½ÃÀ庸°í¼­
»óǰÄÚµå
1807614

°ø±â ºÐ¸® Ç÷£Æ® ½ÃÀå : Á¦Ç°º°, ±â¼úº°, ¿îÀü ¸ðµåº°, ¿ë·®º°, ¼³Ä¡ À¯Çüº°, ÃÖÁ¾ ÀÌ¿ë »ê¾÷º° - ¼¼°è ¿¹Ãø(2025-2030³â)

Air Separation Plant Market by Product, Technology, Operation Mode, Capacity, Installation Type, End Use Industry - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 190 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

°ø±â ºÐ¸® Ç÷£Æ® ½ÃÀåÀÇ 2024³â ½ÃÀå ±Ô¸ð´Â 50¾ï 2,000¸¸ ´Þ·¯·Î Æò°¡µÇ¾ú½À´Ï´Ù. 2025³â¿¡ 52¾ï 7,000¸¸ ´Þ·¯¿¡ À̸£°í, CAGR 5.19%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 68¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁØ ¿¬µµ : 2024³â 50¾ï 2,000¸¸ ´Þ·¯
ÃßÁ¤ ¿¬µµ : 2025³â 52¾ï 7,000¸¸ ´Þ·¯
¿¹Ãø ¿¬µµ : 2030³â 68¾ï ´Þ·¯
CAGR(%) 5.19%

»ê¾÷°¡½º ¼ö±ÞÀ» Çü¼ºÇÏ´Â °ø±âºÐ¸® Ç÷£Æ®ÀÇ ÇÙ½É ±â¼ú, Á¦Ç° Â÷º°È­, ¿î¿µ ÆÐ·¯´ÙÀÓ¿¡ ´ëÇÑ ±ÇÀ§ ÀÖ´Â ¹æÇâ Á¦½Ã

°ø±âºÐ¸® Ç÷£Æ® ºÎ¹®Àº »ê¾÷ ¼ö¿ä, ±â¼ú ¹ßÀü, ±ÔÁ¦ º¯È­ÀÇ ¸Å¿ì Áß¿äÇÑ ±³Â÷Á¡¿¡ À§Ä¡Çϰí ÀÖÀ¸¸ç, ÅõÀÚ ¹× ¿î¿µ Á¶Á¤À» °èȹÇÏ´Â ÀÌÇØ°ü°èÀڵ鿡°Ô ¸íÈ®ÇÑ ¹æÇ⼺À» Á¦½ÃÇÒ Çʿ䰡 ÀÖ½À´Ï´Ù. ÀÌ ¼Ò°³¿¡¼­´Â Áú¼Ò, »ê¼Ò, ¾Æ¸£°ï°ú °°Àº 1Â÷ °¡½º¸¦ »ý»êÇÏ´Â °ø±â ºÐ¸® ½Ã½ºÅÛÀÇ ÇÙ½ÉÀûÀÎ ±â´ÉÀû ¿ªÇÒ°ú Å©¸³Åæ, ³×¿Â, Å©¼¼³í°ú °°Àº Èñ±Í °¡½ºÀÇ Æ¯¼öÇÑ °ø±Þ¸ÁÀ» Á¤¸®Çϰí, ÀÌ·¯ÇÑ Á¦Ç° È帧ÀÌ ÇコÄɾ¼­ ¹ÝµµÃ¼ Á¦Á¶¿¡ À̸£´Â ºÐ¾ß¸¦ ¾î¶»°Ô Áö¿øÇÏ´ÂÁö ¼³¸íÇÕ´Ï´Ù. ¾î¶»°Ô Áö¿øµÇ´ÂÁö ¼³¸íÇÕ´Ï´Ù. ±ØÀú¿Â ±â¼ú°ú ºñ±ØÀú¿Â ±â¼úÀ» ±¸ºÐÇϰí, »ó»ç °ø±Þ°ú ÇöÀå °ø±ÞÀ̶ó´Â ¾÷¹«Àû ÀÌÇ״븳À» ¸íÈ®È÷ ÇÔÀ¸·Î½á µ¶ÀÚ´Â ÀÌÈÄ ¼½¼ÇÀ» Àд µ¥ ÇÊ¿äÇÑ °³³äµµ¸¦ ¾òÀ» ¼ö ÀÖ½À´Ï´Ù.

°ø±âºÐ¸® °¡Ä¡»ç½½ Àü¹ÝÀÇ °æÀï ¿ìÀ§¸¦ À籸ÃàÇϰí, ±â¼ú, ¿î¿µ, ¼ö¿ä Ãø¸éÀÇ Çõ½ÅÀ» öÀúÈ÷ Á¾ÇÕÇϰí ÀÖ½À´Ï´Ù.

Żź¼ÒÈ­ ¸ñÇ¥, ¿î¿µÀÇ µðÁöÅÐÈ­, °æÀï ¿ìÀ§¸¦ ÀçÁ¤ÀÇÇÏ´Â ÃÖÁ¾ ¿ëµµ ¼ö¿äÀÇ ÁøÈ­·Î ÀÎÇØ °ø±âºÐ¸® ºÐ¾ß´Â º¯È­ÀÇ ½Ã±â¸¦ ¸ÂÀÌÇϰí ÀÖ½À´Ï´Ù. ±â¼úÀû Ãø¸é¿¡¼­´Â ±ØÀú¿Â ½Ã½ºÅÛÀÇ Á¡ÁøÀûÀÎ °³¼±ÀÌ ±ØÀú¿Â ÀÌ¿ÜÀÇ ¹æ¹ýÀÇ ±Þ¼ÓÇÑ ¹ßÀü¿¡ ÇÊÀûÇϰí ÀÖ½À´Ï´Ù. ¸· ºÐ¸® ¹× ¾Ð·Â ½ºÀ® ÈíÂøÀº Áß°£ ±Ô¸ð ¹× ¸ðµâ½Ä ÀÀ¿ë ºÐ¾ß¿¡¼­ Á¡Á¡ ´õ ½Ç¿ëÈ­µÇ°í ÀÖÀ¸¸ç, ¼¼¶ó¹Í, Áß°ø»ç ¹× °íºÐÀÚ ¸· Àç·áÀÇ ±â¼ú Çõ½ÅÀº ¼±Åüº°ú ¼ö¸íÀ» Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù. ±× °á°ú, ÀÚ»ê ¼ÒÀ¯ÁÖµéÀº Ãʱâ ÅõÀÚ»Ó¸¸ ¾Æ´Ï¶ó ¶óÀÌÇÁ»çÀÌŬÀÇ ÃѼÒÀ¯ºñ¿ëÀ» Æò°¡ÇÏ°Ô µÇ¾ú°í, ¿¡³ÊÁö È¿À²¼º, À¯Áöº¸¼ö¼º, Àç»ý¿¡³ÊÁö¿ÍÀÇ ÅëÇÕÀ» À§ÇÑ Á¶´Þ ±âÁØÀÇ ÀçÁ¶Á¤À» Ã˱¸Çϰí ÀÖ½À´Ï´Ù.

2025³â °ü¼¼ Á¶Ä¡°¡ °ø±â ºÐ¸® ÇÁ·ÎÁ§Æ®¿¡¼­ Á¶´Þ, °ø±Þ¸Á ÇöÁöÈ­, °ø±Þ¾÷ü ¼±Á¤ÀÇ ¿ì¼±¼øÀ§¸¦ ¾î¶»°Ô º¯È­½ÃÄ×´ÂÁö¸¦ Àü·«ÀûÀ¸·Î ºÐ¼®ÇÕ´Ï´Ù.

2025³â ÁÖ¿ä °ü¼¼ Á¶Ä¡ÀÇ µµÀÔÀº °ø±âºÐ¸® Ç÷£Æ® ÀÚº» Á¶´Þ, °ø±Þ¾÷ü ¼±Á¤, °ø±Þ¸Á ¾ÆÅ°ÅØÃ³¿¡ ´©Àû ¿µÇâÀ» ¹ÌÄ¡°í ÀÖÀ¸¸ç, ±× ¿µÇâÀº Àåºñ Á¶´Þ¿¡¼­ ÇÁ·ÎÁ§Æ® ³³±â±îÁö È®´ëµÇ°í ÀÖ½À´Ï´Ù. ±ØÀú¿Â Ä÷³, Ư¼ö ¾ÐÃà±â, ¸âºê·¹ÀÎ ¸ðµâ°ú °°Àº ¼öÀÔ ºÎǰÀº °ø±Þ¾÷ü¿¡ ´ëÇÑ Æò°¡°¡ ÀçÁ¶Á¤µÇ°í, Á¶´ÞÆÀÀÌ ÇöÁö Á¦Á¶ ´ëüǰÀ» ¼±È£Çϰųª º¸È£ÀûÀÎ °è¾à Á¶Ç×À» Çù»óÇϵµ·Ï À¯µµÇÏ´Â µî »ó·ú ºñ¿ë »ó½ÂÀ» ¸ñ°ÝÇϰí ÀÖ½À´Ï´Ù. ±× °á°ú, °³¹ß º¥´õµéÀº °ü¼¼ ¸®½ºÅ©¸¦ Á¶´Þ »ç¾ç°ú ¿ì¹ß»óȲ °èȹ¿¡ ¹Ý¿µÇϰí, º¥´õ Àû°Ý¼º Æò°¡ ±â°£ÀÌ ±æ¾îÁö°í, Áö¸®ÀûÀ¸·Î ´Ù¾çÇÑ Á¦Á¶ °ÅÁ¡À» °¡Áø °ø±Þ¾÷ü¸¦ Áß½ÃÇϰí ÀÖ½À´Ï´Ù.

Á¦Ç° À¯Çü, ±â¼ú °æ·Î, ÀÛµ¿ ¸ðµå, ¿ë·® °èÃþ, ¼³Ä¡ ¿É¼Ç ¹× ÃÖÁ¾ »ç¿ë »ê¾÷ ¿ä±¸ »çÇ×À» ÅëÇÕÇÏ´Â Á¾ÇÕÀûÀÎ ¼¼ºÐÈ­ ÀÎÅÚ¸®Àü½º

¼¼ºÐÈ­¿¡ ±â¹ÝÇÑ ÅëÂû·ÂÀº Â÷º°È­µÈ Á¦Ç° À¯Çü, ±â¼ú Ç÷§Æû, ¿î¿µ ¸ðµå, ¿ë·® °èÃþ, ¼³Ä¡ ¿É¼Ç ¹× ÃÖÁ¾ »ç¿ë »ê¾÷ÀÌ ¾î¶»°Ô ¸íÈ®ÇÑ °¡Ä¡ Ç®°ú ¿î¿µ ¿ì¼±¼øÀ§¸¦ »ý¼ºÇÏ´ÂÁö¸¦ º¸¿©ÁÝ´Ï´Ù. Á¦Ç° ¼¼ºÐÈ­¸¦ ÅëÇØ º¸¸é, »ê¼Ò, Áú¼Ò, ¾Æ¸£°ï°ú °°Àº 1Â÷ °¡½º´Â ¿©ÀüÈ÷ »ê¾÷¿ëµµÀÇ ÇÙ½ÉÀ̸ç, Å©¸³Åæ, ³×¿Â, Å©¼¼³í°ú °°Àº Èñ±Í °¡½º´Â Ư¼öÇÑ °íºÎ°¡°¡Ä¡ Æ´»õ ½ÃÀå¿¡ ´ëÀÀÇϰí ÀÖ½À´Ï´Ù. ÇÑÆí, ¸· ºÐ¸® ¹× ¾Ð·Â ½ºÀ® ÈíÂøÀ» Æ÷ÇÔÇÑ ºñ³Ã¸Å Á¢±Ù¹ýÀº ¼¼¶ó¹Í ¸âºê·¹ÀÎ, Áß°ø»ç ¸âºê·¹ÀÎ, °íºÐÀÚ ¸âºê·¹Àΰú °°Àº ¸âºê·¹ÀÎ ÇÏÀ§ À¯Çü¿¡ µû¶ó Áß±Ô¸ð ¹× ¼Ò±Ô¸ð ¿ëµµ¸¦ À§ÇÑ ¸ðµâ½Ä Àú¿¡³ÊÁö ¼Ö·ç¼ÇÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù.

¹ÌÁÖ, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«, ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ¿ªÇÐÀÌ ±â¼ú äÅÃ, Áö¿ªÈ­, ¼ö¿ä ±¸¼º¿¡ ¹ÌÄ¡´Â ¿µÇâ¿¡ ´ëÇØ Áö¿ªº°·Î Â÷º°È­µÈ °üÁ¡À» °¡Áø ±â¾÷

Áö¿ªÀû ¿ªÇÐÀº °ø±âºÐ¸® »ýŰè Àü¹ÝÀÇ ±â¼ú äÅÃ, °ø±Þ¸Á ¼³°è, ±ÔÁ¦¿¡ ´ëÇÑ ³ëÃâ, ¼ö¿ä ±¸¼º¿¡ Å« ¿µÇâÀ» ¹ÌĨ´Ï´Ù. ¾Æ¸Þ¸®Ä« ´ë·ú¿¡¼­´Â ±âÁ¸ÀÇ »ê¾÷ Ŭ·¯½ºÅÍ¿Í ÇöÀå °ø±Þ¾÷ü ¹× »óÀÎ °ø±Þ¾÷üÀÇ °­·ÂÇÑ ±â¹ÝÀÌ ±ØÀú¿Â ¼Ö·ç¼Ç°ú ºñ±ØÀú¿Â ¼Ö·ç¼ÇÀÇ ±ÕÇü ÀâÈù äÅÃÀ» ÃËÁøÇϰí, ƯÈ÷ Żź¼ÒÈ­ ÇÁ·Î±×·¥°úÀÇ ÅëÇÕ°ú ¹°·ù À§ÇèÀ» ÁÙÀÌ´Â ¸ðµâ½Ä ÇöÀå ½Ã½ºÅÛ¿¡ ÁßÁ¡À» µÎ°í ÀÖ½À´Ï´Ù. ¹°·ù ¸®½ºÅ©¸¦ ÁÙÀÌ´Â ¸ðµâÇü ¿Â»çÀÌÆ® ½Ã½ºÅÛ¿¡ ÁßÁ¡À» µÎ°í ÀÖ½À´Ï´Ù. À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä« Àüü¿¡¼­ ±ÔÁ¦ »óȲ, ¿¡³ÊÁö Àüȯ Á¤Ã¥, ÀÎÇÁ¶óÀÇ ÆíÂ÷°¡ ´ÜÆíÀûÀÎ »óȲÀ» Çü¼ºÇϰí ÀÖÀ¸¸ç, ÷´Ü Á¦Á¶¾÷ÀÇ °í¼øµµ ¼ö¿ä¿Í ·¹°Å½Ã »ê¾÷ Áö¿ªÀÇ ºê¶ó¿îÇʵå Çö´ëÈ­ ±âȸ°¡ °øÁ¸Çϰí ÀÖ½À´Ï´Ù. EMEAÀÇ Á¤Ã¥ ÀÔ¾ÈÀÚ¿Í Àü·Âȸ»ç´Â Àμ¾Æ¼ºê ±¸Á¶¿Í ¼ÛÀü¸Á Żź¼ÒÈ­ ÀÏÁ¤À» ÅëÇØ ÇÁ·ÎÁ§Æ®ÀÇ °æÁ¦¼º¿¡ ¿µÇâÀ» ¹ÌÄ¡´Â °æ¿ì°¡ ¸¹À¸¸ç, ±ÔÁ¦ ´ç±¹ÀÇ Âü¿©´Â ÇÁ·ÎÁ§Æ®ÀÇ ½ÇÇà °¡´É¼º¿¡ ÇʼöÀûÀÔ´Ï´Ù.

°ø±âºÐ¸® ¼Ö·ç¼Ç °ø±Þ¾÷ü Â÷º°È­,¼­ºñ½º ¸ðµ¨,Áö¿ª ½ÃÀå ħÅõ¸¦ Á¿ìÇϴ±â¾÷ Â÷¿øÀÇ Áß¿äÇÑ Àü·«Àû Çൿ°ú ÆÄÆ®³Ê½Ê

±â¾÷ Â÷¿øÀÇ Àü·«Àº °ø±â ºÐ¸® ºÎ¹® Àüü¿¡¼­ ¹ßÀü ±âȸ¸¦ ¾ò±â À§ÇØ ±â¼ú Â÷º°È­, ¾ÖÇÁÅÍ ¼­ºñ½º, Àü·«Àû Á¦ÈÞ, Áö¿ª ¿ª·® È®´ë¿¡ Á¡Á¡ ´õ ÁßÁ¡À» µÎ°í ÀÖ½À´Ï´Ù. ÁÖ¿ä Àåºñ ¹× ¼Ö·ç¼Ç Á¦°ø¾÷üµéÀº ¸ðµâ½Ä ¹× ºñ³Ã¸Å ±â¼ú¿¡ ´ëÇÑ ÅõÀÚ¸¦ ¿ì¼±¼øÀ§¿¡ µÎ°í, Áß±Ô¸ð ¿ëµµ¸¦ À§ÇÑ ºü¸¥ ¹èÄ¡ ÁÖ±â¿Í ÀÚº» Áý¾àµµ¸¦ ³·Ãß±â À§ÇØ ³ë·ÂÇÏ´Â ÇÑÆí, ´ë±Ô¸ð °í¼øµµ ¼³ºñÀÇ ±ØÀú¿Â È¿À²À» °³¼±Çϱâ À§ÇØ ³ë·ÂÇϰí ÀÖ½À´Ï´Ù. ¼­ºñ½º Á¦°øÀº Æ®·£Àè¼Å³Î À¯Áöº¸¼ö¿¡¼­ ¿¹Áöº¸Àü, ¿¹ºñ ºÎǰ º¸Áõ, ¼º´É º¸ÁõÀ» ¹øµé·Î Á¦°øÇÏ´Â ¼º°ú ±â¹Ý °è¾àÀ¸·Î ÀüȯÇϰí ÀÖÀ¸¸ç, Áö¼ÓÀûÀÎ ¼öÀÍ¿ø°ú º¸´Ù ±ä¹ÐÇÑ °í°´ °ü°è¸¦ ±¸ÃàÇϰí ÀÖ½À´Ï´Ù.

°ø±Þ¸Á °­ÀμºÀ» °­È­Çϰí, ±â¼ú ¼±ÅÃÀ» ÃÖÀûÈ­Çϰí, °ø±â ºÐ¸® ÇÁ·ÎÁ§Æ®ÀÇ °¡Ä¡ ½ÇÇöÀ» °¡¼ÓÈ­Çϱâ À§ÇØ °æ¿µÁøÀÌ ÃëÇØ¾ß ÇÒ ½Ç¿ëÀûÀÌ°í ¿ì¼±¼øÀ§°¡ ³ôÀº Àü·«Àû Á¶Ä¡

¾÷°è ¸®´õ´Â Àü·«Àû ÀλçÀÌÆ®¸¦ Á¶´Þ, ±â¼ú, ¼­ºñ½º ¿µ¿ª¿¡¼­ Áö¼Ó °¡´ÉÇÑ ºñÁî´Ï½º ¿ìÀ§·Î ÀüȯÇϱâ À§ÇØ ½ÇÇà °¡´ÉÇÑ ÀÏ·ÃÀÇ ¿ì¼±¼øÀ§¸¦ Ãß±¸ÇØ¾ß ÇÕ´Ï´Ù. ù°, °¡°Ý Á¶Á¤ ¸ÞÄ¿´ÏÁò°ú ¿ø»êÁö Åõ¸í¼ºÀ» Æ÷ÇÔÇÑ Àå±â °ø±Þ °è¾àÀ» Çù»óÇÏ´Â ÇÑÆí, °ü¼¼ÀÇ ¿µÇâÀ» ÁÙÀÌ°í ¸®µå ŸÀÓÀ» ´ÜÃàÇϱâ À§ÇØ Á¶´Þó¸¦ ´Ù¾çÈ­Çϰí À§Çèµµ°¡ ³ôÀº ºÎǰÀÇ ´Ï¾î¼î¾î¸µÀ» °¡¼ÓÈ­ÇÕ´Ï´Ù. µÑ°, Áß±Ô¸ð ¹× ¼Ò±Ô¸ð ¿ä±¸»çÇ׿¡ ´ëÇØ¼­´Â ºñ±ØÀú¿Â ¸ðµâ½Ä ¼Ö·ç¼ÇÀ» äÅÃÇϰí, Áö¼ÓÀûÀÎ °í¼øµµ °ø±ÞÀÌ ÇÊ¿äÇÑ ½Ã¼³¿¡ ´ëÇØ¼­´Â ±ØÀú¿Â ¸ÖƼ Ä÷³ Ç÷£Æ®¸¦ È®º¸ÇÏ¿© ±â¼ú ÅõÀÚ¸¦ ÃÖÁ¾ »ç¿ë ¿ä±¸»çÇ×°ú ÀÏÄ¡½ÃÄÑ ÀÚº» ¹èºÐ ¹× ¹èÄ¡ ¼Óµµ¸¦ ÃÖÀûÈ­ÇÕ´Ï´Ù.

Àü¹®°¡ ÀÎÅͺä, ±â¼ú ÅëÇÕ, ½Ã³ª¸®¿À Å×½ºÆ®, »óÈ£ °ËÁõÀ» °áÇÕÇÑ Åõ¸íÇϰí ÀçÇö °¡´ÉÇÑ Á¶»ç Á¢±Ù ¹æ½ÄÀ» ÅëÇØ ½ÇÇà °¡´ÉÇÑ °á·ÐÀ» µµÃâÇÕ´Ï´Ù.

ÀÌ·¯ÇÑ ¿¬±¸ °á°ú¸¦ µÞ¹ÞħÇÏ´Â Á¶»ç ¹æ¹ýÀº Àü¹®°¡¸¦ ´ë»óÀ¸·Î ÇÑ ±¸Á¶È­µÈ 1Â÷ Á¶»ç, ¾ö°ÝÇÑ 2Â÷ Áõ°ÅÀÇ ÅëÇÕ, ±×¸®°í ºÐ¼®Àû »ï°¢Ãø·®À» °áÇÕÇÏ¿© °ß°í¼º°ú ½ÇÇà °¡´ÉÇÑ Å¸´ç¼ºÀ» º¸ÀåÇÏ´Â °ÍÀÔ´Ï´Ù. 1Â÷ ÀԷ¿¡´Â Ç÷£Æ® ¿î¿µÀÚ, EPC °è¾àÀÚ, ÁÖ¹®ÀÚ »óÇ¥ ºÎÂø Á¦Ç° Á¦Á¶¾÷ü, ±â¼ú °³¹ßÀÚ ¹× ÃÖÁ¾ »ç¿ëÀÚÀÇ Á¶´Þ Ã¥ÀÓÀÚ¿ÍÀÇ ÀÎÅͺ並 ÅëÇØ ¿î¿µ»óÀÇ Á¦¾à, º¥´õÀÇ ½ÇÀû °æÇè ¹× ±â¼ú äÅà À庮À» ÆÄ¾ÇÇÏ´Â °ÍÀÌ Æ÷ÇԵ˴ϴÙ. 2Â÷ ºÐ¼®¿¡¼­´Â ±â¼ú Ç¥ÁØ, ±ÔÁ¦ ¹®¼­, ƯÇã Ȱµ¿, ÀϹݿ¡ °ø°³µÈ ÇÁ·ÎÁ§Æ® »ç·Ê¸¦ Ȱ¿ëÇÏ¿© ±â¼ú ±ËÀû°ú °ú°Å µµÀÔ ÆÐÅÏÀ» °ËÁõÇÕ´Ï´Ù.

±â¼ú À¯¿¬¼º, °ø±Þ¸Á ź·Â¼º, ¼­ºñ½º Çõ½ÅÀÌ °ø±â ºÐ¸® ºÎ¹®ÀÇ Àå±âÀûÀÎ ¼º°øÀ» °áÁ¤ÇÑ´Ù´Â °ÍÀ» ÀçÈ®ÀÎÇÏ´Â Àü·«Àû ÅëÇÕ

°á·ÐÀûÀ¸·Î, °ø±âºÐ¸® Ç÷£Æ® ȯ°æÀº ÁÖ·Î ±Ô¸ðÀÇ °æÁ¦·Î Á¤ÀǵǴ ÆÐ·¯´ÙÀÓ¿¡¼­ ±â¼ú À¯¿¬¼º, °ø±Þ¸Á ź·Â¼º, ¼­ºñ½º ÁÖµµ ¸ðµ¨ÀÌ Àå±âÀûÀÎ °æÀïÀ» °áÁ¤ÇÏ´Â ÆÐ·¯´ÙÀÓÀ¸·Î ÀüȯµÇ°í ÀÖ½À´Ï´Ù. 1Â÷ °¡½º´Â ±¤¹üÀ§ÇÑ »ê¾÷ Ȱµ¿À» °è¼Ó Áö¿øÇÏÁö¸¸, ºñȰ¼º±âü´Â °í¼øµµ ¹× ÃßÀû¼ºÀÌ ¿ä±¸µÇ´Â Àü·«Àû Æ´»õ ºÐ¾ß·Î È®´ëµÉ °ÍÀÔ´Ï´Ù. ±â¼ú ¼±ÅÃÀº ¿¡³ÊÁö È¿À²¼º, ¹èÄ¡ ¼Óµµ, Àü±âÈ­ ¹× Àç»ý °¡´É Àü¿ø°úÀÇ ÅëÇÕ ´É·ÂÀÇ Á¶ÇÕ¿¡ ÀÇÇØ Á¡Á¡ ´õ ¸¹ÀÌ Á¿ìµÉ °ÍÀ̸ç, ¸¹Àº ÀÌ¿ë »ç·Ê¿¡¼­ ºñ±ØÀú¿Â ¹× ¸ðµâ½Ä ±¸¼ºÀÌ ´õ ¸Å·ÂÀûÀÏ °ÍÀÔ´Ï´Ù.

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ¿ªÇÐ

Á¦6Àå ½ÃÀå ÀλçÀÌÆ®

  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®

Á¦7Àå ¹Ì±¹ °ü¼¼ÀÇ ´©Àû ¿µÇâ 2025

Á¦8Àå °ø±â ºÐ¸® Ç÷£Æ® ½ÃÀå : Á¦Ç°º°

  • 1Â÷ °¡½º
    • ¾Æ¸£°ï
    • Áú¼Ò
    • »ê¼Ò
  • ºñȰ¼º ±âü
    • Å©¸³Åæ
    • ³×¿Â
    • Å©¼¼³í

Á¦9Àå °ø±â ºÐ¸® Ç÷£Æ® ½ÃÀå : ±â¼úº°

  • ±ØÀú¿Â °ø±â ºÐ¸®
    • Double-column Cryogenic
    • Single-column Cryogenic
  • ºñ±ØÀú¿Â °ø±â ºÐ¸®
    • ¸· ºÐ¸®
      • ¼¼¶ó¹Í ¸·
      • Áß°ø»ç ¸·
      • °íºÐÀÚ ¸·
    • ¾Ð·Â ½ºÀ® ÈíÂø

Á¦10Àå °ø±â ºÐ¸® Ç÷£Æ® ½ÃÀå : ¿îÀü ¸ðµåº°

  • »ó¾÷ÆÇ¸ÅÇü
  • ÇöÀå

Á¦11Àå °ø±â ºÐ¸® Ç÷£Æ® ½ÃÀå : ¿ë·®º°

  • ´ë±Ô¸ð
  • Áß±Ô¸ð
  • ¼Ò±Ô¸ð

Á¦12Àå °ø±â ºÐ¸® Ç÷£Æ® ½ÃÀå : ¼³Ä¡ À¯Çüº°

  • ºê¶ó¿îÇʵå
  • ±×¸°Çʵå

Á¦13Àå °ø±â ºÐ¸® Ç÷£Æ® ½ÃÀå : ÃÖÁ¾ ÀÌ¿ë »ê¾÷º°

  • È­ÇÐ ¹× ¼®À¯È­ÇÐ
  • ÀÏ·ºÆ®·Î´Ð½º ¹× ¹ÝµµÃ¼
  • ½Äǰ ¹× À½·á
  • ÇコÄÉ¾î ¹× ÀÇ·á
  • ö°­ Á¦Á¶
  • ¼®À¯ ¹× °¡½º
  • ¹° ¹× Æó¼ö ó¸®

Á¦14Àå ¾Æ¸Þ¸®Ä«ÀÇ °ø±â ºÐ¸® Ç÷£Æ® ½ÃÀå

  • ¹Ì±¹
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ºê¶óÁú
  • ¾Æ¸£ÇîÆ¼³ª

Á¦15Àå À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ °ø±â ºÐ¸® Ç÷£Æ® ½ÃÀå

  • ¿µ±¹
  • µ¶ÀÏ
  • ÇÁ¶û½º
  • ·¯½Ã¾Æ
  • ÀÌÅ»¸®¾Æ
  • ½ºÆäÀÎ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
  • µ§¸¶Å©
  • ³×´ú¶õµå
  • īŸ¸£
  • Çɶõµå
  • ½º¿þµ§
  • ³ªÀÌÁö¸®¾Æ
  • ÀÌÁýÆ®
  • Æ¢¸£Å°¿¹
  • À̽º¶ó¿¤
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • ½ºÀ§½º

Á¦16Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ °ø±â ºÐ¸® Ç÷£Æ® ½ÃÀå

  • Áß±¹
  • Àεµ
  • ÀϺ»
  • È£ÁÖ
  • Çѱ¹
  • Àεµ³×½Ã¾Æ
  • ű¹
  • Çʸ®ÇÉ
  • ¸»·¹À̽þÆ
  • ½Ì°¡Æ÷¸£
  • º£Æ®³²
  • ´ë¸¸

Á¦17Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼®, 2024³â
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º, 2024³â
  • °æÀï ºÐ¼®
    • AMCS Corporation
    • Nikkiso Clean Energy & Industrial Gases Group
    • Comi Polaris Systems
    • CRYOSPAIN, S.L.
    • Hangzhou Azbel Technology Co., Ltd.
    • Hangzhou Fortune Gas Cryogenic Group Co., Ltd.
    • Hangzhou Nuzhuo Technology Co., Ltd.
    • Hangzhou Oxygen Group Co., Ltd.
    • INOX-Air Products Inc.
    • Jilin Hangairsep Co., Ltd.
    • Kaifeng Air Separation Group Co., Ltd.
    • KROHNE Group
    • L'AIR LIQUIDE S.A.
    • Linde PLC
    • Messer Group
    • Nikkiso Co., Ltd.
    • Novair Group
    • Ranch Cryogenics, Inc.
    • Sanghi Oxygen PVT.LTD,
    • SIAD Macchine Impianti S.p.A.
    • Sichuan Air Separation Plant Group
    • Siemens AG.
    • Sinerga SpA
    • Suzhou Oxygen Plant Co., Ltd.
    • Taiyo Nippon Sanso Corporation
    • Technex Group
    • Universal Industrial Gases, Inc.
    • Universal Ing. La. Boschi Plants Pvt. Ltd.
    • Wobo Industrial Group Corp.
    • Yingde Gases Group Company Limited
    • Zhejiang Yuanda Air Separation Equipment Co., Ltd.

Á¦18Àå ¸®¼­Ä¡ AI

Á¦19Àå ¸®¼­Ä¡ Åë°è

Á¦20Àå ¸®¼­Ä¡ ÄÁÅÃÆ®

Á¦21Àå ¸®¼­Ä¡ ±â»ç

Á¦22Àå ºÎ·Ï

LSH

The Air Separation Plant Market was valued at USD 5.02 billion in 2024 and is projected to grow to USD 5.27 billion in 2025, with a CAGR of 5.19%, reaching USD 6.80 billion by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 5.02 billion
Estimated Year [2025] USD 5.27 billion
Forecast Year [2030] USD 6.80 billion
CAGR (%) 5.19%

An authoritative orientation to core air separation plant technologies, product distinctions, and operational paradigms shaping industrial gas supply and demand

The air separation plant sector stands at a pivotal intersection of industrial demand, technological evolution, and regulatory change, requiring a clear orientation for stakeholders planning investments or operational adjustments. This introduction frames the core functional roles of air separation systems in producing primary gases such as nitrogen, oxygen, and argon, alongside the specialized supply chain for rare gases including krypton, neon, and xenon, and explains how these product streams underpin sectors from healthcare to semiconductor fabrication. By clarifying the distinctions between cryogenic and non-cryogenic technologies and the operational dichotomy of merchant versus onsite supply, this orientation equips readers with the conceptual map needed to interpret subsequent sections.

Beyond technology taxonomy, the introduction highlights emergent drivers that are reshaping demand profiles: intensifying requirements for high-purity gases in electronics and life sciences, the growing appetite for onsite gas generation to mitigate logistics risk, and the influence of installation typologies such as brownfield upgrades versus greenfield builds on capital deployment patterns. This contextualization also previews how capacity choices-large, medium, and small scale-interact with project economics and supply chain resilience. Ultimately, the introduction establishes the analytical lens through which stakeholders can assess vendor strategies, project delivery models, and risk mitigation tactics in an environment defined by both opportunity and structural disruption

An in-depth synthesis of technological, operational, and demand-side transformations that are reshaping competitive advantage across the air separation value chain

The landscape of air separation is undergoing transformative shifts driven by decarbonization goals, digitalization of operations, and evolving end-use demands that collectively redefine competitive advantage. On the technology front, the incremental improvements to cryogenic systems are being matched by rapid advances in non-cryogenic methods; membrane separation and pressure-swing adsorption are increasingly viable for mid-scale and modular applications while innovations in ceramic, hollow-fibre, and polymeric membrane materials are improving selectivity and longevity. As a result, asset owners are evaluating lifecycle total cost of ownership rather than upfront capex alone, prompting a rebalancing of procurement criteria toward energy efficiency, maintainability, and integration with renewable electricity sources.

Simultaneously, market dynamics are altering project rationales: demand for ultra-high-purity gases in semiconductor fabrication and advanced medical therapies is expanding the market for rare gases and specialized purification trains, whereas industrial decarbonization is incentivizing electrified processes and waste heat integration that reduce operational carbon intensity. Supply chain resilience has risen to strategic prominence, encouraging firms to pursue localization and supplier diversification. In parallel, digital solutions-predictive maintenance, remote asset management, and performance analytics-are shifting service models from reactive maintenance toward outcome-based contracts, thereby changing revenue models for equipment suppliers and service providers. Together, these shifts create an environment where technical differentiation, supply chain strategy, and service innovation determine long-term competitiveness

A strategic analysis of how 2025 tariff measures have reshaped procurement, supply chain localization, and vendor selection priorities across air separation projects

The introduction of significant tariff measures in 2025 has exerted a cumulative influence on capital procurement, vendor selection, and supply chain architecture for air separation plants, with effects that extend from equipment sourcing to project delivery timelines. Imported components such as cryogenic columns, specialized compressors, and membrane modules have seen elevated landed costs that reshape supplier evaluations and encourage procurement teams to prioritize locally manufactured alternatives or negotiate protective contractual clauses. Consequently, developers are increasingly incorporating tariff risk into procurement specifications and contingency planning, which has led to lengthened vendor qualification windows and a premium on suppliers with geographically diversified manufacturing footprints.

Moreover, the tariff environment has prompted strategic responses from project sponsors and equipment manufacturers alike. Some firms have accelerated nearshoring efforts and established regional assembly centers to mitigate import exposure, while others have reconfigured bill-of-materials to substitute higher-risk components with domestically sourced equivalents where feasible. End users have absorbed portions of cost increases through renegotiated service agreements or shifted toward onsite generation to reduce logistics-dependent exposures. Regulatory compliance and documentation requirements associated with tariff classifications have also increased administrative burdens, elevating the value of suppliers who offer clarity on origin, traceability, and customs support. In sum, the tariffs have catalyzed a reorientation toward supply chain resilience, localization, and contractual protections that will persist as risk management priorities

Comprehensive segmentation intelligence integrating product types, technology pathways, operation modes, capacity tiers, installation choices, and end-use industry imperatives

Segmentation-driven insights reveal how differentiated product types, technology platforms, operation modes, capacity tiers, installation choices, and end-use industries create distinct value pools and operational priorities. When viewed through product segmentation, primary gases such as oxygen, nitrogen, and argon remain the backbone of industrial applications, while rare gases like krypton, neon, and xenon serve specialized, high-value niches; this implies divergent procurement timelines and purity specifications that affect plant design and downstream handling. From the technology segmentation perspective, cryogenic air separation-available in double-column and single-column configurations-continues to dominate large-scale, high-purity requirements, whereas non-cryogenic approaches including membrane separation and pressure swing adsorption, with membrane subtypes of ceramic, hollow-fibre, and polymeric membranes, enable modular, lower-energy solutions for medium and small-scale applications.

Operation mode segmentation differentiates merchant supply chains from onsite generation strategies; merchant models emphasize logistics optimization and inventory management, while onsite systems prioritize reliability, footprint, and integration with onsite utilities. Capacity segmentation into large, medium, and small scales shapes capital intensity and flexibility, with small-scale units delivering faster deployment and lower capital lock-in, and large-scale plants offering economies of scale for base-load industrial consumers. Installation type-brownfield upgrades versus greenfield builds-influences permitting complexity, timeline, and the feasibility of integrating waste heat or renewable electricity. Finally, end-use industry segmentation highlights that chemical and petrochemical sectors prioritize continuous supply and large volumes, electronics and semiconductor markets demand ultra-high purity and trace contaminant control, food and beverage focus on food-grade specifications, healthcare requires fail-safe redundancy for medical oxygen, iron and steel prioritize on-site oxygen enrichment, oil and gas seek integrated gas management, and water treatment leverages oxygen-enhanced processes. Together, these segmentation perspectives inform tailored technology choices, procurement strategies, and service models for different stakeholder objectives

A regionally differentiated perspective on how Americas, Europe-Middle East-Africa, and Asia-Pacific dynamics influence technology adoption, localization, and demand composition

Regional dynamics exert a profound influence on technology adoption, supply chain design, regulatory exposure, and demand composition across the air separation ecosystem. In the Americas, established industrial clusters and a strong base of onsite and merchant providers drive a balanced adoption of cryogenic and non-cryogenic solutions, with particular emphasis on integration with decarbonization programs and modular onsite systems that reduce logistical risk. Across Europe, Middle East & Africa, regulatory stringency, energy transition policies, and infrastructure variability shape a fragmented landscape where high-purity demand in advanced manufacturing coexists with opportunities for brownfield modernization in legacy industrial zones. Policymakers and utilities in EMEA frequently influence project economics through incentive structures and grid decarbonization schedules, making regulatory engagement essential for project viability.

Asia-Pacific exhibits heterogeneous but pronounced growth dynamics, driven by rapid industrialization, expanded semiconductor capacity, and growing healthcare infrastructure, which collectively elevate demand for both primary and rare gases. Local supply chain development and localization strategies are particularly salient in this region as governments and industrial consortia prioritize domestic manufacturing resilience. Across all regions, differences in labor cost structures, permitting timelines, and utility pricing affect the optimal mix of cryogenic versus non-cryogenic technologies and the attractiveness of greenfield versus brownfield investments. Consequently, firms must adopt region-specific strategies that account for regulatory incentives, local supplier ecosystems, and end-user concentration to achieve operational and commercial objectives

Critical company-level strategic behaviors and partnerships that determine supplier differentiation, service models, and regional market penetration for air separation solutions

Company-level strategies are increasingly focused on technological differentiation, after-sales services, strategic alliances, and regional capacity expansion to capture evolving opportunities across the air separation sector. Leading equipment and solution providers are prioritizing investments in modular and non-cryogenic technologies to address faster deployment cycles and lower capital intensity for mid-scale applications, while also advancing cryogenic efficiency improvements for large-scale, high-purity installations. Service offerings are shifting from transactional maintenance to outcome-based contracts that bundle predictive maintenance, spare parts assurance, and performance guarantees, creating recurring revenue streams and closer customer relationships.

Partnerships and joint ventures are common tactical responses to demand for localization and market access; firms are forming regional manufacturing or assembly hubs, and entering collaborative R&D projects to accelerate membrane and compressor innovations. Companies that excel in documentation, compliance support, and supply chain traceability gain a competitive edge in tariff-impacted procurement environments. Additionally, digital platforms that aggregate performance data, enable remote diagnostics, and support lifecycle optimization are becoming differentiators in vendor selection. For stakeholders evaluating supplier ecosystems, priority should be given to firms demonstrating reliable delivery history, transparent total cost of ownership models, and clear roadmaps for technology upgrades and service continuity

Practical and prioritized strategic actions for executives to enhance supply chain resilience, optimize technology choices, and accelerate value realization in air separation projects

Industry leaders should pursue a set of actionable priorities to convert strategic insight into sustained operational advantage across procurement, technology, and service domains. First, diversify sourcing and accelerate nearshoring for high-risk components to reduce tariff exposure and shorten lead times, while negotiating long-term supply agreements that include price adjustment mechanisms and origin transparency. Second, align technology investments with end-use requirements by employing non-cryogenic, modular solutions for medium and small-scale needs and reserving cryogenic, multi-column plants for installations demanding continuous high-purity supply, thereby optimizing capital allocation and deployment speed.

Third, implement digital twin and predictive maintenance solutions to improve uptime and reduce lifecycle costs, and design service propositions that transition customers from capex-heavy models to outcome-based, performance-guaranteed contracts. Fourth, prioritize localization and brownfield modernization where regulatory incentives and logistics advantages exist, and structure project finance to account for tariff-related contingencies and permitting variabilities. Fifth, develop targeted commercial strategies for high-growth end uses such as semiconductors and healthcare that require specialized purity and reliability standards, and establish cross-functional teams to address regulatory compliance, environmental reporting, and stakeholder engagement. By sequencing these actions-starting with supply chain resilience, followed by targeted technology deployment, digital enablement, and market-specific commercial playbooks-leaders can reduce project risk and accelerate time-to-value

A transparent and reproducible research approach combining expert interviews, technical synthesis, scenario testing, and cross-validation to underpin actionable conclusions

The research methodology underpinning these insights combines structured primary engagement with domain experts, rigorous secondary evidence synthesis, and analytical triangulation to ensure robustness and actionable relevance. Primary inputs include interviews with plant operators, EPC contractors, original equipment manufacturers, technology developers, and end-user procurement leads to capture operational constraints, vendor performance experience, and technology adoption barriers. Secondary analysis draws on technical standards, regulatory documentation, patent activity, and publicly available project case studies to validate technology trajectories and historical implementation patterns.

Analytical steps include segmentation mapping across product, technology, operation mode, capacity, installation type, and end-use industry to ensure results are aligned with practical decision frameworks. Scenario analysis was applied to assess supply chain responses to tariff shocks and regional regulatory shifts, and sensitivity checks were used to test assumptions related to equipment lead times, component substitutability, and service model adoption. Findings were cross-validated through peer review with independent technical specialists and iterative feedback from industry participants to refine conclusions and ensure recommendations are operationally grounded

A strategic synthesis reaffirming that technology flexibility, supply chain resilience, and service innovation will determine long-term success in the air separation sector

In conclusion, the air separation plant landscape is transitioning from a paradigm defined primarily by scale economies toward one where technology flexibility, supply chain resilience, and service-driven models determine long-term competitiveness. Primary gases will continue to underpin broad industrial activity while rare gases will expand in strategic niches that demand high purity and traceability. Technology choice will increasingly be governed by a blend of energy efficiency, deployment speed, and integration capability with electrified or renewable power sources, making non-cryogenic and modular configurations more attractive for many use cases.

The cumulative effect of recent tariff developments and regional policy shifts is to elevate localization, contractual clarity, and supplier diversification as core risk mitigation strategies. Firms that couple targeted investments in membrane and compressor innovations with digital service platforms and region-specific commercial playbooks will be best positioned to capture value. Ultimately, success in this evolving environment depends on aligning technical decisions with end-user requirements, regulatory landscapes, and pragmatic supply chain strategies to deliver resilient, efficient, and dependable gas supply solutions

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

  • 4.1. Introduction
  • 4.2. Market Sizing & Forecasting

5. Market Dynamics

  • 5.1. Adoption of advanced membrane separation technologies to improve energy efficiency in air separation plants
  • 5.2. Implementation of digital twin and predictive analytics for optimized air separation unit performance and maintenance
  • 5.3. Deployment of modular and skid-mounted air separation units for rapid installation at remote industrial sites
  • 5.4. Integration of renewable power sources and green hydrogen production within air separation facilities to lower emissions
  • 5.5. Utilization of cryogenic heat recovery systems to reduce operational costs and enhance process sustainability in air separation
  • 5.6. Expansion of on-site nitrogen and oxygen generation solutions for medical and food-grade applications under strict purity standards
  • 5.7. Strategic partnerships between air separation plant operators and industrial gas suppliers to secure long-term supply agreements

6. Market Insights

  • 6.1. Porter's Five Forces Analysis
  • 6.2. PESTLE Analysis

7. Cumulative Impact of United States Tariffs 2025

8. Air Separation Plant Market, by Product

  • 8.1. Introduction
  • 8.2. Primary Gases
    • 8.2.1. Argon
    • 8.2.2. Nitrogen
    • 8.2.3. Oxygen
  • 8.3. Rare Gases
    • 8.3.1. Krypton
    • 8.3.2. Neon
    • 8.3.3. Xenon

9. Air Separation Plant Market, by Technology

  • 9.1. Introduction
  • 9.2. Cryogenic Air Separation
    • 9.2.1. Double-column Cryogenic
    • 9.2.2. Single-column Cryogenic
  • 9.3. Non-cryogenic Air Separation
    • 9.3.1. Membrane Separation
      • 9.3.1.1. Ceramic Membranes
      • 9.3.1.2. Hollow-fibre Membranes
      • 9.3.1.3. Polymeric Membranes
    • 9.3.2. Pressure Swing Adsorption

10. Air Separation Plant Market, by Operation Mode

  • 10.1. Introduction
  • 10.2. Merchant
  • 10.3. Onsite

11. Air Separation Plant Market, by Capacity

  • 11.1. Introduction
  • 11.2. Large Scale
  • 11.3. Medium Scale
  • 11.4. Small Scale

12. Air Separation Plant Market, by Installation Type

  • 12.1. Introduction
  • 12.2. Brownfield
  • 12.3. Greenfield

13. Air Separation Plant Market, by End Use Industry

  • 13.1. Introduction
  • 13.2. Chemical & Petrochemical
  • 13.3. Electronics & Semiconductor
  • 13.4. Food & Beverage
  • 13.5. Healthcare & Medical
  • 13.6. Iron & Steel Manufacturing
  • 13.7. Oil & Gas
  • 13.8. Water & Wastewater Treatment

14. Americas Air Separation Plant Market

  • 14.1. Introduction
  • 14.2. United States
  • 14.3. Canada
  • 14.4. Mexico
  • 14.5. Brazil
  • 14.6. Argentina

15. Europe, Middle East & Africa Air Separation Plant Market

  • 15.1. Introduction
  • 15.2. United Kingdom
  • 15.3. Germany
  • 15.4. France
  • 15.5. Russia
  • 15.6. Italy
  • 15.7. Spain
  • 15.8. United Arab Emirates
  • 15.9. Saudi Arabia
  • 15.10. South Africa
  • 15.11. Denmark
  • 15.12. Netherlands
  • 15.13. Qatar
  • 15.14. Finland
  • 15.15. Sweden
  • 15.16. Nigeria
  • 15.17. Egypt
  • 15.18. Turkey
  • 15.19. Israel
  • 15.20. Norway
  • 15.21. Poland
  • 15.22. Switzerland

16. Asia-Pacific Air Separation Plant Market

  • 16.1. Introduction
  • 16.2. China
  • 16.3. India
  • 16.4. Japan
  • 16.5. Australia
  • 16.6. South Korea
  • 16.7. Indonesia
  • 16.8. Thailand
  • 16.9. Philippines
  • 16.10. Malaysia
  • 16.11. Singapore
  • 16.12. Vietnam
  • 16.13. Taiwan

17. Competitive Landscape

  • 17.1. Market Share Analysis, 2024
  • 17.2. FPNV Positioning Matrix, 2024
  • 17.3. Competitive Analysis
    • 17.3.1. AMCS Corporation
    • 17.3.2. Nikkiso Clean Energy & Industrial Gases Group
    • 17.3.3. Comi Polaris Systems
    • 17.3.4. CRYOSPAIN, S.L.
    • 17.3.5. Hangzhou Azbel Technology Co., Ltd.
    • 17.3.6. Hangzhou Fortune Gas Cryogenic Group Co., Ltd.
    • 17.3.7. Hangzhou Nuzhuo Technology Co., Ltd.
    • 17.3.8. Hangzhou Oxygen Group Co., Ltd.
    • 17.3.9. INOX-Air Products Inc.
    • 17.3.10. Jilin Hangairsep Co., Ltd.
    • 17.3.11. Kaifeng Air Separation Group Co., Ltd.
    • 17.3.12. KROHNE Group
    • 17.3.13. L'AIR LIQUIDE S.A.
    • 17.3.14. Linde PLC
    • 17.3.15. Messer Group
    • 17.3.16. Nikkiso Co., Ltd.
    • 17.3.17. Novair Group
    • 17.3.18. Ranch Cryogenics, Inc.
    • 17.3.19. Sanghi Oxygen PVT.LTD,
    • 17.3.20. SIAD Macchine Impianti S.p.A.
    • 17.3.21. Sichuan Air Separation Plant Group
    • 17.3.22. Siemens AG.
    • 17.3.23. Sinerga SpA
    • 17.3.24. Suzhou Oxygen Plant Co., Ltd.
    • 17.3.25. Taiyo Nippon Sanso Corporation
    • 17.3.26. Technex Group
    • 17.3.27. Universal Industrial Gases, Inc.
    • 17.3.28. Universal Ing. La. Boschi Plants Pvt. Ltd.
    • 17.3.29. Wobo Industrial Group Corp.
    • 17.3.30. Yingde Gases Group Company Limited
    • 17.3.31. Zhejiang Yuanda Air Separation Equipment Co., Ltd.

18. ResearchAI

19. ResearchStatistics

20. ResearchContacts

21. ResearchArticles

22. Appendix

»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦