½ÃÀ庸°í¼­
»óǰÄÚµå
1808537

¹æ»ç¼± ¼­º£ÀÌ ¹ÌÅÍ ½ÃÀå : Á¦Ç° À¯Çü, ¹æ»ç¼± À¯Çü, ±â¼ú, ÆÇ¸Åä³Î, ¿ëµµº° - ¼¼°è ¿¹Ãø(2025-2030³â)

Radiation Survey Meters Market by Product Type, Radiation Type, Technology, Sales Channel, Application - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 185 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

¹æ»ç¼± ¼­º£ÀÌ ¹ÌÅÍ ½ÃÀåÀº 2024³â¿¡´Â 4¾ï 3,026¸¸ ´Þ·¯·Î Æò°¡µÇ¾ú½À´Ï´Ù. 2025³â¿¡´Â 4¾ï 5,267¸¸ ´Þ·¯¿¡ À̸£°í, CAGR 5.38%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 5¾ï 8,944¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁØ ¿¬µµ : 2024³â 4¾ï 3,026¸¸ ´Þ·¯
ÃßÁ¤ ¿¬µµ : 2025³â 4¾ï 5,267¸¸ ´Þ·¯
¿¹Ãø ¿¬µµ : 2030³â 5¾ï 8,944¸¸ ´Þ·¯
CAGR(%) 5.38%

´Ù¾çÇÑ »ê¾÷¿¡¼­ ¾ÈÀü, ÄÄÇöóÀ̾ð½º, ¾÷¹« È¿À²¼º Çâ»ó¿¡ ÀÖ¾î ¹æ»ç¼± Á¶»ç°èÀÇ Áß¿äÇÑ ¿ªÇÒÀ» ¼Ò°³ÇÕ´Ï´Ù.

¹æ»ç¼± Á¶»ç±âÀÇ ¹ßÀüÀº ÀÌ¿ÂÈ­ ¹æ»ç¼± ¸ð´ÏÅ͸µ ¹æ¹ýÀ» ±Ùº»ÀûÀ¸·Î º¯È­½ÃÄÑ ¾ÈÀü, ±ÔÁ¦ Áؼö, ¾÷¹« È¿À²¼º Çâ»óÀ̶ó´Â »õ·Î¿î ½Ã´ë¸¦ ¿­¾ú½À´Ï´Ù. ¿øÀÚ·Â ¹ßÀü¼ÒºÎÅÍ ÀÇ·á½Ã¼³, ±¹¹æ ½Ã¼³¿¡ À̸£±â±îÁö, ÀÌ ÀåºñµéÀº À§ÇèÇÑ ÇÇÆøÀ» ¹æÁöÇÏ´Â ÃÖÀü¼± ¿ªÇÒÀ» Çϸç, ÄÄÇöóÀ̾𽺠ÇÁ·ÎÅäÄݰú ºñ»ó ´ëÀÀÀÇ ±âÃʰ¡ µÇ´Â Áß¿äÇÑ µ¥ÀÌÅ͸¦ ½Ç½Ã°£À¸·Î Á¦°øÇÕ´Ï´Ù. Àü ¼¼°èÀûÀ¸·Î ¹æ»ç¼± ¾ÈÀü¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼­ °¢ ±â°üÀº ¾ö°ÝÇÑ ¼º´É ±âÁØÀ» ÃæÁ·ÇÒ »Ó¸¸ ¾Æ´Ï¶ó µðÁöÅÐ ¸ð´ÏÅ͸µ Ç÷§Æû°ú ¿øÈ°ÇÏ°Ô ÅëÇÕÇÒ ¼ö ÀÖ´Â Àåºñ¸¦ ¿ä±¸Çϰí ÀÖ½À´Ï´Ù.

±â¼ú Çõ½Å, ¾ö°ÝÇÑ ±ÔÁ¦, ¹æ»ç¼± °ËÃâ¿¡ ´ëÇÑ °í°´ ±â´ëÄ¡ º¯È­ µî ȯ°æ º¯È­¿¡ ´ëÇÑ ´ëÀÀ

±â¼ú Çõ½Å, ±ÔÁ¦ »óȲÀÇ ÁøÈ­, ÃÖÁ¾ »ç¿ëÀÚÀÇ ±â´ëÄ¡ º¯È­·Î ÀÎÇØ ¹æ»ç¼± Á¶»ç±âÀÇ »óȲÀº Å©°Ô º¯È­Çϰí ÀÖ½À´Ï´Ù. Ãֽа¨Áö±â´Â µðÁöÅÐ ½ÅÈ£ ó¸®, ¹«¼± ¿ø°Ý ÃøÁ¤, ¿¹Ãø ºÐ¼® ±â´ÉÀ» Á¡Á¡ ´õ ÅëÇÕÇÏ¿© ¿ø°Ý ¸ð´ÏÅ͸µ ¹× »çÀü À¯Áö º¸¼ö¸¦ °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ±× °á°ú, ÀÌÇØ°ü°èÀÚµéÀº ÃøÁ¤ÀÇ Á¤È®¼ºÀ» À¯ÁöÇϸ鼭 ¸®½ºÅ©¸¦ °ü¸®ÇÏ°í µ¥ÀÌÅÍ ¿öÅ©Ç÷ο츦 °£¼ÒÈ­ÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù.

2025³â ¹Ì±¹ °ü¼¼ Á¶Á¤ÀÌ Ãø·® Àåºñ °ø±Þ¸Á, ºñ¿ë ±¸Á¶ ¹× ½ÃÀå ¿ªÇп¡ ¹ÌÄ¡´Â Á¾ÇÕÀûÀÎ ¿µÇâ Æò°¡

2025³â¹Ì±¹ÀÇ ÁÖ¿ä ÀüÀÚ ºÎǰ ¹× ¿øÀÚÀç¿¡ ´ëÇÑ °ü¼¼ Á¶Á¤À¸·Î ÀÎÇØ ¼¼°è ¹æ»ç¼± Á¶»ç±â °ø±Þ¸Á¿¡ »õ·Î¿î º¹À⼺À» °¡Á®¿Ã °ÍÀÔ´Ï´Ù. ƯÁ¤ ¹ÝµµÃ¼ ¼¾¼­¿Í Ư¼ö ½ÅÆ¿·¹ÀÌÅÍ °áÁ¤¿¡ ºÎ°úµÈ °ü¼¼´Â Á¦Á¶¾÷üÀÇ Á¦Á¶ ºñ¿ë »ó½ÂÀ¸·Î À̾îÁ® ¸¹Àº Á¦Á¶¾÷ü°¡ Á¶´Þ Àü·«À» Àç°ËÅäÇØ¾ß ÇÏ´Â »óȲÀÔ´Ï´Ù. ºÎǰ ºñ¿ëÀÌ »ó½ÂÇÔ¿¡ µû¶ó OEM Á¦Á¶¾÷ü´Â ºñ¿ë ¾Ð¹Ú°ú °í°¨µµ ¹× ¾ÈÁ¤ÀûÀÎ ÃøÁ¤ ¼º´ÉÀ» À¯ÁöÇØ¾ß ÇÒ Çʿ伺 »çÀÌ¿¡¼­ ±ÕÇüÀ» ¸ÂÃß°í ÀÖ½À´Ï´Ù.

Á¦Ç° À¯Çü, ¹æ»ç¼± ÇüÅÂ, ±â¼ú, ÆÇ¸Å ä³Î, ¿ëµµ µî ¹æ»ç¼± Á¶»ç±â ½ÃÀåÀ» Çü¼ºÇÏ´Â Áß¿äÇÑ ¼¼ºÐÈ­¿¡ ´ëÇÑ ÅëÂû·ÂÀ» ¹àÈü´Ï´Ù.

½ÃÀå ¼¼ºÐÈ­¿¡ ´ëÇÑ ¸íÈ®ÇÑ ÀÌÇØ¸¦ ÅëÇØ ¹æ»ç¼± Á¶»ç±âÀÇ ¼ºÀå Àü¸Á°ú ½ÃÀå °æÀïÀÇ Ä¡¿­ÇÔÀÌ ¾îµð·Î ¼ö·ÅµÇ´ÂÁö ¾Ë ¼ö ÀÖ½À´Ï´Ù. Á¦Ç° À¯Çüº°·Î´Â °¡À̰Źķ¯ Ä«¿îÅÍ, Àü¸®ÇÔ, ºñ·Ê°è¼ö°ü µî ±âÁ¸ °¡½ººÀÀÔÇü °ËÃâ±â´Â ÀϹÝÀûÀÎ ¿µ¿ª ¸ð´ÏÅ͸µ¿ëÀ¸·Î, ¿ä¿ÀµåÈ­¼¼½·, ÇÃ¶ó½ºÆ½ ½ÅÆ¿·¹ÀÌÅÍ, ¿ä¿ÀµåÈ­³ªÆ®·ý µî ½ÅÆ¿·¹ÀÌ¼Ç °ËÃâ±â´Â º¸´Ù ³ôÀº °¨µµ°¡ ¿ä±¸µÇ´Â ¿ëµµ¿ëÀ¸·Î °¢°¢ ¿ìÀ§¸¦ Á¡Çϰí ÀÖ½À´Ï´Ù. ¿ëÀ¸·Î °¢°¢ ¿ìÀ§¸¦ Á¡Çϰí ÀÖ½À´Ï´Ù. ÇÑÆí, °Ô¸£¸¶´½À̳ª ½Ç¸®ÄÜ ±âÆÇ À§¿¡ ¸¸µé¾îÁø ¹ÝµµÃ¼ °ËÃâ±â´Â ºÐ±¤ÇÐ ¹× °íÇØ»óµµ ÃøÁ¤ ½Ã³ª¸®¿À¿¡¼­ Æ´»õ ½ÃÀåÀ» °³Ã´Çϰí ÀÖ½À´Ï´Ù.

¹æ»ç¼± °ËÃâ ¼Ö·ç¼ÇÀÇ ºÏ¹Ì, À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«, ¾Æ½Ã¾ÆÅÂÆò¾ç ½ÃÀå Æ¯¼º ¹× ¼ºÀå ÃËÁø¿äÀÎÀ» »ìÆìº¾´Ï´Ù.

Áö¿ªº° ºÐ¼®¿¡¼­´Â ºÏ¹Ì, ³²¹Ì, À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«, ¾Æ½Ã¾ÆÅÂÆò¾ç ½ÃÀå ¼ºÀå ÃËÁø¿äÀΰú äÅà ÆÐÅÏÀ» ¹àÈü´Ï´Ù. ºÏ¹Ì¿Í ³²¹Ì¿¡¼­´Â ¼º¼÷ÇÑ ¿øÀÚ·Â ¹ßÀü ºÎ¹®°ú źźÇÑ ÀÇ·á ÀÎÇÁ¶ó°¡ ÈÞ´ë¿ë ¹× °íÁ¤½Ä ¹æ»ç¼± ¸ð´ÏÅ͸µ Àåºñ¿¡ ´ëÇÑ ¾ÈÁ¤ÀûÀÎ ¼ö¿ä¸¦ µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù. ºÏ¹Ì¿¡¼­´Â ȯ°æ ¸ð´ÏÅ͸µÀÇ Á߿伺ÀÌ °­Á¶µÇ°í, ¶óƾ¾Æ¸Þ¸®Ä«¿¡¼­´Â ¿¬±¸ ÇÁ·Î±×·¥ÀÇ È°¼ºÈ­°¡ Â÷¼¼´ë ¼­º£À̹ÌÅÍ¿¡ ´ëÇÑ ÅõÀÚ¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

¹æ»ç¼± Ãø·®±â ºÐ¾ßÀÇ Çõ½Å, ÆÄÆ®³Ê½Ê, °æÀï Æ÷Áö¼Å´×À» °­Á¶ÇÏ´Â ¾÷°è ÁÖ¿ä ±â¾÷ ¹× Àü·«Àû ÀÌ´Ï¼ÅÆ¼ºê¸¦ ¼Ò°³ÇÕ´Ï´Ù.

ÁÖ¿ä ¾÷°è Âü¿©ÀÚµéÀº Á¦Ç° Â÷º°È­¿Í °æÀï ¿ìÀ§¸¦ È®º¸Çϱâ À§ÇØ ´Ù¾çÇÑ Àü·«Àû ÀÌ´Ï¼ÅÆ¼ºê¸¦ Àü°³Çϰí ÀÖ½À´Ï´Ù. ÁÖ¿ä °ËÃâ±â Á¦Á¶¾÷üµéÀº R&D ÅõÀÚ¸¦ °­È­Çϰí Â÷¼¼´ë ¼ÒÀç, ¼ÒÇüÈ­ ÆûÆÑÅÍ, ÅëÇÕ ¼ÒÇÁÆ®¿þ¾î Ç÷§Æû¿¡ ÁýÁßÇϰí ÀÖ½À´Ï´Ù. °èÃø±â Àü¹®°¡¿Í ¼ÒÇÁÆ®¿þ¾î Çõ½Å°¡µéÀÌ Çù·ÂÇÏ¿© Çϵå¿þ¾îÀÇ Á¤È®¼º°ú °í±Þ ºÐ¼® ¹× ½Ã°¢È­ µµ±¸¸¦ °áÇÕÇÑ ¼Ö·ç¼ÇÀ» ¸¸µé¾î ³Â½À´Ï´Ù.

»õ·Î¿î Æ®·»µå¸¦ Ȱ¿ëÇϰí, ¸®½ºÅ©¸¦ ÁÙÀ̰í, Àå±âÀûÀÎ ¼ºÀåÀ» °¡¼ÓÇϱâ À§ÇØ ¾÷°è ¸®´õµé¿¡°Ô Àü·«ÀûÀÌ°í ½ÇÇà °¡´ÉÇÑ Á¦¾ÈÀ» Á¦°øÇÕ´Ï´Ù.

Çõ½ÅÀÇ °¡¼ÓÈ­¿Í ¹«¿ª Á¤Ã¥ÀÇ °­È­ ¼Ó¿¡¼­ ¼º°øÇϱâ À§ÇØ ¾÷°è ¸®´õµéÀº °ü¼¼ º¯µ¿°ú °ø±Þ¸Á È¥¶õÀ» ¿ÏÈ­ÇÏ´Â ´Ù¾çÇÑ Á¶´Þ Àü·«À» ¿ì¼±¼øÀ§¿¡ µÎ¾î¾ß ÇÕ´Ï´Ù. ¿©·¯ Áö¿ª¿¡ °ÉÃÄ ¿©·¯ °ø±Þ¾÷ü¸¦ ÀÎÁõÇÔÀ¸·Î½á ±â¾÷Àº ¼º´É Ç¥ÁØÀ» Èñ»ýÇÏÁö ¾Ê°íµµ ºñ¿ë È¿À²¼ºÀ» À¯ÁöÇÒ ¼ö ÀÖ½À´Ï´Ù. µ¿½Ã¿¡ °èÃø±â±â¿¡ ´ëÇÑ µðÁöÅÐ ¿¬°áÀÇ ÅëÇÕÀ» °¡¼ÓÈ­ÇÏ¿© ¿ø°Ý ¸ð´ÏÅ͸µ ±â´ÉÀ» °­È­ÇÏ°í ¿¹Áöº¸Àü ¿öÅ©Ç÷ο츦 Áö¿øÇÒ ¼ö ÀÖ½À´Ï´Ù.

1Â÷ Á¶»ç, 2Â÷ µ¥ÀÌÅÍ ºÐ¼®, »ï°¢Ãø·®À» ÅëÇÕÇÑ ¾ö°ÝÇÑ Á¶»ç ¹æ¹ýÀÇ °³¿ä¸¦ ÅëÇØ Á¾ÇÕÀûÀÎ ½ÃÀå ÀλçÀÌÆ®À» º¸ÀåÇÕ´Ï´Ù.

º» º¸°í¼­ÀÇ ±â¹ÝÀº Á¤È®¼º, Ÿ´ç¼º, Æ÷°ý¼ºÀ» º¸ÀåÇϱâ À§ÇØ °í¾ÈµÈ ¾ö°ÝÇÑ Á¶»ç¹æ¹ýÀ» ±â¹ÝÀ¸·Î Çϰí ÀÖ½À´Ï´Ù. ¿ì¼±, 2Â÷ Á¶»ç·Î ¾÷°è °£Ç๰, ±ÔÁ¦ °¡À̵å¶óÀÎ, ƯÇã Ãâ¿ø, ±¹Á¦±â±¸ÀÇ ±â¼ú Ç¥ÁØ µîÀ» Æø³Ð°Ô °ËÅäÇß½À´Ï´Ù. À̸¦ ÅëÇØ ½ÃÀå µ¿Çâ, ±â¼ú ¹ßÀü, Á¤Ã¥ °³¹ßÀÇ ±âÁØÁ¡ÀÌ µÇ´Â ¸Æ¶ôÀ» ¾òÀ» ¼ö ÀÖ¾ú½À´Ï´Ù.

¹æ»ç¼± Á¶»ç±â ½ÃÀå Àü¸Á ±ËÀû°ú °¢ ºÐ¾ßÀÇ ÀÌÇØ°ü°èÀÚ¿¡°Ô ¹ÌÄ¡´Â ¿µÇâ¿¡ ´ëÇÑ ÁÖ¿ä °á·ÐÀ» µµÃâÇÕ´Ï´Ù.

ÇâÈÄ ¹æ»ç¼± Á¶»ç±â ½ÃÀåÀÇ ±ËÀûÀº ±â¼ú Çõ½Å, ±ÔÁ¦ ÁøÈ­, ¼¼°è ¹«¿ª ¿ªÇÐÀÇ »óÈ£ ÀÛ¿ë¿¡ ÀÇÇØ Çü¼ºµÉ °ÍÀÔ´Ï´Ù. °ËÃâ±â Àç·á¿Í µðÁöÅÐ ¾ÆÅ°ÅØÃ³ÀÇ Áö¼ÓÀûÀÎ ¹ßÀüÀº ÃøÁ¤ Á¤È®µµ Çâ»óÀ» ¾à¼ÓÇÏ´Â µ¿½Ã¿¡ µµÀÔ ½Ã³ª¸®¿ÀÀÇ ÆøÀ» ³ÐÇôÁÝ´Ï´Ù. µ¿½Ã¿¡ °ü¼¼ Á¦µµÀÇ º¯È­¿Í °ø±Þ¸Á ÀçÆíÀ¸·Î ÀÎÇØ Á¦Á¶¾÷üµéÀº º¸´Ù ź·ÂÀûÀÎ Á¶´Þ Àü·«À» äÅÃÇÒ ¼ö¹Û¿¡ ¾øÀ» °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ¿ªÇÐ

Á¦6Àå ½ÃÀå ÀλçÀÌÆ®

  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®

Á¦7Àå ¹Ì±¹ °ü¼¼ÀÇ ´©Àû ¿µÇâ 2025

Á¦8Àå ¹æ»ç¼± ¼­º£ÀÌ ¹ÌÅÍ ½ÃÀå : Á¦Ç° À¯Çüº°

  • °¡½º °¨Áö±â
    • °¡À̰¡-¹Á·¯(GM) Ä«¿îÅÍ
    • ÀÌ¿ÂÈ­ è¹ö
    • ºñ·Ê °è¼ö±â
  • ½ÅÆ¿·¹ÀÌ¼Ç °ËÃâ±â
    • ¿ÁÈ­ ¼¼½· °ËÃâ±â
    • ÇÃ¶ó½ºÆ½ ½ÅÆ¿·¹ÀÌÅÍ
    • ¿ÁÈ­ ³ªÆ®·ý °ËÃâ±â
  • ¹ÝµµÃ¼ °ËÃâ±â
    • °Ô¸£¸¶´½ °ËÃâ±â
    • ½Ç¸®ÄÜ °ËÃâ±â

Á¦9Àå ¹æ»ç¼± ¼­º£ÀÌ ¹ÌÅÍ ½ÃÀå : ¹æ»ç¼± À¯Çüº°

  • ¾ËÆÄ
  • º£Å¸
  • °¨¸¶
  • Áß¼ºÀÚ

Á¦10Àå ¹æ»ç¼± ¼­º£ÀÌ ¹ÌÅÍ ½ÃÀå : ±â¼úº°

  • ¾Æ³¯·Î±× ¹ÌÅÍ
  • µðÁöÅÐ ¹ÌÅÍ

Á¦11Àå ¹æ»ç¼± ¼­º£ÀÌ ¹ÌÅÍ ½ÃÀå : ÆÇ¸Åä³Îº°

  • ¿ÀÇÁ¶óÀÎ
  • ¿Â¶óÀÎ

Á¦12Àå ¹æ»ç¼± ¼­º£ÀÌ ¹ÌÅÍ ½ÃÀå : ¿ëµµº°

  • ±¹¹æ ¹× ±¹Åä¾Èº¸
    • ±¹°æ °ü¸®
    • ±¸±Þ´ë¿ø
    • ±º
  • ÇコÄɾî
    • Áø´Ü¿µ»ó¼¾ÅÍ
    • º´¿ø
  • »ê¾÷
  • ¿øÀÚ·Â ¹× ¿¡³ÊÁö
  • ¿¬±¸±â°ü ¹× Çмú±â°ü

Á¦13Àå ¾Æ¸Þ¸®Ä«ÀÇ ¹æ»ç¼± ¼­º£ÀÌ ¹ÌÅÍ ½ÃÀå

  • ¹Ì±¹
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ºê¶óÁú
  • ¾Æ¸£ÇîÆ¼³ª

Á¦14Àå À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ ¹æ»ç¼± ¼­º£ÀÌ ¹ÌÅÍ ½ÃÀå

  • ¿µ±¹
  • µ¶ÀÏ
  • ÇÁ¶û½º
  • ·¯½Ã¾Æ
  • ÀÌÅ»¸®¾Æ
  • ½ºÆäÀÎ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
  • µ§¸¶Å©
  • ³×´ú¶õµå
  • īŸ¸£
  • Çɶõµå
  • ½º¿þµ§
  • ³ªÀÌÁö¸®¾Æ
  • ÀÌÁýÆ®
  • Æ¢¸£Å°¿¹
  • À̽º¶ó¿¤
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • ½ºÀ§½º

Á¦15Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ¹æ»ç¼± ¼­º£ÀÌ ¹ÌÅÍ ½ÃÀå

  • Áß±¹
  • Àεµ
  • ÀϺ»
  • È£ÁÖ
  • Çѱ¹
  • Àεµ³×½Ã¾Æ
  • ű¹
  • Çʸ®ÇÉ
  • ¸»·¹À̽þÆ
  • ½Ì°¡Æ÷¸£
  • º£Æ®³²
  • ´ë¸¸

Á¦16Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼®, 2024
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º, 2024
  • °æÀï ºÐ¼®
    • Bertin Technologies SAS
    • Fuji Electric Co., Ltd.
    • Ludlum Measurements, Inc.
    • Mirion Technologies, Inc.
    • QSA Global, Inc.
    • Thermo Fisher Scientific, Inc.
    • AMETEK Inc.
    • Kromek Group plc
    • Hamamatsu Photonics K.K.
    • Teledyne Technologies Incorporated
    • Bruker Corporation
    • Baker Hughes Company
    • Tracerco Limited

Á¦17Àå ¸®¼­Ä¡ AI

Á¦18Àå ¸®¼­Ä¡ Åë°è

Á¦19Àå ¸®¼­Ä¡ ÄÁÅÃÆ®

Á¦20Àå ¸®¼­Ä¡ ±â»ç

Á¦21Àå ºÎ·Ï

LSH 25.09.17

The Radiation Survey Meters Market was valued at USD 430.26 million in 2024 and is projected to grow to USD 452.67 million in 2025, with a CAGR of 5.38%, reaching USD 589.44 million by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 430.26 million
Estimated Year [2025] USD 452.67 million
Forecast Year [2030] USD 589.44 million
CAGR (%) 5.38%

Introducing the Critical Role of Advanced Radiation Survey Meters in Enhancing Safety, Compliance, and Operational Efficiency Across Diverse Industries

Advancements in radiation survey meters have fundamentally reshaped the way industries monitor ionizing radiation, ushering in a new era of enhanced safety, regulatory adherence, and operational effectiveness. In environments from nuclear power plants to healthcare facilities and defense installations, these instruments serve as the first line of defense against hazardous exposure, delivering critical real-time data that underpins both compliance protocols and emergency response. As global attention on radiation safety intensifies, organizations are seeking devices that not only meet stringent performance criteria but also integrate seamlessly with digital monitoring platforms.

Against this backdrop, the industry is witnessing rapid innovation in detector materials, signal processing capabilities, and ergonomic design. From compact handheld gas-filled counters to sophisticated semiconductor-based survey meters capable of discerning multiple radiation types simultaneously, device manufacturers are racing to address evolving end-user requirements. Concomitantly, growing investments in nuclear energy projects, heightened healthcare imaging applications, and reinforced homeland security measures have elevated demand for state-of-the-art radiation survey solutions. Consequently, decision-makers are prioritizing instruments that balance accuracy, durability, and connectivity to ensure both routine monitoring and critical incident preparedness.

Navigating the Transformative Landscape Shifts Driven by Technological Innovation, Stringent Regulations, and Evolving Customer Expectations in Radiation Detection

The radiation survey meter landscape is undergoing transformative change, driven by the convergence of technological breakthroughs, evolving regulatory frameworks, and shifting end-user expectations. Modern detectors are increasingly integrating digital signal processing, wireless telemetry, and predictive analytics features, enabling remote monitoring and proactive maintenance. As a result, stakeholders are better equipped to manage risk and streamline data workflows without compromising measurement precision.

Parallel to technological progress, stringent international standards governing radiation protection-set by agencies such as the International Atomic Energy Agency and national health authorities-have raised performance benchmarks for survey instruments. Compliance requirements have expanded beyond simple threshold detection to include data logging, audit trails, and cybersecurity safeguards, compelling manufacturers to embed advanced firmware and robust encryption. Together, these shifts are redefining the criteria by which organizations evaluate and procure radiation measurement equipment, favoring solutions that offer comprehensive lifecycle support and demonstrable ROI.

Assessing the Comprehensive Effects of United States Tariff Adjustments in 2025 on Supply Chains, Cost Structures, and Market Dynamics for Survey Instruments

In 2025, adjustments to United States tariffs on key electronic components and raw materials have introduced fresh complexities into the global radiation survey meter supply chain. Tariffs imposed on certain semiconductor sensors and specialized scintillator crystals have translated into elevated production costs for manufacturers, prompting many to reassess their sourcing strategies. As component expenses climb, original equipment manufacturers are balancing cost pressures with the imperative to maintain high sensitivity and stability in measurement performance.

In response to these fiscal headwinds, leading companies have diversified supplier networks by forging partnerships with alternative producers in tariff-advantaged regions. Simultaneously, some firms have undertaken design optimizations to reduce reliance on high-tariff inputs, employing advanced material composites or hybrid detector architectures. Although these adaptive measures help contain price escalation, they necessitate rigorous validation protocols to ensure conformity with calibration standards. Moving forward, the cumulative impact of these tariff shifts will hinge on the agility of supply chains, the willingness of end users to absorb incremental costs, and ongoing policy revisions at the international trade level.

Unveiling Critical Segmentation Insights Shaping the Radiation Survey Meter Market Across Product Types, Radiation Forms, Technologies, Sales Channels, and Applications

A clear understanding of market segmentation reveals where growth prospects and competitive intensity converge for radiation survey meters. In the product type dimension, traditional gas-filled detectors-including Geiger-Muller counters, ionization chambers, and proportional counters-retain prominence for general area monitoring, while scintillation detectors such as cesium iodide, plastic scintillators, and sodium iodide variants cater to applications demanding higher sensitivity. Meanwhile, semiconductor detectors built on germanium and silicon substrates are carving out niches in spectrometry and high-resolution measurement scenarios.

Examining radiation type, the market spans alpha, beta, gamma, and neutron detection instruments, each tailored with optimized shielding and calibration protocols to accurately quantify distinct ionizing species. In terms of technology, analog meters remain prevalent in cost-sensitive deployments, but digital meters offering data logging, real-time alerts, and network connectivity are rapidly gaining traction across critical infrastructure applications. When considering channels, traditional offline sales through specialized distributors coexist with expanding online procurement portals that streamline vendor comparisons and expedite fulfillment.

Application segmentation underscores the multifaceted utility of survey meters: defense and homeland security use cases encompass border control, first responders, and military operations, while healthcare settings such as diagnostic imaging centers and hospitals rely on regular compliance checks. Industrial environments depend on portable detectors for process monitoring, and nuclear power and energy facilities mandate continuous ambient surveys. Research institutions and academic laboratories further drive demand for customizable configurations and advanced analytical capabilities.

Exploring Regional Market Nuances and Growth Drivers Across the Americas, Europe Middle East Africa, and Asia Pacific for Radiation Detection Solutions

Regional analysis highlights distinct market drivers and adoption patterns across the Americas, Europe Middle East & Africa, and Asia-Pacific. In the Americas, mature nuclear power sectors and robust healthcare infrastructures underpin steady demand for both portable and fixed radiation monitoring instruments. Heightened focus on environmental monitoring in North America and the revitalization of research programs in Latin America are fueling investments in next-generation survey meters.

Across Europe Middle East & Africa, ambitious nuclear decommissioning initiatives and rigorous industrial safety regulations have elevated requirements for high-precision detectors and data management systems. Emerging nuclear projects in the Middle East introduce new growth corridors, while African nations with expanding mining operations are adopting portable radiation monitors to ensure occupational safety.

In Asia-Pacific, burgeoning energy demand and ongoing construction of nuclear power plants in China and India represent major consumption drivers. Meanwhile, rapid expansion of diagnostic imaging services in the region's healthcare market is prompting increased procurement of survey instruments. Local manufacturing hubs are also scaling up production capacities to serve both domestic requirements and export markets, reinforcing the region's strategic significance.

Profiling Leading Industry Participants and Their Strategic Initiatives Highlighting Innovation, Partnerships, and Competitive Positioning in Radiation Survey Meters

Major industry participants are deploying a range of strategic initiatives to differentiate their offerings and secure competitive advantage. Leading detector manufacturers have intensified R&D investments, focusing on next-generation materials, miniaturized form factors, and integrated software platforms. Collaborative partnerships between instrumentation specialists and software innovators are producing solutions that combine hardware precision with advanced analytics and visualization tools.

Several top-tier companies have expanded their global footprints by establishing regional service centers, ensuring rapid calibration, maintenance, and training support. Meanwhile, a number of emerging players are capitalizing on niche markets through specialized applications such as drone-mounted survey systems and wearable real-time exposure monitors. Taken together, these developments underscore an industry-wide shift toward holistic ecosystem solutions, where hardware, software, and services converge to deliver end-to-end radiation safety management.

Delivering Strategic and Actionable Recommendations for Industry Leaders to Capitalize on Emerging Trends, Mitigate Risks, and Drive Long-Term Growth

To thrive amidst accelerating innovation and tightening trade policies, industry leaders should prioritize diversified sourcing strategies that mitigate tariff volatility and supply chain disruptions. By qualifying multiple suppliers across different geographies, organizations can maintain cost efficiency without sacrificing performance standards. Concurrently, accelerating the integration of digital connectivity into measurement devices will enhance remote monitoring capabilities and support predictive maintenance workflows.

Fostering cross-industry partnerships with software developers, cloud service providers, and cybersecurity specialists will enable the creation of comprehensive safety management suites that appeal to end users seeking turnkey solutions. Additionally, embedding advanced analytics and machine learning algorithms into survey meter platforms can unlock actionable insights from radiation monitoring data, reinforcing customer value propositions. Finally, investing in operator training and certification programs will differentiate offerings and strengthen customer loyalty, ensuring that personnel can maximize the benefits of sophisticated detection systems.

Outlining a Rigorous Research Methodology Integrating Primary Interviews, Secondary Data Analysis, and Triangulation to Ensure Comprehensive Market Insights

The foundation of this report rests on a rigorous research methodology designed to ensure accuracy, relevance, and comprehensive coverage. Initially, secondary research involved an extensive review of industry publications, regulatory guidelines, patent filings, and technical standards from international bodies. This provided baseline context for market trends, technological advancements, and policy developments.

Primary research comprised structured interviews with a cross-section of stakeholders, including equipment manufacturers, calibration service providers, end-user safety officers, and regulatory representatives. Insights gleaned from these interviews were triangulated against quantitative data points sourced from trade associations and select confidential databases to validate emerging themes and refine segmentation frameworks. Throughout the process, data quality checks and peer review sessions were conducted to mitigate bias and uphold methodological rigor.

Drawing Key Conclusions on the Future Trajectory of the Radiation Survey Meter Market and Its Implications for Stakeholders Across Sectors

Looking ahead, the trajectory of the radiation survey meter market will be shaped by the interplay between technological innovation, regulatory evolution, and global trade dynamics. Continued advancements in detector materials and digital architectures promise to enhance measurement accuracy while broadening the range of deployment scenarios. At the same time, shifting tariff regimes and supply chain realignments will compel manufacturers to adopt more resilient procurement strategies.

End users across energy, healthcare, defense, and research sectors will increasingly prioritize solutions that offer seamless integration, real-time data analytics, and lifecycle support. By aligning product roadmaps with these expectations and fostering collaborative ecosystems, companies can capture emerging opportunities and reinforce market leadership. Ultimately, stakeholders who proactively embrace these imperatives will be best positioned to navigate uncertainties and drive the next wave of growth in radiation detection.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

  • 4.1. Introduction
  • 4.2. Market Sizing & Forecasting

5. Market Dynamics

  • 5.1. Increasing integration of wireless connectivity in survey meters for real-time data transmission
  • 5.2. Expansion of market regulations driving standardization in radiation survey meter calibration procedures
  • 5.3. Shift toward rechargeable and long-life battery systems improving meter deployment efficiency
  • 5.4. Rising demand for compact multi-parameter detectors in industrial radiation monitoring applications
  • 5.5. Growing investment in drone-mounted radiation survey systems for inaccessible environment assessments
  • 5.6. Advancements in low-dose detection algorithms enhancing sensitivity at minimal exposure levels
  • 5.7. Emergence of AI-powered analytics platforms optimizing survey meter data interpretation accuracy
  • 5.8. Integration of Wi-Fi and cellular connectivity transforms real-time radiation survey meter workflows

6. Market Insights

  • 6.1. Porter's Five Forces Analysis
  • 6.2. PESTLE Analysis

7. Cumulative Impact of United States Tariffs 2025

8. Radiation Survey Meters Market, by Product Type

  • 8.1. Introduction
  • 8.2. Gas-Filled Detectors
    • 8.2.1. Geiger-Muller (GM) Counters
    • 8.2.2. Ionization Chambers
    • 8.2.3. Proportional Counters
  • 8.3. Scintillation Detectors
    • 8.3.1. Cesium Iodide Detectors
    • 8.3.2. Plastic Scintillators
    • 8.3.3. Sodium Iodide Detectors
  • 8.4. Semiconductor Detectors
    • 8.4.1. Germanium Detectors
    • 8.4.2. Silicon Detectors

9. Radiation Survey Meters Market, by Radiation Type

  • 9.1. Introduction
  • 9.2. Alpha
  • 9.3. Beta
  • 9.4. Gamma
  • 9.5. Neutron

10. Radiation Survey Meters Market, by Technology

  • 10.1. Introduction
  • 10.2. Analog Meters
  • 10.3. Digital Meters

11. Radiation Survey Meters Market, by Sales Channel

  • 11.1. Introduction
  • 11.2. Offline
  • 11.3. Online

12. Radiation Survey Meters Market, by Application

  • 12.1. Introduction
  • 12.2. Defense & Homeland Security
    • 12.2.1. Border Control
    • 12.2.2. First Responders
    • 12.2.3. Military
  • 12.3. Healthcare
    • 12.3.1. Diagnostic Imaging Centers
    • 12.3.2. Hospitals
  • 12.4. Industrial
  • 12.5. Nuclear Power & Energy
  • 12.6. Research Institutions & Academia

13. Americas Radiation Survey Meters Market

  • 13.1. Introduction
  • 13.2. United States
  • 13.3. Canada
  • 13.4. Mexico
  • 13.5. Brazil
  • 13.6. Argentina

14. Europe, Middle East & Africa Radiation Survey Meters Market

  • 14.1. Introduction
  • 14.2. United Kingdom
  • 14.3. Germany
  • 14.4. France
  • 14.5. Russia
  • 14.6. Italy
  • 14.7. Spain
  • 14.8. United Arab Emirates
  • 14.9. Saudi Arabia
  • 14.10. South Africa
  • 14.11. Denmark
  • 14.12. Netherlands
  • 14.13. Qatar
  • 14.14. Finland
  • 14.15. Sweden
  • 14.16. Nigeria
  • 14.17. Egypt
  • 14.18. Turkey
  • 14.19. Israel
  • 14.20. Norway
  • 14.21. Poland
  • 14.22. Switzerland

15. Asia-Pacific Radiation Survey Meters Market

  • 15.1. Introduction
  • 15.2. China
  • 15.3. India
  • 15.4. Japan
  • 15.5. Australia
  • 15.6. South Korea
  • 15.7. Indonesia
  • 15.8. Thailand
  • 15.9. Philippines
  • 15.10. Malaysia
  • 15.11. Singapore
  • 15.12. Vietnam
  • 15.13. Taiwan

16. Competitive Landscape

  • 16.1. Market Share Analysis, 2024
  • 16.2. FPNV Positioning Matrix, 2024
  • 16.3. Competitive Analysis
    • 16.3.1. Bertin Technologies SAS
    • 16.3.2. Fuji Electric Co., Ltd.
    • 16.3.3. Ludlum Measurements, Inc.
    • 16.3.4. Mirion Technologies, Inc.
    • 16.3.5. QSA Global, Inc.
    • 16.3.6. Thermo Fisher Scientific, Inc.
    • 16.3.7. AMETEK Inc.
    • 16.3.8. Kromek Group plc
    • 16.3.9. Hamamatsu Photonics K.K.
    • 16.3.10. Teledyne Technologies Incorporated
    • 16.3.11. Bruker Corporation
    • 16.3.12. Baker Hughes Company
    • 16.3.13. Tracerco Limited

17. ResearchAI

18. ResearchStatistics

19. ResearchContacts

20. ResearchArticles

21. Appendix

»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦