½ÃÀ庸°í¼­
»óǰÄÚµå
1808346

¼¼°èÀÇ ¹ÝµµÃ¼ Á¦Á¶ Àåºñ ½ÃÀå ¿¹Ãø : Àåºñ À¯Çüº°, Æ÷Àå Ä¡¼öº°, ¿ëµµ »ê¾÷º°, ÃÖÁ¾ »ç¿ëÀÚº°, À¯Å뺰, ¿ëµµº°(2025-2030³â)

Semiconductor Manufacturing Equipment Market by Equipment Type, Packaging Dimension, Application Industry, End-user, Distribution, Applications - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 196 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

¹ÝµµÃ¼ Á¦Á¶ Àåºñ ½ÃÀåÀº 2024³â¿¡ 1,346¾ï 9,000¸¸ ´Þ·¯·Î Æò°¡µÇ¾ú°í, CAGR 7.51%·Î 2025³â¿¡´Â 1,444¾ï 7,000¸¸ ´Þ·¯·Î ¼ºÀåÇßÀ¸¸ç, 2030³â±îÁö´Â 2,080¾ï 8,000¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁØ ¿¬µµ 2024³â 1,346¾ï 9,000¸¸ ´Þ·¯
ÃßÁ¤ ¿¬µµ 2025³â 1,444¾ï 7,000¸¸ ´Þ·¯
¿¹Ãø ¿¬µµ 2030³â 2,080¾ï 8,000¸¸ ´Þ·¯
CAGR(%) 7.51%

½ÃÀå ¿ªÇÐÀÇ ±â¼úÀû Áøº¸¿Í Àü·«Àû Á߿伺À» ¹àÇô ¹ÝµµÃ¼ Àåºñ ÁøÈ­ÀÇ ¹«´ë¸¦ Á¤µ·

¹ÝµµÃ¼ Á¦Á¶ ±â¼ú Çõ½ÅÀÇ °¡¼ÓÈ­´Â °æÀï ±¸µµ¸¦ À籸¼ºÇϰí Àü·Ê¾ø´Â ¹Îø¼º°ú ¼±°ß¼ºÀ» ¿ä±¸ÇÕ´Ï´Ù. µðÁöÅÐ Àüȯ, Àüµ¿È­, Â÷¼¼´ë Ä¿³ØÆ¼ºñƼ°¡ ÷´Ü Ĩ ¼ö¿ä¸¦ °ßÀÎÇÏ´Â °¡¿îµ¥, Á¦Á¶¾÷ü´Â º¸´Ù ³ôÀº ¼öÀ², º¸´Ù ¹Ì¼¼ÇÑ Çü»ó, ½Å·Ú¼ºÀÇ Çâ»óÀ» °¡´ÉÇÏ°Ô ÇÏ´Â ÃÖ÷´Ü ÀåºñÀÇ Ã¤ÅÃÀ» °­¿äÇϰí ÀÖ½À´Ï´Ù. ÀÚµ¿Â÷ Àüµ¿È­, ÀΰøÁö´É, 5G ÀÎÇÁ¶ó µî ½ÅÈï ¿£µå¸¶ÄÏÀº 󸮷®À» ÃÖÀûÈ­ÇÏ°í °áÇÔÀ» ÃÖ¼ÒÈ­ÇÏ´Â Á¦Á¶ ¼³ºñ¿¡ ´ëÇÑ ¾Ð·ÂÀ» °­È­Çϰí ÀÖ½À´Ï´Ù. Æò¸é ¾ÆÅ°ÅØÃ³¿¡¼­ 3Â÷¿ø ÁýÀû ¹× ÀÌÁ¾ ½Ã½ºÅÛ ÆÐŰ¡À¸·ÎÀÇ ÀüȯÀº ¼º´É ¸ñÇ¥ ´Þ¼º¿¡¼­ ¼º¸·, ¿¡Äª, À̿ ÁÖÀÔ ¹× ¸®¼Ò±×·¡ÇÇ ±â¼úÀÇ Áß¿äÇÑ ¿ªÇÒÀ» ºÎ°¢Çϰí ÀÖ½À´Ï´Ù.

±â¼ú Çõ½ÅÀÇ ¼ö·Å°ú Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ ¾Ð·ÂÀ» µÞ¹ÞħÇÏ´Â ¹ÝµµÃ¼ Åø¸µ ÀÎÇÁ¶ó¿¡¼­ ¸Å¿ì Áß¿äÇÑ º¯È­ÀÇ °ËÁõ

¹ÝµµÃ¼ Á¦Á¶ Àåºñ´Â ±â¼úÀû Çõ½Å°ú Áö¼Ó°¡´É¼º ¿ì¼±¼øÀ§ÀÇ À¶ÇÕÀ¸·Î ±Þ¼ÓÇÑ º¯È­ ½Ã´ë¸¦ ¸ÂÀÌÇϰí ÀÖ½À´Ï´Ù. 2.5D ¹× 3D ÅëÇÕ°ú °°Àº ÷´Ü ÆÐŰ¡ ±â¼úÀº ¼º´É º¥Ä¡¸¶Å©¸¦ ÀçÁ¤ÀÇÇϰí ÀÖÀ¸¸ç °ø±Þ¾÷ü´Â º¹ÀâÇÑ ÀÎÅÍÆ÷Àú ¹× ½º·ç ½Ç¸®ÄÜ ºñ¾Æ¿¡ ¸Â´Â ¼º¸· ¹× Å×½ºÆ® ÅøÀÇ Çõ½ÅÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ÇÑÆí, ±Ø´Ü Àڿܼ± ¸®¼Ò±×·¡ÇÇÀÇ ÃâÇöÀº ½ÇÇèÀûÀΠäÅÿ¡¼­ »ý»ê±Ô¸ðÀÇ Áغñ·Î ÁøÇàµÇ¾î 10³ª³ë¹ÌÅÍ ÀÌÇÏÀÇ ÇÁ·ÐƼ¾î¿¡¼­ÀÇ ºñ¿ë°ú ÇØ»óµµÀÇ ¹ë·±½º¸¦ º¯È­½Ã۰í ÀÖ½À´Ï´Ù.

¹Ì±¹ °ü¼¼ Á¤Ã¥ÀÌ ¼¼°è ¹ÝµµÃ¼ Àåºñ °ø±Þ¸Á°ú Àü·«Àû Á¶´Þ °áÁ¤¿¡ ¹ÌÄ¡´Â º¹ÇÕ ¿µÇâ Æò°¡

¹ÝµµÃ¼ Á¦Á¶ Àåºñ¿¡ ´ëÇÑ ¹Ì±¹ °ü¼¼ÀÇ ºÎ°ú¿Í ÁøÈ­´Â ¼¼°è °ø±Þ¸Á°ú Á¶´Þ Àü·«¿¡ º¹ÇÕÀûÀÎ ¿µÇâÀ» ¹ÌĨ´Ï´Ù. »õ·Î¿î °ü¼¼°¡ 2025³â¿¡ ¹ßÈ¿µÇ±â ¶§¹®¿¡ Àåºñ Á¦°ø¾÷ü¿Í Ĩ Á¦Á¶¾÷ü´Â À°»ó ºñ¿ë »ó½Â¿¡ Á÷¸éÇÏ¿© Á¶´Þ °üÇàÀÇ ÀçÆò°¡¸¦ Ã˱¸Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ È¯°æÀº ´Ï¾î ¼î¾î¸µÀ» ÃËÁøÇϰí ÁÖ¿ä ÁÖÁ¶¼Ò ¹× ÁýÀû Àåºñ Á¦Á¶¾÷ü´Â °ü¼¼ º¯µ¿ÀÇ ¿µÇâÀ» ÁÙÀ̱â À§ÇØ Áö¿ª ÆÄÆ®³Ê½ÊÀ» ¸ð»öÇϰí ÀÖ½À´Ï´Ù.

¹ÝµµÃ¼ Á¦Á¶ ½ÃÀåÀ» Çü¼ºÇÏ´Â Àåºñ À¯Çü, Æ÷Àå Ä¡¼ö, ¿ëµµ, À¯Åë ä³Î·ÎºÎÅÍ Áß¿äÇÑ ÅëÂûÀ» ¹àÈù´Ù.

¹ÝµµÃ¼ Åø ½ÃÀåÀ» µð¹ÙÀ̽º À¯Çüº°·Î ºÐ·ùÇϸé ÈİøÁ¤°ú Àü°øÁ¤ÀÇ ¼ºÀå±Ëµµ°¡ ¹àÇôÁý´Ï´Ù. ÈİøÁ¤¿¡¼­ ¾î¼Àºí¸® ÆÐŰ¡ Àåºñ´Â °í¹Ðµµ 5¸¶ÀÌÅ©·Ð ÀÎÅÍÄ¿³ØÆ®¿Í ¿þÀÌÆÛ ·¹º§ ÆÐŰ¡À» Áö¿øÇϵµ·Ï ÁøÈ­Çϰí ÀÖÀ¸¸ç Å×½ºÆ® Àåºñ´Â ´Ù¾çÈ­¸¦ °è¼ÓÇÏ´Â ¿ëµµ ¿ä±¸ »çÇ׿¡ ÀûÀÀÇϰí ÀÖ½À´Ï´Ù. ÇÁ·ÐÆ®¿£µå¿¡¼­´Â ¿øÀÚÃþ ÁõÂø¹ý, È­ÇÐ ±â»ó ¼ºÀå¹ý, ¹°¸® ±â»ó ¼ºÀå¹ýÀ» Æ÷°ýÇÏ´Â ¼º¸· Àåºñ°¡ ¸·ÀÇ ±ÕÀϼº°ú ¸· µÎ²² Á¦¾î¸¦ ÁøÇà½ÃÄÑ ¿¡Äª ½Ã½ºÅÛÀÌ º¸´Ù ¼±¸íÇÑ ÆÐÅÏ ÇÁ·ÎÆÄÀÏÀ» °¡´ÉÇÏ°Ô Çϰí ÀÖ½À´Ï´Ù. À̿ ÁÖÀÔ Àåºñ´Â µµÆÝÆ®ÀÇ Á¤È®µµ¸¦ ³ôÀÌ°í ¸®¼Ò±×·¡ÇÇ Ç÷§ÆûÀº ±íÀº Àڿܼ±, ÀüÀÚºö, ±Ø´Ü Àڿܼ± µî ·Îµå¸ÊÀÇ °¢ ÀÌÁ¤Ç¥¸¦ Áö¿øÇÕ´Ï´Ù. ¿þÀÌÆÛ ¼¼Ã´ Àåºñ´Â °áÇÔ Á¦¾î¸¦ ´õ¿í °­È­ÇÏ°í ÆÁ ³ëµå¿¡¼­ ¼öÀ²ÀÇ Àϰü¼ºÀ» º¸ÀåÇÕ´Ï´Ù.

¾Æ¸Þ¸®Ä«, À¯·´, Áßµ¿, ¾ÆÇÁ¸®Ä«, ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ¹ÝµµÃ¼ Àåºñ ½ÃÀåÀÇ Áö¿ª ¿ªÇÐ ¹× ¼ºÀå ÃËÁø¿äÀÎ ÀÌÇØ

¾Æ¸Þ¸®Ä« Áö¿ªÀº ÷´Ü ¿¬±¸ ´ëÇаú µðÀÚÀÎ ÇϿ콺ÀÇ °ß°íÇÑ »ýŰ踦 Ư¡À¸·Î Çϸç, Áö¿ªÀÇ ÃÖ÷´Ü Àåºñ ¼ö¿ä¸¦ °ßÀÎÇϰí ÀÖ½À´Ï´Ù. Àå·Á±Ý Á¦µµ¿Í °ü¹Î ÆÄÆ®³Ê½ÊÀ» ÅëÇØ ƯÈ÷ ÁÖ¿ä Á¦Á¶ °ÅÁ¡¿¡¼­´Â »ý»ê ´É·Â È®´ë°¡ °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù. ÇÑÆí, À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«´Â ¼º¼÷ÇÑ ÀÚµ¿Â÷ ¼¾ÅÍ¿Í ½ÅÈï µðÁöÅÐ ÀÎÇÁ¶ó °³³äÀÇ ÅÂÇǽºÆ®¸®¸¦ º¸¿©ÁÝ´Ï´Ù. °¢±¹ Á¤ºÎ´Â ¹ÝµµÃ¼ÀÇ ÁÖ±ÇÀ» ¿ì¼±½ÃÇÏ°í ¿ÜºÎ ÀÇÁ¸À» ÁÙÀ̱â À§ÇØ Ã·´Ü ÆÐŰ¡°ú Á¶¸³ ´É·Â¿¡ ´ëÇÑ Àü·«Àû ÅõÀÚ¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ȯ°æ ÄÄÇöóÀ̾𽺸¦ Áß½ÃÇÏ´Â ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©Àº À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä« Àü¿ª¿¡¼­ Åø »ç¾ç°ú º¥´õ ¼±Á¤ ÇÁ·Î¼¼½º¸¦ ´õ¿í Çü¼ºÇϰí ÀÖ½À´Ï´Ù.

¹ÝµµÃ¼ Á¦Á¶ ¿¡ÄڽýºÅÛ¿¡¼­ Àü·«Àû Á¦ÈÞ¿Í °æÀï Æ÷Áö¼ÇÀ» È®¸³Çϰí Çõ½ÅÀ» ¼±µµÇÏ´Â ½ÃÀåÀ» ¼±µµÇÏ´Â ±â¾÷ÀÇ ÇÏÀ̶óÀÌÆ®

´ë±â¾÷Àº ¹ÝµµÃ¼ Á¦Á¶ Àåºñ ºÐ¾ß¿¡¼­ °æÀï ¿ìÀ§¸¦ È®º¸Çϱâ À§ÇØ À¯±âÀû Çõ½Å°ú Àü·«Àû Á¦ÈÞÀÇ À¶ÇÕÀ» Ãß±¸ÇØ ¿Ô½À´Ï´Ù. ±â¼úÀÇ ¼±±¸Àڴ ƯÇã Æ÷Æ®Æú¸®¿À¸¦ °è¼Ó È®ÀåÇÏ°í ·Îµå¸ÊÀÇ ÁøÀüÀ» À¯ÁöÇϱâ À§ÇØ ±Ø´ÜÀûÀÎ Àڿܼ± ¸®¼Ò±×·¡ÇÇ¿Í ¿øÀÚÃþ ÁõÂø¿¡ ÁßÁ¡À» µÓ´Ï´Ù. µ¿½Ã¿¡ Àç·á°úÇбâ¾÷°úÀÇ Çù·Â°ü°è¿¡ µû¶ó ÆÐÅÏÀÇ Ãæ½Çµµ¸¦ ³ôÀÌ´Â »õ·Î¿î È­Çй°Áú°ú Æ÷Åä·¹Áö½ºÆ®ÀÇ µµÀÔÀÌ °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù.

¾÷°è ¸®´õ°¡ ±â¼úÀû È¥¶õ, ¹«¿ª °úÁ¦, Áö¼Ó°¡´É¼ºÀÇ Çʼö Á¶°ÇÀ» ±Øº¹Çϱâ À§ÇÑ ½ÇÇà °¡´ÉÇÑ Àü·«Àû Á¦¾È

¾÷°è ¸®´õ´Â 10³ª³ë¹ÌÅÍ ÀÌÇÏÀÇ ·Îµå¸Ê°úÀÇ ¹«°á¼ºÀ» º¸ÀåÇϱâ À§ÇØ ±Ø´ÜÀûÀÎ Àڿܼ± ¸®¼Ò±×·¡ÇÇ ´É·Â°ú ÀÎÁ¢ÇÑ ÃøÁ¤ µµ±¸¿¡ ´ëÇÑ ÅõÀÚ¸¦ ¿ì¼±ÇØ¾ß ÇÕ´Ï´Ù. µ¿½Ã¿¡, Áö¿ªÀ» °¡·ÎÁú·¯ ¿©·¯ Àåºñ °ø±Þ¾÷ü¸¦ °ü¿©ÇÔÀ¸·Î½á °ø±Þ¸ÁÀ» ´Ù¾çÈ­ÇÏ¿© °ü¼¼ º¯µ¿ ¹× ÁöÁ¤ÇÐÀû À§Çè¿¡ ´ëÇÑ ³ëÃâÀ» ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. Àç·á ¹× ¼ÒÇÁÆ®¿þ¾î Á¦°ø¾÷ü¿ÍÀÇ °øµ¿ ±â¼ú °³¹ß ÆÄÆ®³Ê½ÊÀ» È®¸³ÇÔÀ¸·Î½á, ƯÈ÷ ÷´Ü ÆÐŰ¡ ¹× ÀÌÁ¾ ÁýÀûÈ­¿¡¼­ »ý»ê±îÁöÀÇ ½Ã°£À» ´ÜÃàÇÒ ¼ö ÀÖ½À´Ï´Ù.

¸¶ÄÏ ÀÎÅÚ¸®Àü½º Á¶»ç °á°ú¸¦ Áö¿øÇÏ´Â ¾ö°ÝÇÑ ºÐ¼® ÇÁ·¹ÀÓ ¿öÅ© Á¶»ç ¹æ¹ý ¹× µ¥ÀÌÅÍ °ËÁõ ¹æ¹ý °ø°³

ÀÌ·¯ÇÑ Áö½ÄÀ» Áö¿øÇÏ´Â Á¶»ç ±â¹ýÀº 1Â÷ ¹× 2Â÷ Á¶»ç¸¦ ¾ö°ÝÇÑ °ËÁõ ÇÁ·ÎÅäÄÝ·Î ÅëÇÕÇÑ °ÍÀÔ´Ï´Ù. 1Â÷ ¼³¹®Á¶»ç´Â ÆÕ, ÁýÀû µð¹ÙÀ̽º Á¦Á¶¾÷ü, Àåºñ °ø±Þ¾÷üÀÇ ÁÖ¿ä ÀÇ»ç°áÁ¤ÀÚ¿Í ±¸Á¶È­µÈ ÀÎÅͺä·Î ±¸¼ºµÇ¾î Á¶´Þ Àü·«, ±â¼ú µµÀÔ ÀÏÁ¤, °ü¼¼ °ü¸® °üÇà¿¡ ´ëÇÑ Á÷Á¢ÀûÀÎ °üÁ¡À» Á¦°øÇß½À´Ï´Ù. 2Â÷ Á¤º¸¿¡´Â ±â¼ú ³í¹®, ƯÇã Ãâ¿ø, ±â¾÷ ÅõÀÚÀÚÀÇ ÇÁ·¹Á¨Å×À̼Ç, Á¤Ã¥ ¹ßÇ¥ µîÀÌ Æ÷ÇÔµÇ¾î ½ÃÀå ¿ªÇÐÀ» Á¾ÇÕÀûÀ¸·Î ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.

ÇÙ½É ÅëÂû·Â°ú Àü·«Àû ¼º°ú¸¦ ÅëÇÕÇÏ¿© ¹ÝµµÃ¼ Á¦Á¶ Àåºñ¿¡¼­ ¹Ì·¡ÀÇ °æ·Î¿Í ¾÷°èÀÇ ÁøÈ­¸¦ ¹àÇô

Àü·«Àû, ±â¼úÀû, Á¤Ã¥Àû ÅëÂûÀ» Á¾ÇÕÇÏ¸é ¹ÝµµÃ¼ Á¦Á¶ Àåºñ ½ÃÀåÀÌ Å« º¯È­ÀÇ µµÁß¿¡ ÀÖÀ½À» ¾Ë ¼ö ÀÖ½À´Ï´Ù. °í±Þ ÆÐŰ¡, ±Ø´ÜÀû Àڿܼ± ¸®¼Ò±×·¡ÇÇ ¹× µðÁöÅÐ °øÁ¤ Á¦¾î·ÎÀÇ Áö¼ÓÀûÀÎ À̵¿Àº °ø±Þ¾÷üÀÇ °¡Ä¡ Á¦¾È°ú ±¸¸ÅÀÚÀÇ ±â´ë¸¦ ÀçÁ¤ÀÇÇÕ´Ï´Ù. °ü¼¼ Á߽ɰø±Þ¸Á À籸¼ºÀº Áö¿ª ºÐ»ê ¹× À§Çè ¿ÏÈ­ Àü·«ÀÇ Á߿伺À» °­Á¶ÇÕ´Ï´Ù. ÇÑÆí, ¼¼ºÐÈ­ ºÐ¼®¿¡¼­´Â Àåºñ ¼ö¿ä°¡ Á¡Á¡ Àü¹®È­µÇ°í ÀÖÀ¸¸ç, °¢ Àåºñ ¹üÁÖ¿Í ¿ëµµ ¿µ¿ªÀÌ µ¶Æ¯ÇÑ ÃßÁø ¿äÀÎÀ» º¸¿©ÁÖ´Â °ÍÀ¸·Î ¹àÇôÁ³½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ¿ªÇÐ

  • ½Ã½ºÅÛ ÀÎ ÆÐŰÁö ¾ÆÅ°ÅØÃ³¸¦ º¯È­½ÃŰ´Â 3D ÀÌÁ¾ ÆÐŰ¡ ±â±âÀÇ ÅëÇÕ
  • ¼±Áø ³ëµå Áֱǿ¡ ´ëÇÑ Á¤ºÎÀÇ Àμ¾Æ¼ºê¿¡ ÀÇÇØ ÃßÁøµÇ´Â Áö¿ªÀÇ ÆÄ¿îµå¸® ´É·ÂÀÇ ±¸Ãà
  • ¸®¼Ò±×·¡ÇÇÀÇ ÇѰ踦 ±Øº¹Çϱâ À§ÇÑ Â÷¼¼´ë °í NA EUV Åø °³¹ß¿¡ À־ÀÇ Çù·Â
  • ¹°ÀÇ ÀçȰ¿ë°ú È­ÇÐ Æó±â¹°ÀÇ »è°¨¿¡ ÁßÁ¡À» µÐ Áö¼Ó °¡´ÉÇÑ ¹ÝµµÃ¼ Àåºñ¿¡ ´ëÇÑ ÅõÀÚ
  • ´Ù¿îŸÀÓ°ú ¿À¿°À» »è°¨ÇÏ´Â ÀÚÀ²Çü ÀÚÀç°ü¸® ·Îº¿¿¡ ÀÇÇÑ Á¦Á¶ ÀÚµ¿È­ È®´ë
  • ÷´Ü ³ëµå¿¡¼­ÀÇ Æó·çÇÁ °èÃø°ú AI ±¸µ¿Çü °áÇÔ °ËÃâÀÇ ±¸Çö
  • °øÀå¿¡¼­ ½Ç½Ã°£ °øÁ¤ Á¦¾î¸¦ À§ÇÑ °í±Þ ¼¾¼­ À¶ÇÕ°ú ¸Ó½Å·¯´× µµÀÔ
  • 3nm ÀÌÇÏÀÇ ³ëµå »ý»êÀ» °¡´ÉÇÏ°Ô ÇÏ´Â ³ôÀº °³±¸¼ö EUV ¸®¼Ò±×·¡ÇÇÀÇ ±Þ¼ÓÇÑ µµÀÔ
  • EV¿ë ÆÄ¿ö µð¹ÙÀ̽º ¼ö¿äÀÇ ±ÞÁõ¿¡ ´ëÀÀÇϱâ À§ÇØ, SiC ¹× GaN ¿¡ÇÇÅÃ½Ã Åø¿¡ ´ëÇÑ ÅõÀÚ¸¦ È®´ë
  • ¸ð¹ÙÀÏ ¹× IoT ¿ëµµ¸¦ À§ÇÑ ¿þÀÌÆÛ ·¹º§ ÆÒ¾Æ¿ô ¹× Ĩ ½ºÄÉÀÏ ÆÐŰ¡ ½Ã½ºÅÛ °³¹ß

Á¦6Àå ½ÃÀå ÀλçÀÌÆ®

  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®

Á¦7Àå ¹Ì±¹ °ü¼¼ÀÇ ´©Àû ¿µÇâ, 2025³â

Á¦8Àå ¹ÝµµÃ¼ Á¦Á¶ Àåºñ ½ÃÀå : Àåºñ À¯Çüº°

  • ¹é¿£µå
    • Á¶¸³ ¹× Æ÷Àå ¼³ºñ
    • ½ÃÇè Àåºñ
  • ÇÁ·ÐÆ®¿£µå
    • ÁõÂøÀåºñ
      • ¿øÀÚÃþ ÁõÂø(ALD)
      • È­ÇÐ ÁõÂø(CVD)
      • ¹°¸® ÁõÂø(PVD)
    • ¿¡Äª Àåºñ
    • À̿ ÁÖÀÔ Àåºñ
    • ¸®¼Ò±×·¡ÇÇ Àåºñ
      • ½ÉÀڿܼ±(DUV) ¸®¼Ò±×·¡ÇÇ
      • ÀüÀÚºö ¸®¼Ò±×·¡ÇÇ
      • ±Ø´Ü Àڿܼ±(EUV) ¸®¼Ò±×·¡ÇÇ
    • ¿þÀÌÆÛ ¼¼Á¤ Àåºñ

Á¦9Àå ¹ÝµµÃ¼ Á¦Á¶ Àåºñ ½ÃÀå : Æ÷Àå Ä¡¼öº°

  • 2.5D
  • 2D
  • 3D

Á¦10Àå ¹ÝµµÃ¼ Á¦Á¶ Àåºñ ½ÃÀå : ¿ëµµ »ê¾÷º°

  • Ç×°ø¿ìÁÖ ¹× ¹æÀ§
  • ÀÚµ¿Â÷
  • ¼ÒºñÀÚ °¡ÀüÁ¦Ç°
  • ÇコÄɾî
  • Åë½Å

Á¦11Àå ¹ÝµµÃ¼ Á¦Á¶ Àåºñ ½ÃÀå : ÃÖÁ¾ »ç¿ëÀÚº°

  • ÆÄ¿îµå¸®
  • ÅëÇÕ ÀåÄ¡ Á¦Á¶¾÷ü(IDM)
  • ¾Æ¿ô¼Ò½Ì ¹ÝµµÃ¼ Á¶¸³ ¹× ½ÃÇè Á¦°ø¾÷ü(OSAT)

Á¦12Àå ¹ÝµµÃ¼ Á¦Á¶ Àåºñ ½ÃÀå : À¯Å뺰

  • Á÷Á¢ ÆÇ¸Å
  • ¸®¼¿·¯ ÆÇ¸Å

Á¦13Àå ¹ÝµµÃ¼ Á¦Á¶ Àåºñ ½ÃÀå : ¿ëµµº°

  • ÀÌ»ê
  • ³í¸®
  • ¸Þ¸ð¸®
  • ¸¶ÀÌÅ©·ÎÇÁ·Î¼¼¼­ À¯´Ö(MPU)

Á¦14Àå ¾Æ¸Þ¸®Ä«ÀÇ ¹ÝµµÃ¼ Á¦Á¶ Àåºñ ½ÃÀå

  • ¹Ì±¹
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ºê¶óÁú
  • ¾Æ¸£ÇîÆ¼³ª

Á¦15Àå À¯·´, Áßµ¿, ¾ÆÇÁ¸®Ä«ÀÇ ¹ÝµµÃ¼ Á¦Á¶ Àåºñ ½ÃÀå

  • ¿µ±¹
  • µ¶ÀÏ
  • ÇÁ¶û½º
  • ·¯½Ã¾Æ
  • ÀÌÅ»¸®¾Æ
  • ½ºÆäÀÎ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«
  • µ§¸¶Å©
  • ³×´ú¶õµå
  • īŸ¸£
  • Çɶõµå
  • ½º¿þµ§
  • ³ªÀÌÁö¸®¾Æ
  • ÀÌÁýÆ®
  • Æ¢¸£Å°¿¹
  • À̽º¶ó¿¤
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • ½ºÀ§½º

Á¦16Àå ¾Æ½Ã¾ÆÅÂÆò¾ç ¹ÝµµÃ¼ Á¦Á¶ Àåºñ ½ÃÀå

  • Áß±¹
  • Àεµ
  • ÀϺ»
  • È£ÁÖ
  • Çѱ¹
  • Àεµ³×½Ã¾Æ
  • ű¹
  • Çʸ®ÇÉ
  • ¸»·¹À̽þÆ
  • ½Ì°¡Æ÷¸£
  • º£Æ®³²
  • ´ë¸¸

Á¦17Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼®, 2024³â
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º, 2024³â
  • °æÀï ºÐ¼®
    • Advantest Corporation
    • Analog Devices, Inc.
    • Aixtron Group
    • Applied Materials, Inc.
    • ASML Holding NV
    • Atlas Copco AB
    • Bruker Corporation
    • Camtek Ltd.
    • Canon Inc.
    • Carl Zeiss AG
    • Disco Corporation
    • EV Group by Charge Enterprises Inc.
    • FutureFab, Inc.
    • Hamamatsu Photonics KK
    • Hitachi, Ltd.
    • JEOL Ltd.
    • KLA Corporation by Vanguard Group Inc.
    • Lam Research Corporation
    • Modutek Corporation
    • Nikon Corporation
    • Nordson Corporation
    • Nova Ltd.
    • Onto Innovation Inc.
    • S-Cubed
    • Screen Holdings Co., Ltd.
    • TE Connectivity Ltd.
    • Teradyne, Inc.
    • Thermo Fisher Scientific Inc.
    • Tokyo Electron Limited
    • Tokyo Seimitsu Co., Ltd.
    • Toray Industries, Inc.
    • Veeco Instruments Inc.

Á¦18Àå ¸®¼­Ä¡ AI

Á¦19Àå ¸®¼­Ä¡ Åë°è

Á¦20Àå ¸®¼­Ä¡ ÄÁÅÃ

Á¦21Àå ¸®¼­Ä¡ ±â»ç

Á¦22Àå ºÎ·Ï

SHW

The Semiconductor Manufacturing Equipment Market was valued at USD 134.69 billion in 2024 and is projected to grow to USD 144.47 billion in 2025, with a CAGR of 7.51%, reaching USD 208.08 billion by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 134.69 billion
Estimated Year [2025] USD 144.47 billion
Forecast Year [2030] USD 208.08 billion
CAGR (%) 7.51%

Setting the Stage for Semiconductor Equipment Evolution by Highlighting Market Dynamics Technological Progress and Strategic Imperatives

The accelerating pace of innovation in semiconductor manufacturing has reshaped the competitive landscape, demanding unprecedented agility and foresight. As digital transformation, electrification, and next-generation connectivity drive demand for advanced chips, manufacturers are compelled to adopt cutting-edge equipment that enables higher yields, finer geometries, and enhanced reliability. Emerging end markets such as automotive electrification, artificial intelligence, and 5G infrastructure have intensified pressure on fabrication facilities to optimize throughput and minimize defects. Transitioning from planar architectures to three-dimensional integration and heterogeneous system packaging underscores the critical role of deposition, etching, ion implantation, and lithography technologies in achieving performance targets.

Against this backdrop, industry stakeholders seek clarity on how evolving process nodes, supply chain realignment, and policy imperatives converge to influence equipment investments. Forward-looking executives require a strategic framework to evaluate the potential of atomic layer deposition and extreme ultraviolet lithography, while balancing capital intensity with time-to-market imperatives. This introduction unpacks the interconnected forces shaping equipment demand and establishes a foundation for exploring transformative shifts, tariff impacts, segmentation nuances, regional dynamics, and actionable recommendations that follow in this summary.

Examining Pivotal Transformations in Semiconductor Tooling Infrastructure Driven by Innovation Convergence and Sustainability Pressures

Semiconductor manufacturing equipment has entered an era of rapid transformation driven by the convergence of technological breakthroughs and sustainability priorities. Advanced packaging techniques such as 2.5D and 3D integration are redefining performance benchmarks, prompting suppliers to innovate deposition and testing tools tailored for complex interposers and through-silicon vias. Meanwhile, the emergence of extreme ultraviolet lithography has progressed from experimental adoption to production-scale readiness, altering the balance between cost and resolution at the sub-10-nanometer frontier.

Concurrently, global sustainability initiatives have escalated expectations for energy efficiency, water conservation, and chemical usage across fabs. Suppliers and fabs alike are responding with modular tool architectures optimized for reduced carbon footprints and advanced diagnostics that minimize process waste. At the same time, digital twins and predictive analytics have permeated equipment offerings, enabling real-time process control and downtime reduction. These shifts underscore a fundamental redefinition of equipment value propositions - from standalone capital goods to integrated intelligent systems that advance both economic and environmental objectives.

Assessing the Compounding Effects of United States Tariff Policies on Global Semiconductor Equipment Supply Chains and Strategic Sourcing Decisions

The imposition and evolution of United States tariffs on semiconductor manufacturing equipment have exerted a compounding influence on global supply chains and sourcing strategies. As new duties take effect in 2025, equipment providers and chipmakers face elevated landed costs, prompting reevaluation of procurement practices. This environment is catalyzing nearshoring initiatives, with leading foundries and integrated device manufacturers exploring regional partnerships to mitigate exposure to tariff volatility.

In response, strategic stockpiling of critical components has become increasingly common, ensuring continuity of high-volume production despite policy uncertainty. Negotiations around transfer pricing and waiver applications have intensified as companies seek relief while balancing compliance obligations. Meanwhile, the rising cost basis has spurred consolidation among smaller equipment vendors, reshaping competitive dynamics. The net result is a recalibrated global ecosystem in which resilience, flexibility, and policy foresight are inseparable from long-term equipment procurement and capital expenditure planning.

Revealing Critical Insights from Equipment Type Packaging Dimension Applications and Distribution Channels Shaping Semiconductor Manufacturing Markets

Disaggregating the semiconductor tooling market across equipment type reveals distinct growth trajectories for back-end and front-end segments. Within back-end, assembly and packaging equipment is evolving to support dense five-micron interconnects and wafer-level packaging, while testing equipment adapts to ever-diversifying application requirements. On the front-end, deposition tools encompassing atomic layer deposition, chemical vapor deposition, and physical vapor deposition are advancing film uniformity and thickness control, and etching systems are enabling sharper pattern profiles. Ion implantation systems drive dopant precision, whereas lithography platforms span deep ultraviolet, e-beam, and extreme ultraviolet to accommodate each roadmap milestone. Wafer cleaning equipment further underpins defect control, assuring yield consistency at advanced nodes.

Beyond tool classification, the segmentation by packaging dimension includes planar two-dimensional substrates through to complex three-dimensional stacks and intermediate 2.5D architectures, each influencing tool configuration and throughput optimization. Application industry breakdown spans aerospace and defense to telecommunications, demonstrating that end use dictates equipment customization, process parameters, and reliability thresholds. End-user segmentation among foundries, integrated device manufacturers, and outsourced semiconductor providers underscores diverging capital-intensity profiles and service models. Distribution channels differentiate direct OEM engagements from third-party distribution partnerships, impacting lead times and support structures. Finally, application types such as discrete, logic, memory, and microprocessor units reflect specialized tool requirements and process flows tied to each device category.

Understanding Regional Dynamics and Growth Drivers across Americas Europe Middle East Africa and Asia Pacific Semiconductor Equipment Markets

The Americas region is characterized by a robust ecosystem of advanced research universities and design houses driving local demand for cutting-edge equipment. Incentive programs and public-private partnerships have accelerated capacity expansions, particularly in leading fabrication hubs. Meanwhile, Europe, the Middle East, and Africa present a tapestry of mature automotive centers and emerging digital infrastructure initiatives. Governments have prioritized semiconductor sovereignty, catalyzing strategic investments in advanced packaging and assembly capabilities to reduce external dependencies. Regulatory frameworks emphasizing environmental compliance further shape tool specifications and vendor selection processes across EMEA.

In the Asia-Pacific region, the densest concentration of wafer fabs and assembly plants underscores its status as the primary battleground for equipment vendors. Incentivized by national technology roadmaps, countries across East and Southeast Asia have unveiled multi-billion-dollar fabrication projects, intensifying competition for capacity and fostering collaborative research programs. This dynamic environment rewards suppliers that can scale output while maintaining rigorous quality standards. Transitional pressures toward onshore production in critical markets are generating new greenfield opportunities, especially for equipment that supports next-generation nodes and heterogeneous integration.

Highlighting Market Leading Corporations Pioneering Innovation Strategic Alliances and Competitive Positioning in Semiconductor Manufacturing Ecosystem

Leading corporations have pursued a blend of organic innovation and strategic alliances to secure competitive advantage in the semiconductor equipment arena. Technology pioneers continue to expand their patent portfolios, focusing heavily on extreme ultraviolet lithography and atomic layer deposition to sustain roadmap progress. At the same time, collaborative partnerships with materials science firms have accelerated the introduction of novel chemistries and photoresists that elevate pattern fidelity.

Mergers and acquisitions have reconfigured the supplier landscape, enabling large equipment vendors to integrate complementary capabilities in metrology, inspection, and robotics. Meanwhile, nimble mid-tier firms have carved out specialized niches in advanced packaging and wafer cleaning, leveraging deep process expertise to capture share from legacy incumbents. To maintain differentiation, companies are deploying digital platforms that offer predictive maintenance, remote diagnostics, and yield analytics as value-added services. This shift toward systems-level integration is emerging as a key determinant of customer loyalty and long-term revenue growth.

Actionable Strategic Recommendations Empowering Industry Leaders to Navigate Technological Disruptions Trade Challenges and Sustainability Imperatives

Industry leaders should prioritize investment in extreme ultraviolet lithography capabilities and adjacent metrology tools to ensure alignment with the sub-10-nanometer roadmap. Concurrently, diversifying the supply chain by engaging multiple equipment vendors across geographies will mitigate exposure to tariff fluctuations and geopolitical risks. Establishing collaborative technology development partnerships with materials and software providers can accelerate time to production, especially for advanced packaging and heterogeneous integration.

Adopting digital twins and advanced analytics platforms will enable predictive maintenance strategies that reduce unplanned downtime and maximize asset utilization. At the same time, embedding sustainability targets into equipment selection-such as energy-efficient wafer cleaning and end-to-end water recycling-can align capital investments with corporate environmental commitments. Finally, upskilling the workforce through specialized training programs focused on AI-driven process control and equipment automation will empower operators to extract maximum value from next-generation tools.

Unveiling the Rigorous Analytical Framework Research Methodology and Data Validation Approaches Underpinning Market Intelligence Findings

The research methodology underpinning these insights integrates primary and secondary data collection with rigorous validation protocols. Primary research comprised structured interviews with key decision makers across fabs, integrated device manufacturers, and equipment vendors, providing direct perspectives on procurement strategies, technology adoption timelines, and tariff management practices. Secondary sources included technical papers, patent filings, corporate investor presentations, and policy announcements, ensuring a comprehensive understanding of market dynamics.

Quantitative analysis involved cross-referencing tool shipments and capacity expansion plans to identify emerging demand patterns. Qualitative triangulation with expert consultations and on-site facility visits refined scenario assumptions. Throughout the process, data integrity was maintained via iterative reviews, discrepancy analysis, and sensitivity assessments. This robust framework delivers confident, actionable intelligence designed to guide strategic decision-making in the face of rapid technological and regulatory change.

Synthesizing Core Insights and Strategic Outcomes Illuminating Future Pathways and Industry Evolution in Semiconductor Manufacturing Equipment

The synthesis of strategic, technological, and policy insights reveals a semiconductor equipment market in the midst of profound transformation. Ongoing shifts toward advanced packaging, extreme ultraviolet lithography, and digital process control are redefining vendor value propositions and buyer expectations. Tariff-driven supply chain realignment underscores the importance of regional diversification and risk mitigation strategies. Meanwhile, segmentation analysis highlights that equipment demand is increasingly specialized, with each tool category and application domain exhibiting its own growth drivers.

Taken together, these findings underscore the necessity for agile planning, collaborative innovation models, and sustainability integration. The evolution of regional ecosystems-from the Americas' incentivized expansions to Asia-Pacific's high-capacity clusters and EMEA's sovereignty initiatives-requires nuanced market entry approaches. By internalizing these lessons and embracing the recommended strategies, industry participants will be well positioned to capture opportunities at the vanguard of semiconductor manufacturing equipment progress.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

  • 4.1. Introduction
  • 4.2. Market Sizing & Forecasting

5. Market Dynamics

  • 5.1. Integration of 3D heterogeneous packaging equipment transforming system-in-package architectures
  • 5.2. Regional foundry capacity build-out driven by government incentives for advanced node sovereignty
  • 5.3. Collaboration on next-generation high-NA EUV tool development to overcome lithography limitations
  • 5.4. Investment in sustainable semiconductor equipment focused on water recycling and chemical waste reduction
  • 5.5. Expansion of fab automation with autonomous material handling robots reducing downtime and contamination
  • 5.6. Implementation of closed-loop metrology and AI-driven defect detection across advanced nodes
  • 5.7. Deployment of advanced sensor fusion and machine learning for real-time process control in fabs
  • 5.8. Rapid adoption of high-numerical-aperture EUV lithography enabling sub-3nm node production
  • 5.9. Scaling investment in SiC and GaN epitaxy tools to meet surging power device demand for EVs
  • 5.10. Development of wafer-level fan-out and chip-scale packaging systems for mobile and IoT applications

6. Market Insights

  • 6.1. Porter's Five Forces Analysis
  • 6.2. PESTLE Analysis

7. Cumulative Impact of United States Tariffs 2025

8. Semiconductor Manufacturing Equipment Market, by Equipment Type

  • 8.1. Introduction
  • 8.2. Back-end
    • 8.2.1. Assembly & Packaging Equipment
    • 8.2.2. Testing Equipment
  • 8.3. Front-end
    • 8.3.1. Deposition Equipment
      • 8.3.1.1. Atomic Layer Deposition (ALD)
      • 8.3.1.2. Chemical Vapor Deposition (CVD)
      • 8.3.1.3. Physical Vapor Deposition (PVD)
    • 8.3.2. Etching Equipment
    • 8.3.3. Ion Implantation Equipment
    • 8.3.4. Lithography Equipment
      • 8.3.4.1. Deep Ultraviolet (DUV) Lithography
      • 8.3.4.2. E-Beam Lithography
      • 8.3.4.3. Extreme Ultraviolet (EUV) Lithography
    • 8.3.5. Wafer Cleaning Equipment

9. Semiconductor Manufacturing Equipment Market, by Packaging Dimension

  • 9.1. Introduction
  • 9.2. 2.5D
  • 9.3. 2D
  • 9.4. 3D

10. Semiconductor Manufacturing Equipment Market, by Application Industry

  • 10.1. Introduction
  • 10.2. Aerospace & Defense
  • 10.3. Automotive
  • 10.4. Consumer Electronics
  • 10.5. Healthcare
  • 10.6. Telecommunications

11. Semiconductor Manufacturing Equipment Market, by End-user

  • 11.1. Introduction
  • 11.2. Foundries
  • 11.3. Integrated Device Manufacturers (IDMs)
  • 11.4. Outsourced Semiconductor Assembly and Test Providers (OSATs)

12. Semiconductor Manufacturing Equipment Market, by Distribution

  • 12.1. Introduction
  • 12.2. Direct Sales
  • 12.3. Distributor Sales

13. Semiconductor Manufacturing Equipment Market, by Applications

  • 13.1. Introduction
  • 13.2. Discrete
  • 13.3. Logic
  • 13.4. Memory
  • 13.5. Microprocessor Units (MPU)

14. Americas Semiconductor Manufacturing Equipment Market

  • 14.1. Introduction
  • 14.2. United States
  • 14.3. Canada
  • 14.4. Mexico
  • 14.5. Brazil
  • 14.6. Argentina

15. Europe, Middle East & Africa Semiconductor Manufacturing Equipment Market

  • 15.1. Introduction
  • 15.2. United Kingdom
  • 15.3. Germany
  • 15.4. France
  • 15.5. Russia
  • 15.6. Italy
  • 15.7. Spain
  • 15.8. United Arab Emirates
  • 15.9. Saudi Arabia
  • 15.10. South Africa
  • 15.11. Denmark
  • 15.12. Netherlands
  • 15.13. Qatar
  • 15.14. Finland
  • 15.15. Sweden
  • 15.16. Nigeria
  • 15.17. Egypt
  • 15.18. Turkey
  • 15.19. Israel
  • 15.20. Norway
  • 15.21. Poland
  • 15.22. Switzerland

16. Asia-Pacific Semiconductor Manufacturing Equipment Market

  • 16.1. Introduction
  • 16.2. China
  • 16.3. India
  • 16.4. Japan
  • 16.5. Australia
  • 16.6. South Korea
  • 16.7. Indonesia
  • 16.8. Thailand
  • 16.9. Philippines
  • 16.10. Malaysia
  • 16.11. Singapore
  • 16.12. Vietnam
  • 16.13. Taiwan

17. Competitive Landscape

  • 17.1. Market Share Analysis, 2024
  • 17.2. FPNV Positioning Matrix, 2024
  • 17.3. Competitive Analysis
    • 17.3.1. Advantest Corporation
    • 17.3.2. Analog Devices, Inc.
    • 17.3.3. Aixtron Group
    • 17.3.4. Applied Materials, Inc.
    • 17.3.5. ASML Holding N.V.
    • 17.3.6. Atlas Copco AB
    • 17.3.7. Bruker Corporation
    • 17.3.8. Camtek Ltd.
    • 17.3.9. Canon Inc.
    • 17.3.10. Carl Zeiss AG
    • 17.3.11. Disco Corporation
    • 17.3.12. EV Group by Charge Enterprises Inc.
    • 17.3.13. FutureFab, Inc.
    • 17.3.14. Hamamatsu Photonics K.K.
    • 17.3.15. Hitachi, Ltd.
    • 17.3.16. JEOL Ltd.
    • 17.3.17. KLA Corporation by Vanguard Group Inc.
    • 17.3.18. Lam Research Corporation
    • 17.3.19. Modutek Corporation
    • 17.3.20. Nikon Corporation
    • 17.3.21. Nordson Corporation
    • 17.3.22. Nova Ltd.
    • 17.3.23. Onto Innovation Inc.
    • 17.3.24. S-Cubed
    • 17.3.25. Screen Holdings Co., Ltd.
    • 17.3.26. TE Connectivity Ltd.
    • 17.3.27. Teradyne, Inc.
    • 17.3.28. Thermo Fisher Scientific Inc.
    • 17.3.29. Tokyo Electron Limited
    • 17.3.30. Tokyo Seimitsu Co., Ltd.
    • 17.3.31. Toray Industries, Inc.
    • 17.3.32. Veeco Instruments Inc.

18. ResearchAI

19. ResearchStatistics

20. ResearchContacts

21. ResearchArticles

22. Appendix

»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦