radiation Detection and Safety Landscape with Confidence

Throughout this executive summary, critical findings have illuminated the multifaceted forces shaping the radiation detection and safety domain. Technological evolution-from analog to digital architectures and from stationary to truly portable systems-has enhanced detection precision and operational agility. Regulatory developments and geopolitical factors have prompted shifts in supply chain strategies and localized manufacturing investments, redefining competitive landscapes. Meanwhile, detailed segmentation analysis underscores the importance of tailored solutions across product types, detection modalities, composition profiles, and application domains.

Regional insights reveal divergent adoption trajectories, driven by variations in regulatory rigor, infrastructure maturity, and end-user priorities. Leading companies have responded with a spectrum of strategies-from strategic acquisitions and R&D partnerships to modular, subscription-based service offerings-highlighting the critical role of innovation and customer-centric design. Collectively, these dynamics point to a future in which integrated, data-driven safety solutions will be indispensable for organizations seeking to navigate complex compliance requirements, manage operational risk, and foster sustainable growth in an increasingly interconnected world.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

  • 4.1. Introduction
  • 4.2. Market Sizing & Forecasting

5. Market Dynamics

  • 5.1. Integration of AI and machine learning in radiation detection systems for improved accuracy
  • 5.2. Expansion of blockchain technology to secure radiation data and regulatory compliance tracking
  • 5.3. Trends in nuclear power plant radiation monitoring systems to ensure operational safety
  • 5.4. Adoption of drone-mounted radiation detectors for large-area surveillance
  • 5.5. Improved detection capabilities for low-level radioactive materials in environmental monitoring
  • 5.6. Innovations in neutron detection methods addressing non-proliferation concerns
  • 5.7. Implementation of cloud-based data analytics in radiation safety programs
  • 5.8. Emergence of smart sensors for continuous radiation exposure tracking in healthcare
  • 5.9. Development of portable and wearable radiation monitors for field applications
  • 5.10. Advancements in real-time radiation detection technologies for enhanced safety monitoring

6. Market Insights

  • 6.1. Porter's Five Forces Analysis
  • 6.2. PESTLE Analysis

7. Cumulative Impact of United States Tariffs 2025

8. Radiation Detection, Monitoring & Safety Market, by Product Type

  • 8.1. Introduction
  • 8.2. Radiation Detection & Monitoring Equipment
    • 8.2.1. Area Monitoring Systems
    • 8.2.2. Dosimeters
    • 8.2.3. Material Monitors
  • 8.3. Safety Equipment
    • 8.3.1. Eyewear/Face Shields
    • 8.3.2. Gloves & Footwear

9. Radiation Detection, Monitoring & Safety Market, by Detection Type

  • 9.1. Introduction
  • 9.2. Alpha Radiation
  • 9.3. Beta Radiation
  • 9.4. Gamma Radiation

10. Radiation Detection, Monitoring & Safety Market, by Technology

  • 10.1. Introduction
  • 10.2. Portable
  • 10.3. Stationary

11. Radiation Detection, Monitoring & Safety Market, by Technology Type

  • 11.1. Introduction
  • 11.2. Analog Detection Technology
  • 11.3. Digital Detection Technology

12. Radiation Detection, Monitoring & Safety Market, by Composition

  • 12.1. Introduction
  • 12.2. Gas-filled Detectors
  • 12.3. Scintillators
  • 12.4. Solid-state Detectors

13. Radiation Detection, Monitoring & Safety Market, by Application

  • 13.1. Introduction
  • 13.2. Environmental Monitoring
    • 13.2.1. Air Monitoring
    • 13.2.2. Soil Monitoring
    • 13.2.3. Water Monitoring
  • 13.3. Homeland Security & Defense
    • 13.3.1. Border Security
    • 13.3.2. Cargo Scanning
  • 13.4. Industrial Inspection
    • 13.4.1. Electronic Component Inspection
    • 13.4.2. Pipeline Inspection
  • 13.5. Medical Imaging
  • 13.6. Research & Academia

14. Radiation Detection, Monitoring & Safety Market, by Sales Channel

  • 14.1. Introduction
  • 14.2. Offline Sales
  • 14.3. Online Sales
    • 14.3.1. Brand Websites
    • 14.3.2. E-commerce Platforms

15. Americas Radiation Detection, Monitoring & Safety Market

  • 15.1. Introduction
  • 15.2. United States
  • 15.3. Canada
  • 15.4. Mexico
  • 15.5. Brazil
  • 15.6. Argentina

16. Europe, Middle East & Africa Radiation Detection, Monitoring & Safety Market

  • 16.1. Introduction
  • 16.2. United Kingdom
  • 16.3. Germany
  • 16.4. France
  • 16.5. Russia
  • 16.6. Italy
  • 16.7. Spain
  • 16.8. United Arab Emirates
  • 16.9. Saudi Arabia
  • 16.10. South Africa
  • 16.11. Denmark
  • 16.12. Netherlands
  • 16.13. Qatar
  • 16.14. Finland
  • 16.15. Sweden
  • 16.16. Nigeria
  • 16.17. Egypt
  • 16.18. Turkey
  • 16.19. Israel
  • 16.20. Norway
  • 16.21. Poland
  • 16.22. Switzerland

17. Asia-Pacific Radiation Detection, Monitoring & Safety Market

  • 17.1. Introduction
  • 17.2. China
  • 17.3. India
  • 17.4. Japan
  • 17.5. Australia
  • 17.6. South Korea
  • 17.7. Indonesia
  • 17.8. Thailand
  • 17.9. Philippines
  • 17.10. Malaysia
  • 17.11. Singapore
  • 17.12. Vietnam
  • 17.13. Taiwan

18. Competitive Landscape

  • 18.1. Market Share Analysis, 2024
  • 18.2. FPNV Positioning Matrix, 2024
  • 18.3. Competitive Analysis
    • 18.3.1. AMETEK, Inc.
    • 18.3.2. Berthold Technologies GmbH & Co. KG
    • 18.3.3. Bertin Technologies SAS
    • 18.3.4. Bruker Corporation
    • 18.3.5. Cobham Limited
    • 18.3.6. Cole-Parmer Instrument Company, LLC
    • 18.3.7. ECOTEST Group
    • 18.3.8. Exosens
    • 18.3.9. Fluke Corporation
    • 18.3.10. Fuji Electric Co. Ltd.
    • 18.3.11. General Electric Company
    • 18.3.12. Hamamatsu Photonics K.K.
    • 18.3.13. Kromek Group PLC
    • 18.3.14. Landauer, Inc.
    • 18.3.15. LAURUS Systems
    • 18.3.16. Leonardo DRS, Inc.
    • 18.3.17. LND, Inc.
    • 18.3.18. Ludlum Measurements, Inc.
    • 18.3.19. Malvern Panalytical Ltd.
    • 18.3.20. Mirion Technologies, Inc.
    • 18.3.21. Oxford Instruments plc
    • 18.3.22. PCE Instruments UK Ltd.
    • 18.3.23. Scionix Holland B.V.
    • 18.3.24. SciWise Solutions Inc.
    • 18.3.25. Symetrica Inc.
    • 18.3.26. Teledyne Technologies, Inc.

19. ResearchAI

20. ResearchStatistics

21. ResearchContacts

22. ResearchArticles

23. Appendix

»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦