½ÃÀ庸°í¼­
»óǰÄÚµå
1808386

ÀνǸ®ÄÚ ÀÓ»ó½ÃÇè ½ÃÀå : Á¦Ç° À¯Çü, ´Ü°è, ±â¼ú Ç÷§Æû, ¿ëµµ, Ä¡·á ¿µ¿ª, ÃÖÁ¾»ç¿ëÀÚº° - ¼¼°è ¿¹Ãø(2025-2030³â)

In Silico Clinical Trials Market by Product Type, Phase, Technology Platform, Application, Therapeutic Area, End User - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 199 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

ÀνǸ®ÄÚ ÀÓ»ó½ÃÇè ½ÃÀåÀº 2024³â¿¡´Â 35¾ï ´Þ·¯·Î Æò°¡µÇ¾ú½À´Ï´Ù. 2025³â¿¡ 38¾ï 1,000¸¸ ´Þ·¯¿¡ À̸£°í, CAGR 9.27%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 59¾ï 7,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁØ ¿¬µµ : 2024³â 35¾ï ´Þ·¯
ÃßÁ¤ ¿¬µµ : 2025³â 38¾ï 1,000¸¸ ´Þ·¯
¿¹Ãø ¿¬µµ : 2030³â 59¾ï 7,000¸¸ ´Þ·¯
CAGR(%) 9.27%

ÀνǸ®ÄÚ ÀÓ»ó½ÃÇèÀÇ µîÀå°ú ¼¼°è ÀǾàǰ °³¹ß ÆÄÀÌÇÁ¶óÀÎÀ» º¯È­½Ãų ¼ö ÀÖ´Â °¡´É¼º

ÀǾàǰ °³¹ßÀÇ ÁøÈ­¿¡ ÀÖ¾î ¸Å¿ì Áß¿äÇÑ Àǹ̸¦ °®´Â ÀνǸ®ÄÚ ÀÓ»ó½ÃÇèÀº Àΰ£ÀÇ »ý¸®¸¦ ½Ã¹Ä·¹À̼ÇÇϱâ À§ÇØ °è»ê ´É·Â°ú °íµµÀÇ ¸ðµ¨¸µÀ» Ȱ¿ëÇϰí ÀÖ½À´Ï´Ù. ¸ÞÄ¿´ÏÁò ¸ðµ¨¸µ, µðÁöÅÐ Æ®À© ÇÁ·¹ÀÓ¿öÅ©, °¡»ó ȯÀÚ ÄÚȣƮ¸¦ ÅëÇÕÇÏ¿© ¿¬±¸ÀÚµéÀº Àü·Ê ¾ø´Â ¼Óµµ¿Í ±íÀÌ·Î Ä¡·á ½Ã³ª¸®¿À¸¦ Ž»öÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ Á¢±Ù¹ýÀº ±âÁ¸ÀÇ Àΰ£ ´ë»ó ½ÃÇè¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ³·Ãß°í, ¹°¸®Àû ½ÃÇèÀ» ½ÃÀÛÇϱâ Àü¿¡ ÀáÀçÀû À§ÇèÀ» ½Äº°ÇÏ¿© Ãʱ⠴ܰèÀÇ ¾ÈÀü¼º ÇÁ·ÎÆÄÀϸµÀ» °­È­ÇÕ´Ï´Ù. ±× °á°ú, Á¦¾à ÆÀÀº ÀÚ¿ø ºÀ»çÀÚ¸¦ ÇÇÇÒ ¼ö ÀÖ´Â À§Çè¿¡ ³ëÃâ½ÃŰÁö ¾Ê°í Åõ¿© ¿ä¹ýÀ» ¹Ýº¹Çϰí ÇÁ·ÎÅäÄÝÀ» °³¼±ÇÒ ¼ö ÀÖ´Â ¹Îø¼ºÀ» È®º¸ÇÒ ¼ö ÀÖ½À´Ï´Ù.

÷´Ü ½Ã¹Ä·¹ÀÌ¼Ç ¹× ¸ðµ¨¸µ ±â¼úÀ» ÅëÇØ ÀÓ»ó½ÃÇè ¹æ¹ýÀ» ÀçÁ¤ÀÇÇÏ´Â Çõ½ÅÀû ÆÐ·¯´ÙÀÓÀ» ½Äº°ÇÕ´Ï´Ù.

ÀÌÇØ°ü°èÀÚµéÀÌ Á¡Á¡ ´õ ¸¹Àº ½Ã¹Ä·¹ÀÌ¼Ç ÁÖµµ ¹æ½ÄÀ» ¹Þ¾ÆµéÀ̸鼭 ÀÓ»ó½ÃÇèÀÇ ÆÐ·¯´ÙÀÓÀÌ ±Þº¯Çϰí ÀÖ½À´Ï´Ù. °ú°Å in vivo ½ÃÇè¿¡¸¸ ÀÇÁ¸ÇÏ´ø ±âÁ¸ÀÇ Æ²Àº ȯÀÚÀÇ °¡º¯¼º°ú ±âÀüÀû ´µ¾Ó½º¸¦ Æ÷ÂøÇÒ ¼ö ÀÖ´Â ÅëÇÕÀûÀÎ µðÁöÅÐ ¼Ö·ç¼ÇÀ¸·Î ÀüȯµÇ°í ÀÖ½À´Ï´Ù. ÃÖ±Ù¿¡´Â ÀΰøÁö´É°ú ¸Ó½Å·¯´× ¾Ë°í¸®ÁòÀÌ ½ÃÇè ¼³°è ¼ÒÇÁÆ®¿þ¾î¿¡ ÀûÀÀÇü ÇнÀÀ» µµÀÔÇÏ¿© ½Ç½Ã°£À¸·Î ÇÁ·ÎÅäÄÝÀ» Á¶Á¤ÇÏ°í ºñ¿ëÀÌ ¸¹ÀÌ µå´Â Èı⠴ܰèÀÇ ½ÇÆÐ °¡´É¼ºÀ» ÁÙÀ̰í ÀÖ½À´Ï´Ù.

2025³â ¹Ì±¹ÀÇ »õ·Î¿î °ü¼¼°¡ ÀνǸ®ÄÚ ÀÓ»ó½ÃÇè Çõ½Å¿¡ ¹ÌÄ¡´Â °æÁ¦Àû, °æ¿µÀû ¿µÇâ¿¡ ´ëÇÑ °ËÅä

2025³â ÀÌÈÄ ¹Ì±¹¿¡¼­´Â ¼öÀÔ ¼ÒÇÁÆ®¿þ¾î ºÎǰ°ú Ư¼ö ÄÄÇ»ÆÃ Çϵå¿þ¾î¿¡ ´ëÇÑ °ü¼¼°¡ »õ·Î µµÀԵǾî ÀνǸ®ÄÚ ÀÓ»ó½ÃÇèÀÇ °æÁ¦ »óȲ¿¡ ¿µÇâÀ» ¹ÌÄ¡±â ½ÃÀÛÇß½À´Ï´Ù. ÀÌ·¯ÇÑ Á¶Ä¡´Â ±¹³» Á¦Á¶¸¦ °­È­Çϰí Áß¿äÇÑ °ø±Þ¸ÁÀ» È®º¸Çϱâ À§ÇÑ °ÍÀÌÁö¸¸, °í¼º´É ¼­¹ö, ±×·¡ÇÈ Ã³¸® ÀåÄ¡, Ÿ»ç ¾Ë°í¸®Áò ¶óÀ̺귯¸®¿¡ ÀÇÁ¸ÇÏ´Â ÀÓ»ó½ÃÇè ÀÇ·ÚÀÚ¿¡°Ô´Â Ãß°¡ÀûÀÎ ºñ¿ë ºÎ´ãÀ» ¾È°ÜÁÖ°Ô µÇ¾ú½À´Ï´Ù. µÇ¾ú½À´Ï´Ù. ÀÌ¿¡ µû¶ó ÀϺΠ±â¾÷Àº °¡°Ý º¯µ¿À» ¿ÏÈ­ÇÏ°í ½Ã¹Ä·¹ÀÌ¼Ç ¿öÅ©Ç÷οìÀÇ ¿¬¼Ó¼ºÀ» º¸ÀåÇϱâ À§ÇØ º¥´õ¿Í Àü·«Àû Çù»óÀ» ÁøÇàÇϱ⵵ ÇÕ´Ï´Ù.

´Ù¾çÇÑ Á¦Ç° À¯Çü, ´Ü°è, ±â¼ú Ç÷§Æû¿¡ °ÉÄ£ ½ÃÀå ¿ªÇп¡ ´ëÇÑ ÇÙ½É ¼¼ºÐÈ­ ÀλçÀÌÆ®¸¦ °ø°³ÇÕ´Ï´Ù.

½ÃÀå ¼¼ºÐÈ­¸¦ ¸é¹ÐÈ÷ Á¶»çÇϸé ÀνǸ®ÄÚ ÀÓ»ó½ÃÇè »ýŰèÀÇ ´Ù¾çÇÑ Ãø¸éÀÌ ¾î¶»°Ô »óÈ£ ÀÛ¿ëÇϰí äÅÃÀ» ÃËÁøÇÏ´ÂÁö¿¡ ´ëÇÑ ¸Å¿ì Áß¿äÇÑ ÅëÂû·ÂÀ» ¾òÀ» ¼ö ÀÖ½À´Ï´Ù. Á¦Ç° À¯Çüº° ¼¼ºÐÈ­¸¦ »ìÆìº¸¸é, ÄÁ¼³ÆÃ ¹× ±³À°, ¸ÂÃãÇü ½Ã¹Ä·¹ÀÌ¼Ç ¼­ºñ½º, ¸ðµ¨ °³¹ß ¹× °ËÁõ µîÀÇ ¼­ºñ½º Á¦°øÀÌ ½Ã¹Ä·¹ÀÌ¼Ç Ç÷§Æû, ÀÓ»ó½ÃÇè ¼³°è µµ±¸, °¡»ó ȯÀÚ ¸ðµ¨¸µ ¿ëµµ¸¦ Æ÷ÇÔÇÏ´Â ½Ã¹Ä·¹ÀÌ¼Ç Ç÷§Æû, ÀÓ»ó½ÃÇè ¼³°è µµ±¸, °¡»ó ȯÀÚ ¸ðµ¨¸µ ¿ëµµ µî ¼ÒÇÁÆ®¿þ¾î ¼Ö·ç¼Ç°ú ÇÔ²² »óÈ£ º¸¿ÏÀûÀÎ ¿ªÇÒÀ» Çϰí ÀÖÀ½À» ¾Ë ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Ä«Å×°í¸®¸¦ °áÇÕÇÏ¿© Àü¹® Áö½Ä°ú ±â¼ú ±â¹ÝÀ» ¸ðµÎ ¿øÇÏ´Â ¿¬±¸ÆÀÀ» ¿£µå Åõ ¿£µå(end-to-end)·Î Áö¿øÇÒ ¼ö ÀÖ½À´Ï´Ù.

Àü ¼¼°è ÀνǸ®ÄÚ ÀÓ»ó½ÃÇè ȯ°æÀ» Çü¼ºÇÏ´Â Áö¿ªÀû Â÷ÀÌ¿Í Àü·«Àû Â÷À̸¦ Àо´Ù.

ÀνǸ®ÄÚ ÀÓ»ó½ÃÇèÀÇ Áö¸®Àû Ãø¸éÀ» ºÐ¼®ÇÏ¸é µµÀÔ ¹× °³¹ß ±Ëµµ¸¦ Çü¼ºÇÏ´Â Áö¿ª ƯÀ¯ÀÇ ÃËÁø¿äÀΰú À庮ÀÌ ¸íÈ®ÇØÁý´Ï´Ù. ºÏ¹Ì¿Í ³²¹Ì¿¡¼­´Â »ý¸í°úÇÐ ÀÎÇÁ¶ó¿¡ ´ëÇÑ È°¹ßÇÑ ÅõÀÚ¿Í ÀÏ·ù Çмú ±â°ü ¹× °³¹ß À§Å¹ ±â°üÀ» Æ÷ÇÔÇÑ Çù·ÂÀû »ýŰè·Î ÀÎÇØ ÷´Ü ½Ã¹Ä·¹ÀÌ¼Ç ÇÁ·¹ÀÓ¿öÅ© µµÀÔÀÌ °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù. ºÏ¹ÌÀÇ ±ÔÁ¦, ƯÈ÷ ¸ðµ¨ ±â¹Ý ÀǾàǰ °³¹ß ÁöħÀÌ ¸íÈ®ÇØÁö¸é¼­ ¼Ò±Ô¸ð Çõ½Å±â¾÷°ú ±âÁ¸ Á¦¾à»ç ¸ðµÎ Ãʱ⠵µÀÔÀ» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

ÀνǸ®ÄÜ Å×½ºÆ® ¼Ö·ç¼ÇÀÇ Çõ½Å°ú °æÀï ¿ìÀ§¸¦ ÁÖµµÇÏ´Â ÁÖ¿ä Á¶Á÷°ú ±× Àü·«Àû ÀÌ´Ï¼ÅÆ¼ºê ÇÏÀ̶óÀÌÆ®

ÀνǸ®ÄÚ ÀÓ»ó½ÃÇè°æÀï ±¸µµ ¼Ó¿¡¼­ ¼±Áø ±â¾÷µéÀº ÀÌ ºÐ¾ßÀÇ ¿ªµ¿¼ºÀ» °­Á¶ÇÏ´Â ¸íÈ®ÇÑ Çõ½ÅÀÇ ±æÀ» ±×·Á¿Ô½À´Ï´Ù. ÀϺΠ¼±±¸ÀûÀÎ ±â¾÷µéÀº ¿ªÇÐÀû Á¢±Ù°ú µ¥ÀÌÅÍ ±â¹Ý Á¢±ÙÀ» ÅëÇÕÇÑ µ¶ÀÚÀûÀÎ ½Ã¹Ä·¹ÀÌ¼Ç Ç÷§Æû¿¡ ¸¹Àº ÅõÀÚ¸¦ ÇÏ¿© °¡»ó ȯÀÚ ¸ðµ¨¸µ ¹× ½ÃÇè ¼³°è¸¦ À§ÇÑ ÅÏŰ ¼Ö·ç¼ÇÀ» Á¦°øÇÕ´Ï´Ù. ¶ÇÇÑ, ¸ÂÃãÇü ½Ã¹Ä·¹ÀÌ¼Ç ÇÁ·Î±×·¥ ¹× °ËÁõ ¼­ºñ½º¸¦ Á¦°øÇÏ´Â Àü¹® ¼­ºñ½º ºÎ¼­¸¦ ¼³¸³ÇÏ¿© ½ºÆù¼­°¡ ¾ö°ÝÇÑ Ç°Áú °ü¸®¸¦ À¯ÁöÇϸ鼭 º¹ÀâÇÑ ¸ðµ¨¸µ ÀÛ¾÷À» ¾Æ¿ô¼Ò½ÌÇÒ ¼ö ÀÖµµ·Ï ÇÏ´Â ±â¾÷µµ ÀÖ½À´Ï´Ù.

¸ðÀÇ ÀÓ»ó½ÃÇè ȯ°æ µµÀÔÀ» °¡¼ÓÈ­ÇÏ°í °á°ú¸¦ ÃÖÀûÈ­Çϱâ À§ÇØ ¾÷°è ¸®´õµé¿¡°Ô Àü·«Àû Á¶Ä¡¸¦ ±Ç°íÇÕ´Ï´Ù.

ÀνǸ®ÄÚ ÀÓ»ó½ÃÇèÀÇ °¡Ä¡¸¦ ÃæºÐÈ÷ ½ÇÇöÇϱâ À§ÇØ ¾÷°è ¸®´õµéÀº Àü·«Àû ÅõÀÚ, ºÐ¾ß °£ Çù¾÷, ±ÔÁ¦ ´ç±¹°úÀÇ Çù·Â µî ´Ù°¢ÀûÀÎ Á¢±Ù ¹æ½ÄÀ» äÅÃÇØ¾ß ÇÕ´Ï´Ù. ù°, Àü¿ë °Å¹ö³Í½º ÇÁ·¹ÀÓ¿öÅ©¸¦ ±¸ÃàÇÏ¿© ¸ðµ¨¸µ ±âÁØ, °ËÁõ ÇÁ·ÎÅäÄÝ, µ¥ÀÌÅÍ °ü¸® °üÇàÀÌ ³»ºÎ ǰÁú º¥Ä¡¸¶Å©¿Í ±ÔÁ¦ ´ç±¹ÀÇ ±â´ë¿¡ ºÎÇÕÇϵµ·Ï ÇÕ´Ï´Ù. Åõ¸íÇÑ ¸ðµ¨ °³¹ß ¹× ¹®¼­È­ ¿öÅ©Ç÷ο츦 À°¼ºÇÔÀ¸·Î½á Á¶Á÷Àº ±ÔÁ¦ ´ç±¹¿¡ ´ëÇÑ Á¦ÃâÀ» °£¼ÒÈ­ÇÏ°í °¨µ¶ ±â°ü°úÀÇ ½Å·Ú °ü°è¸¦ ±¸ÃàÇÒ ¼ö ÀÖ½À´Ï´Ù.

ÀνǸ®ÄÚ ÀÓ»ó½ÃÇè ½ÃÀå ºÐ¼®ÀÇ ±íÀÌ, ½Å·Ú¼º, ÀçÇö¼ºÀ» µÞ¹ÞħÇÏ´Â ¾ö°ÝÇÑ Á¶»ç ¹æ¹ý·Ð¿¡ ´ëÇÑ ÀÚ¼¼ÇÑ ³»¿ë

ÀÌ ºÐ¼®ÀÇ ±Ù°£ÀÌ µÇ´Â °ÍÀº ±íÀÌ, Á¤È®¼º, ÀçÇö¼ºÀ» º¸ÀåÇϱâ À§ÇØ ¼³°èµÈ Á¾ÇÕÀûÀÎ Á¶»ç ¹æ¹ý·ÐÀÔ´Ï´Ù. ÀÌ ÇÁ·Î¼¼½º´Â ±âÃÊÀûÀÎ Á¤ÀǸ¦ È®¸³ÇÏ°í ºñ½Ç¸®ÄÜ ¸ðµ¨¸µÀÇ ¸ð¹ü »ç·Ê¸¦ È®ÀÎÇϱâ À§ÇØ ÇÇ¾î ¸®ºä ¹®Çå°ú ±ÔÁ¦ Áöħ ¹®¼­¸¦ ü°èÀûÀ¸·Î °ËÅäÇÏ´Â °ÍÀ¸·Î ½ÃÀ۵Ǿú½À´Ï´Ù. ÀÌ·¯ÇÑ ÅëÂû·ÂÀº ÀÓ»ó °úÇÐÀÚ, °è»ê »ý¹°ÇÐÀÚ, ±ÔÁ¦ Àü¹®°¡, ±â¼ú Á¦°ø¾÷ü¿ÍÀÇ ÀÏ·ÃÀÇ ±¸Á¶È­µÈ Àü¹®°¡ ÀÎÅͺ信 ¹Ý¿µµÇ¾î »õ·Î¿î Æ®·»µå, °ËÁõ °úÁ¦ ¹× äÅà À庮¿¡ ´ëÇÑ »ý»ýÇÑ °üÁ¡À» Æ÷ÂøÇß½À´Ï´Ù.

ÀνǸ®ÄÚ ÀÓ»ó½ÃÇèÀÇ Àü·«Àû ±ËÀû¿¡ ´ëÇÑ ÀÌÇØ°ü°èÀڵ鿡°Ô Á¤º¸¸¦ Á¦°øÇϱâ À§ÇÑ ÁÖ¿ä ¿äÁ¡°ú ¹Ì·¡ Àü¸ÁÀ» ÅëÇÕÇß½À´Ï´Ù.

°è»ê ¸ðµ¨¸µÀÌ °è¼Ó ¼º¼÷ÇØÁü¿¡ µû¶ó, ÀνǸ®ÄÚ ÀÓ»ó½ÃÇèÀº ÀǾàǰ °³¹ß ¹× ±ÔÁ¦ ´ç±¹ÀÇ ½ÂÀÎ À±°ûÀ» ÀçÁ¤ÀÇÇÒ Áغñ°¡ µÇ¾î ÀÖ½À´Ï´Ù. ¿ªÇÐ ÇÁ·¹ÀÓ¿öÅ©, µðÁöÅÐ Æ®À© ±¸Á¶, °í±Þ ºÐ¼®ÀÇ ÅëÇÕÀ» ÅëÇØ ½ÃÇè ¼³°è ÃÖÀûÈ­, ¾ÈÀü¼º ÇÁ·ÎÆÄÀϸµ °­È­, ½ÃÀå Ãâ½Ã ±â°£ ´ÜÃàÀÌ °¡´ÉÇÏ´Ù´Â °ÍÀÌ ÀÌ¹Ì ÀÔÁõµÇ¾ú½À´Ï´Ù. ¶ÇÇÑ, ½Ã¹Ä·¹ÀÌ¼Ç °á°ú¿Í °æÇèÀû °á°úÀÇ ÀÏÄ¡µµ°¡ ³ô¾ÆÁü¿¡ µû¶ó ÀÌ ¹æ¹ýÀÇ ½Å·Ú¼ºÀÌ °­Á¶µÇ¾î ½ºÆù¼­, ±ÔÁ¦ ´ç±¹, ÀÓ»ó ¿¬±¸ÀÚµé »çÀÌ¿¡¼­ ³Î¸® ¹Þ¾Æµé¿©Áö´Â °è±â°¡ µÇ¾ú½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ¿ªÇÐ

Á¦6Àå ½ÃÀå ÀλçÀÌÆ®

  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®

Á¦7Àå ¹Ì±¹ °ü¼¼ÀÇ ´©Àû ¿µÇâ 2025

Á¦8Àå ÀνǸ®ÄÚ ÀÓ»ó½ÃÇè ½ÃÀå : Á¦Ç° À¯Çüº°

  • ¼­ºñ½º
    • ÄÁ¼³ÆÃ ¹× Æ®·¹ÀÌ´×
    • Ä¿½ºÅÒ ½Ã¹Ä·¹ÀÌ¼Ç ¼­ºñ½º
    • ¸ðµ¨ °³¹ß ¹× °ËÁõ
  • ¼ÒÇÁÆ®¿þ¾î ¼Ö·ç¼Ç
    • ½Ã¹Ä·¹ÀÌ¼Ç ¼ÒÇÁÆ®¿þ¾î
    • ½ÃÇè ¼³°è ¼ÒÇÁÆ®¿þ¾î
    • °¡»ó ȯÀÚ ¸ðµ¨¸µ

Á¦9Àå ÀνǸ®ÄÚ ÀÓ»ó½ÃÇè ½ÃÀå : ´Ü°èº°

  • ´Ü°è I
  • ´Ü°è II
  • ´Ü°è III
  • ´Ü°è IV

Á¦10Àå ÀνǸ®ÄÚ ÀÓ»ó½ÃÇè ½ÃÀå : Å×Å©³î·¯Áö Ç÷§Æû

  • ÀΰøÁö´É(AI) ¹× ¸Ó½Å·¯´×
  • Ŭ¶ó¿ìµå ±â¹Ý ½Ã¹Ä·¹À̼Ç
  • µðÁöÅÐ Æ®À©
  • ¸ÞÄ¿´ÏÁò ¸ðµ¨¸µ
  • °¡»ó ȯÀÚ Áý´Ü

Á¦11Àå ÀνǸ®ÄÚ ÀÓ»ó½ÃÇè ½ÃÀå : ¿ëµµº°

  • Áúȯ ¸ðµ¨
  • ÀǾàǰ °³¹ß
  • ÀÇ·á±â±â ½ÃÇè

Á¦12Àå ÀνǸ®ÄÚ ÀÓ»ó½ÃÇè ½ÃÀå : Ä¡À¯ ¿µ¿ªº°

  • ½ÉÇ÷°ü°è
    • ºÎÁ¤¸Æ ½Ã¹Ä·¹À̼Ç
    • µ¿¸Æ °æÈ­ ½Ã¹Ä·¹À̼Ç
    • ½ÉºÎÀü ¸ðµ¨
  • °¨¿°Áõ
    • ±â»ýÃæ Áúº´ ¿¹Ãø
    • ¹ÙÀÌ·¯½º °¨¿° ½Ã¹Ä·¹À̼Ç
  • ½Å°æÇÐ
    • ¾ËÃ÷ÇÏÀ̸Ӻ´ ½Ã¹Ä·¹À̼Ç
    • °£Áú ½Ã¹Ä·¹À̼Ç
    • ÆÄŲ½¼º´ ¸ðµ¨
  • Á¾¾çÇÐ
    • Á¶Ç÷ ¾Ç¼º Á¾¾ç
    • °íÇü Á¾¾ç
  • Èñ±ÍÁúȯ
    • À¯Àü¼º Áúȯ ½Ã¹Ä·¹À̼Ç
    • Èñ±ÍÀǾàǰ ¸ðµ¨¸µ

Á¦13Àå ÀνǸ®ÄÚ ÀÓ»ó½ÃÇè ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚº°

  • Çмú¿¬±¸±â°ü
  • °è¾à¿¬±¸±â°ü
  • ÀÇ·á±â±â ±â¾÷
  • Á¦¾à ±â¾÷ ¹× ¹ÙÀÌ¿ÀÅ×Å©³î·¯Áö ±â¾÷
  • ±ÔÁ¦±â°ü

Á¦14Àå ¾Æ¸Þ¸®Ä«ÀÇ ÀνǸ®ÄÚ ÀÓ»ó½ÃÇè ½ÃÀå

  • ¹Ì±¹
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ºê¶óÁú
  • ¾Æ¸£ÇîÆ¼³ª

Á¦15Àå À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ ÀνǸ®ÄÚ ÀÓ»ó½ÃÇè ½ÃÀå

  • ¿µ±¹
  • µ¶ÀÏ
  • ÇÁ¶û½º
  • ·¯½Ã¾Æ
  • ÀÌÅ»¸®¾Æ
  • ½ºÆäÀÎ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
  • µ§¸¶Å©
  • ³×´ú¶õµå
  • īŸ¸£
  • Çɶõµå
  • ½º¿þµ§
  • ³ªÀÌÁö¸®¾Æ
  • ÀÌÁýÆ®
  • Æ¢¸£Å°¿¹
  • À̽º¶ó¿¤
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • ½ºÀ§½º

Á¦16Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ÀνǸ®ÄÚ ÀÓ»ó½ÃÇè ½ÃÀå

  • Áß±¹
  • Àεµ
  • ÀϺ»
  • È£ÁÖ
  • Çѱ¹
  • Àεµ³×½Ã¾Æ
  • ű¹
  • Çʸ®ÇÉ
  • ¸»·¹À̽þÆ
  • ½Ì°¡Æ÷¸£
  • º£Æ®³²
  • ´ë¸¸

Á¦17Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼®, 2024
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º, 2024
  • °æÀï ºÐ¼®
    • Abzena Ltd.
    • Aitia NV
    • Certara, Inc.
    • Dassault Systemes SE
    • Evotec SE
    • Exscientia Limited
    • GNS Healthcare Inc.
    • IBM Corporation
    • ICON plc
    • Immunetrics Inc.
    • Insilico Medicine, Inc.
    • InSilicoTrials Technologies SpA
    • IQVIA Holdings Inc.
    • Novadiscovery SA
    • PAREXEL INTERNATIONAL, INC.
    • Recursion Pharmaceuticals, Inc.
    • Schrodinger, Inc.
    • Simulations Plus, Inc.
    • The AnyLogic Company
    • Virtonomy GmbH
    • WuXi AppTec Co., Ltd.
    • ZMT Zurich MedTech AG

Á¦18Àå ¸®¼­Ä¡ AI

Á¦19Àå ¸®¼­Ä¡ Åë°è

Á¦20Àå ¸®¼­Ä¡ ÄÁÅÃÆ®

Á¦21Àå ¸®¼­Ä¡ ±â»ç

Á¦22Àå ºÎ·Ï

LSH

The In Silico Clinical Trials Market was valued at USD 3.50 billion in 2024 and is projected to grow to USD 3.81 billion in 2025, with a CAGR of 9.27%, reaching USD 5.97 billion by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 3.50 billion
Estimated Year [2025] USD 3.81 billion
Forecast Year [2030] USD 5.97 billion
CAGR (%) 9.27%

Charting the Emergence of In Silico Clinical Trials and Their Potential to Revolutionize Drug Development Pipelines Worldwide

Marking a pivotal moment in the evolution of drug development, in silico clinical trials harness computational power and sophisticated modeling to simulate human physiology. By integrating mechanistic modeling, digital twin frameworks, and virtual patient cohorts, researchers explore therapeutic scenarios with unprecedented speed and depth. This approach reduces reliance on traditional human trials and enhances safety profiling at early stages by identifying potential risks before physical testing begins. Consequently, pharmaceutical teams gain the agility to iterate on dosing regimens and refine protocols without exposing volunteers to avoidable hazards.

Furthermore, regulatory bodies have shown growing receptivity to model-informed applications, ushering in collaborative dialogues that emphasize validation and reproducibility. As the scientific community collectively grapples with rising R&D costs and shifting ethical standards, in silico methodologies provide a scalable alternative that aligns with both cost containment and patient welfare objectives. Consequently, organizations that adopt these advanced simulations position themselves at the vanguard of innovation, leveraging holistic insights that marry biological plausibility with statistical rigor.

Moreover, interdisciplinary collaborations between computational scientists, clinicians, and data engineers foster the development of robust frameworks capable of modeling diverse therapeutic areas. Transitioning from proof-of-concept studies to scalable platforms, stakeholders can streamline trial design and reduce cycle times. Ultimately, this convergence of expertise underscores the transformative potential of in silico trials to redefine the paradigm of evidence generation in modern drug development.

Identifying the Transformative Paradigms That Are Redefining Clinical Trial Methodologies Through Advanced Simulation and Modeling Technologies

Clinical trial paradigms have undergone a seismic transformation as stakeholders increasingly embrace simulation-driven methodologies. Traditional frameworks that once relied exclusively on in vivo testing are giving way to integrative digital solutions capable of capturing patient variability and mechanistic nuances. In recent years, artificial intelligence and machine learning algorithms have infused trial design software with adaptive learning, empowering protocol adjustments in real time and reducing the likelihood of costly late-stage failures.

Beyond algorithmic advancements, cloud-based architectures now enable secure, scalable computing resources that democratize access to complex simulations. This shift not only accelerates cross-organizational collaboration but also ensures compliance with evolving regulatory standards through traceable data lineage and automated validation workflows. Meanwhile, digital twin constructs reify individual patient profiles, allowing researchers to simulate responses across virtual cohorts that reflect demographic diversity and comorbidity patterns more accurately than ever before.

In parallel, the maturation of mechanistic modeling has fostered greater confidence among clinical stakeholders, as in silico predictions begin to align with empirical outcomes observed in physical trials. Such convergence has precipitated a broader cultural acceptance, with research teams adopting hybrid trial designs that blend simulated arms with traditional cohorts. As a result, sponsors and investigators can navigate protocol feasibility, refine endpoint selection, and optimize resource allocation with enhanced precision.

Regulatory harmonization initiatives across major markets have further catalyzed this transformation, establishing guidelines that delineate acceptable model validation criteria and risk-based assessment approaches. Consequently, stakeholders can pursue innovative trial designs with greater clarity on evidentiary requirements.

Examining the Collective Economic and Operational Implications of New United States Tariffs on In Silico Clinical Trial Innovations in 2025

Beginning in 2025, newly implemented United States tariffs targeting imported software components and specialized computing hardware have begun to influence the economic landscape of in silico clinical trials. While these measures aim to bolster domestic manufacturing and secure critical supply chains, they have introduced additional cost considerations for trial sponsors who rely on high-performance servers, graphical processing units, and third-party algorithmic libraries. As a direct result, some organizations have engaged in strategic negotiation with vendors to mitigate price fluctuations and ensure continuity of simulation workflows.

Moreover, the tariff framework has prompted a reevaluation of geographically distributed computing strategies, with many stakeholders exploring local cloud service providers and colocation facilities to circumvent cross-border duties. This recalibration has yielded a nuanced cost-efficiency trade-off: while domestic alternatives may limit exposure to import levies, they often necessitate investments in data sovereignty compliance and system integration. In this context, in silico trial teams must balance cost containment against performance considerations to maintain rigorous model fidelity.

Operationally, the ripple effects extend beyond hardware procurement. Software licensing fees linked to imported modules have risen, driving some entities to adopt open-source or domestically developed solutions. Transitioning to new platforms, however, can entail validation overhead and temporary disruption. Nonetheless, proactive planning and vendor partnerships have enabled many trial sponsors to preserve their simulation pipelines, safeguarding the strategic momentum of ongoing research initiatives. These collective adaptations highlight the resilience of the ecosystem in navigating policy-driven headwinds, while underscoring the importance of supply chain agility in sustaining in silico trial innovation.

Unveiling Core Segmentation Insights That Illuminate Market Dynamics Across Diverse Product Types, Phases, and Technological Platforms

An in depth exploration of market segmentation reveals pivotal insights into how different facets of the in silico clinical trial ecosystem interact and drive adoption. When examining segmentation by product type, it becomes clear that service offerings such as consulting and training, custom simulation services, and model development and validation play a complementary role alongside software solutions that encompass simulation platforms, trial design tools, and virtual patient modeling applications. Together, these categories enable end-to-end support for research teams seeking both expertise and technological foundations.

By focusing on trial phases, stakeholders observe that early-stage investigations in Phase I and Phase II benefit from lightweight simulation iterations that validate safety and pharmacokinetics, whereas more sophisticated mechanistic and population-based modeling assume greater prominence in Phase III and Phase IV trials to optimize efficacy assessments and post-market surveillance. Meanwhile, the underlying technology platforms-ranging from artificial intelligence and machine learning engines to cloud-based simulations, digital twin architectures, mechanistic modeling frameworks, and virtual patient populations-each contribute distinct capabilities, whether in predictive analytics, scalability, or physiological fidelity.

Application oriented segmentation further demonstrates that disease modeling, drug development, and medical device testing each exploit in silico approaches to meet specialized protocol objectives. Finally, therapeutic area segmentation underscores the breadth of focus, spanning cardiovascular simulations for arrhythmia or heart failure, infectious disease predictions, neurological disorder models, oncology simulations for solid tumors and hematologic malignancies, and the nuanced modeling required for rare genetic disorders. This holistic segmentation analysis illuminates how tailored solutions can address bespoke research questions across the full spectrum of clinical investigation.

Decoding Regional Variations and Strategic Nuances That Shape the In Silico Clinical Trial Landscape Across Global Geographies

Analyzing the geographic dimensions of in silico clinical trials reveals region-specific drivers and barriers that shape adoption and development trajectories. In the Americas, robust investment in life sciences infrastructure and a collaborative ecosystem that includes leading academic institutions and contract research organizations have accelerated the deployment of advanced simulation frameworks. North American regulatory clarity, particularly around model-informed drug development guidance, has further incentivized early adoption by both small innovators and established pharmaceutical companies.

Across Europe, the Middle East, and Africa, a mosaic of regulatory standards and market maturity levels presents both challenges and opportunities. Western European nations, buoyed by progressive regulatory councils, have championed public-private partnerships to validate digital twin initiatives, whereas emerging markets within EMEA are gradually building capacity through targeted government funding and regional research consortia. Navigating this heterogeneous landscape requires tailored engagement strategies that align with divergent compliance requirements and local clinical infrastructures.

In the Asia-Pacific region, rapid digital transformation and expanding biotech clusters in markets such as China, Japan, and South Korea have propelled wide-scale experimentation with mechanistic modeling and virtual patient populations. These markets benefit from substantial government incentives aimed at modernizing drug development pipelines and addressing regional health priorities. However, distinct data privacy regulations and divergent validation expectations necessitate careful alignment with local standards. Collectively, these regional insights underscore the importance of contextualized strategies that respect regulatory nuance, leverage local strengths, and forge strategic partnerships to maximize the impact of in silico clinical trials on a global scale.

Highlighting Leading Organizations and Their Strategic Initiatives Driving Innovation and Competitive Advantage in In Silico Trial Solutions

Within the competitive landscape of in silico clinical trials, leading organizations have charted distinct innovation pathways that underscore the sector's dynamism. Some pioneering firms have invested heavily in proprietary simulation platforms that integrate mechanistic and data-driven approaches, delivering turnkey solutions for virtual patient modeling and trial design. Others have established specialized service divisions that offer custom simulation programs and validation services, enabling sponsors to outsource complex modeling tasks while maintaining stringent quality controls.

Strategic partnerships between software developers and contract research organizations have emerged as a powerful avenue for scaling simulation capabilities across multiple therapeutic areas. By combining technological expertise with deep domain knowledge, these alliances facilitate seamless integration of computational workflows into existing trial protocols, reducing deployment time and enhancing reproducibility. This collaborative trend extends to academic partnerships, where institutions contribute validation data sets and real-world evidence, bolstering model credibility and expanding application scope.

Several market frontrunners have also embraced open innovation strategies, fostering ecosystems that encourage third-party developers to build specialized modules and plugins. This modular approach not only accelerates feature enhancements but also democratizes access to cutting-edge tools without sacrificing performance. Concurrently, an emphasis on user experience and intuitive interfaces has made advanced simulation capabilities more accessible to non-computational scientists, driving deeper cross-functional adoption. Collectively, these company-driven tactics highlight a convergence of technology, expertise, and collaboration that continues to elevate the quality and scope of in silico clinical trial solutions.

Recommending Strategic Actions for Industry Leaders to Accelerate Adoption and Optimize Outcomes in Simulated Clinical Testing Environments

To fully realize the value of in silico clinical trials, industry leaders must adopt a multi-pronged approach that balances strategic investment, cross-disciplinary collaboration, and regulatory engagement. First, establishing dedicated governance frameworks ensures that modeling standards, validation protocols, and data management practices align with both internal quality benchmarks and external regulatory expectations. By fostering transparent model development and documentation workflows, organizations can streamline regulatory submissions and build trust with oversight bodies.

Second, cultivating partnerships across the ecosystem-encompassing software developers, contract research organizations, academic centers, and technology vendors-enables access to complementary expertise while sharing the burden of infrastructure investment. Such alliances should prioritize open data standards and interoperability to maximize the reuse of models and accelerate validation cycles. In parallel, industry leaders should invest in upskilling programs that equip clinical scientists with computational fluency, ensuring that teams can interpret simulation outputs and integrate insights into trial design decisions.

Third, adopting a phased implementation roadmap allows for incremental refinement of in silico methodologies, starting with pilot projects in late-stage research and progressively scaling to encompass earlier discovery phases. This approach reduces disruption, enables early identification of capability gaps, and fosters continuous improvement based on real-world feedback. Finally, engaging proactively with regulatory agencies through pilot programs, workshops, and joint task forces facilitates the co-creation of model acceptance criteria and paves the way for broader adoption. By executing these recommendations, industry stakeholders can harness the full potential of simulated trials to drive efficiency, minimize risk, and deliver patient-centric innovations.

Detailing the Rigorous Research Methodology Underpinning the Depth, Reliability, and Reproducibility of In Silico Clinical Trials Market Analysis

Underpinning this analysis is a comprehensive research methodology designed to ensure depth, rigor, and reproducibility. The process began with the systematic review of peer-reviewed literature and regulatory guidance documents to establish foundational definitions and identify best practices in in silico modeling. These insights informed a series of structured expert interviews with clinical scientists, computational biologists, regulatory specialists, and technology providers, capturing firsthand perspectives on emerging trends, validation challenges, and adoption barriers.

Subsequently, secondary data sources were triangulated to map technology adoption patterns, service delivery models, and partnership dynamics across major markets. Market activities were validated through cross-referenced public disclosures, corporate whitepapers, and conference proceedings. This multi-source integration enabled the synthesis of segmentation frameworks, regional variations, and company initiatives with both qualitative nuance and quantitative granularity.

To ensure methodological validity, a series of internal peer reviews was conducted, scrutinizing assumptions, data provenance, and analytical frameworks. Model scenarios were stress-tested against historical case studies, confirming alignment between simulated outcomes and documented trial results. Finally, a peer validation panel comprising independent academic and industry experts evaluated the findings, providing critical feedback to refine the narrative and ensure balanced, actionable insights. Through this layered approach, the study delivers a robust, transparent analysis poised to inform strategic decision-making in the evolving domain of in silico clinical trials.

Synthesizing Key Takeaways and Future Outlook to Inform Stakeholders About the Strategic Trajectory of In Silico Clinical Trials

As computational modeling continues to mature, in silico clinical trials are poised to redefine the contours of drug development and regulatory approval. The integration of mechanistic frameworks, digital twin constructs, and advanced analytics has already demonstrated the capacity to optimize trial design, enhance safety profiling, and accelerate go-to-market timelines. Moreover, the growing alignment between simulation outcomes and empirical results underscores the method's credibility, catalyzing broader acceptance among sponsors, regulators, and clinical investigators.

The sector's trajectory suggests that hybrid trial designs-combining virtual cohorts with traditional arms-will become the norm, enabling resource-efficient studies that maintain rigorous scientific standards. Geopolitical developments, such as the introduction of tariffs, highlight the importance of supply chain resilience and strategic sourcing of computational infrastructure. Meanwhile, segmentation insights emphasize that tailored solutions must evolve to address distinct therapeutic areas, technology platforms, and end-user requirements.

Ultimately, stakeholders who invest in robust governance frameworks, cross-disciplinary partnerships, and continuous upskilling will secure a competitive advantage in this rapidly shifting landscape. By proactively engaging with regulatory agencies to define validation criteria and evidentiary standards, organizations can expedite adoption and minimize uncertainty. In summary, the convergence of technology innovation, regulatory openness, and collaborative ecosystems will drive the next wave of breakthroughs in clinical research, delivering safer, more effective therapies to patients worldwide.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

  • 4.1. Introduction
  • 4.2. Market Sizing & Forecasting

5. Market Dynamics

  • 5.1. Development of hybrid in silico and real-world evidence platforms to accelerate oncology drug approval processes
  • 5.2. Implementation of regulatory framework alignment for computational trial evidence submission in major global markets
  • 5.3. Integration of mechanistic digital twin simulations for pediatric rare disease drug development
  • 5.4. Adoption of advanced AI-driven pharmacokinetic and pharmacodynamic modeling for personalized virtual patient cohorts
  • 5.5. Leveraging cloud-based high-performance computing to scale virtual clinical trials across geographically diverse populations

6. Market Insights

  • 6.1. Porter's Five Forces Analysis
  • 6.2. PESTLE Analysis

7. Cumulative Impact of United States Tariffs 2025

8. In Silico Clinical Trials Market, by Product Type

  • 8.1. Introduction
  • 8.2. Services
    • 8.2.1. Consulting & Training
    • 8.2.2. Custom Simulation Services
    • 8.2.3. Model development & validation
  • 8.3. Software Solutions
    • 8.3.1. Simulation Software
    • 8.3.2. Trial Design Software
    • 8.3.3. Virtual Patient Modeling

9. In Silico Clinical Trials Market, by Phase

  • 9.1. Introduction
  • 9.2. Phase I
  • 9.3. Phase II
  • 9.4. Phase III
  • 9.5. Phase IV

10. In Silico Clinical Trials Market, by Technology Platform

  • 10.1. Introduction
  • 10.2. Artificial Intelligence & Machine Learning
  • 10.3. Cloud-Based Simulations
  • 10.4. Digital Twin
  • 10.5. Mechanistic Modeling
  • 10.6. Virtual Patient Population

11. In Silico Clinical Trials Market, by Application

  • 11.1. Introduction
  • 11.2. Disease Modeling
  • 11.3. Drug Development
  • 11.4. Medical Device Testing

12. In Silico Clinical Trials Market, by Therapeutic Area

  • 12.1. Introduction
  • 12.2. Cardiovascular
    • 12.2.1. Arrhythmia Simulation
    • 12.2.2. Atherosclerosis Simulation
    • 12.2.3. Heart Failure Modeling
  • 12.3. Infectious Diseases
    • 12.3.1. Parasitic Disease Prediction
    • 12.3.2. Viral Infection Simulation
  • 12.4. Neurology
    • 12.4.1. Alzheimer's Simulation
    • 12.4.2. Epilepsy Simulation
    • 12.4.3. Parkinson's Disease Modeling
  • 12.5. Oncology
    • 12.5.1. Hematologic Malignancies
    • 12.5.2. Solid Tumors
  • 12.6. Rare Diseases
    • 12.6.1. Genetic Disorder Simulation
    • 12.6.2. Orphan Drug Modeling

13. In Silico Clinical Trials Market, by End User

  • 13.1. Introduction
  • 13.2. Academic & Research Institutes
  • 13.3. Contract Research Organizations
  • 13.4. Medical Device Companies
  • 13.5. Pharmaceutical & Biotech Companies
  • 13.6. Regulatory Agencies

14. Americas In Silico Clinical Trials Market

  • 14.1. Introduction
  • 14.2. United States
  • 14.3. Canada
  • 14.4. Mexico
  • 14.5. Brazil
  • 14.6. Argentina

15. Europe, Middle East & Africa In Silico Clinical Trials Market

  • 15.1. Introduction
  • 15.2. United Kingdom
  • 15.3. Germany
  • 15.4. France
  • 15.5. Russia
  • 15.6. Italy
  • 15.7. Spain
  • 15.8. United Arab Emirates
  • 15.9. Saudi Arabia
  • 15.10. South Africa
  • 15.11. Denmark
  • 15.12. Netherlands
  • 15.13. Qatar
  • 15.14. Finland
  • 15.15. Sweden
  • 15.16. Nigeria
  • 15.17. Egypt
  • 15.18. Turkey
  • 15.19. Israel
  • 15.20. Norway
  • 15.21. Poland
  • 15.22. Switzerland

16. Asia-Pacific In Silico Clinical Trials Market

  • 16.1. Introduction
  • 16.2. China
  • 16.3. India
  • 16.4. Japan
  • 16.5. Australia
  • 16.6. South Korea
  • 16.7. Indonesia
  • 16.8. Thailand
  • 16.9. Philippines
  • 16.10. Malaysia
  • 16.11. Singapore
  • 16.12. Vietnam
  • 16.13. Taiwan

17. Competitive Landscape

  • 17.1. Market Share Analysis, 2024
  • 17.2. FPNV Positioning Matrix, 2024
  • 17.3. Competitive Analysis
    • 17.3.1. Abzena Ltd.
    • 17.3.2. Aitia NV
    • 17.3.3. Certara, Inc.
    • 17.3.4. Dassault Systemes SE
    • 17.3.5. Evotec SE
    • 17.3.6. Exscientia Limited
    • 17.3.7. GNS Healthcare Inc.
    • 17.3.8. IBM Corporation
    • 17.3.9. ICON plc
    • 17.3.10. Immunetrics Inc.
    • 17.3.11. Insilico Medicine, Inc.
    • 17.3.12. InSilicoTrials Technologies SpA
    • 17.3.13. IQVIA Holdings Inc.
    • 17.3.14. Novadiscovery SA
    • 17.3.15. PAREXEL INTERNATIONAL, INC.
    • 17.3.16. Recursion Pharmaceuticals, Inc.
    • 17.3.17. Schrodinger, Inc.
    • 17.3.18. Simulations Plus, Inc.
    • 17.3.19. The AnyLogic Company
    • 17.3.20. Virtonomy GmbH
    • 17.3.21. WuXi AppTec Co., Ltd.
    • 17.3.22. ZMT Zurich MedTech AG

18. ResearchAI

19. ResearchStatistics

20. ResearchContacts

21. ResearchArticles

22. Appendix

»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦