½ÃÀ庸°í¼­
»óǰÄÚµå
1809814

µ¿±â ¸ðÅÍ ½ÃÀå : Á¦Ç° À¯Çü, ¼³Ä¡ À¯Çü, ±¸¼º¿ä¼Ò, Àü¾Ð Ŭ·¡½º, ³Ã°¢ À¯Çü, ¼Óµµ, ¿ëµµ, ÃÖÁ¾ ¿ëµµ, ÆÇ¸Å ä³Îº° - ¼¼°è ¿¹Ãø(2025-2030³â)

Synchronous Motors Market by Product Type, Mounting Type, Component, Voltage Class, Cooling Type, Speed, Application, End-Use, Sales Channel - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 197 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

µ¿±â ¸ðÅÍ ½ÃÀåÀº 2024³â¿¡´Â 247¾ï 4,000¸¸ ´Þ·¯·Î Æò°¡µÇ¾úÀ¸¸ç, 2025³â¿¡´Â CAGR 5.60%·Î 260¾ï 6,000¸¸ ´Þ·¯·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 343¾ï 2,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁØ ¿¬µµ 2024³â 247¾ï 4,000¸¸ ´Þ·¯
ÃßÁ¤ ¿¬µµ 2025³â 260¾ï 6,000¸¸ ´Þ·¯
¿¹Ãø ¿¬µµ 2030³â 343¾ï 2,000¸¸ ´Þ·¯
CAGR(%) 5.60%

Â÷¼¼´ë »ê¾÷ÀÇ È¿À²¼º°ú ¼¼°è ¿¡³ÊÁö ÀüȯÀ» ÃËÁøÇÏ´Â µ¿±â½Ä ¸ðÅÍÀÇ Áß¿äÇÑ ¿ªÇÒ°ú ±â¼úÀû Áøº¸¸¦ ¾Ë¾Æº¾´Ï´Ù.

µ¿±â ¸ðÅÍ´Â Çö´ë »ê¾÷ ¹× ¿¡³ÊÁö ½Ã½ºÅÛ¿¡¼­ ¸Å¿ì Áß¿äÇÑ ±¸¼º¿ä¼Ò·Î µîÀåÇÏ¿© ´Ù¾çÇÑ ¾ÖÇø®ÄÉÀ̼ÇÀÇ È¿À²¼º, ½Å·Ú¼º ¹× ¼º´ÉÀ» µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù. Áß°ø¾÷ Ç÷£Æ®¿¡¼­ ÷´Ü Àç»ý¿¡³ÊÁö ¼³ºñ±îÁö, ÀÌ·¯ÇÑ Àü±â ±â°è´Â Àü±â ¿¡³ÊÁö¸¦ Á¤È®ÇÑ ±â°èÀû ¿îµ¿À¸·Î º¯È¯ÇÏ¿© Áß¿äÇÑ ¾÷¹«¿¡ ¿øÈ°ÇÏ°Ô ÅëÇյǵµ·Ï º¸ÀåÇÕ´Ï´Ù. Àü ¼¼°è »ê¾÷°è°¡ Żź¼ÒÈ­¿Í »ý»ê¼º Çâ»óÀ» Ãß±¸ÇÏ´Â °¡¿îµ¥, µ¿±â½Ä ¸ðÅÍ´Â ÃÖ÷´Ü ¼ÒÀç, ÷´Ü Á¦¾î ¾Ë°í¸®Áò, ÅëÇÕ µðÁöÅÐ ¸ð´ÏÅ͸µ ¼Ö·ç¼ÇÀ¸·Î »õ·Î¿î ¸ð½ÀÀ¸·Î °Åµì³ª°í ÀÖ½À´Ï´Ù. Çϵå¿þ¾îÀÇ Çõ½Å°ú ¼ÒÇÁÆ®¿þ¾îÀÇ ÀÎÅÚ¸®Àü½º°¡ °áÇÕµÈ µ¿±â½Ä ¸ðÅÍ´Â ÀüÅëÀûÀÎ ±â°èÀÇ Æ²À» ³Ñ¾î Â÷¼¼´ë ÀÚµ¿È­ ¹× Áö¼Ó°¡´ÉÇÑ ¿¡³ÊÁö °³³äÀÇ Áß¿äÇÑ ¿øµ¿·ÂÀ¸·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.

Áö¼Ó°¡´ÉÇÑ Àü±âÈ­ Ãß¼¼ ¼Ó¿¡¼­ °¢ »ê¾÷¿¡¼­ µ¿±â ¸ðÅÍÀÇ ¿ëµµ¸¦ Çü¼ºÇÏ´Â ±â¼ú ¹× ½ÃÀåÀÇ º¯È­¸¦ »ìÆìº¾´Ï´Ù.

µ¿±â ¸ðÅÍÀÇ »óȲÀº µðÁöÅÐÈ­, Áö¼Ó°¡´É¼º Àǹ«È­, ÃÖÁ¾»ç¿ëÀÚ ¿ä±¸ÀÇ ÁøÈ­°¡ ±³Â÷Çϸ鼭 Å©°Ô º¯È­Çϰí ÀÖ½À´Ï´Ù. ÀΰøÁö´É ¾Ë°í¸®Áò¿¡ ÀÇÇÑ °í±Þ Á¦¾î ½Ã½ºÅÛÀº ¼º´É ÆÄ¶ó¹ÌÅÍÀÇ ½Ç½Ã°£ ÃÖÀûÈ­¸¦ °¡´ÉÇÏ°Ô Çϸç, º¯µ¿ÇÏ´Â ºÎÇÏ ¹× ±×¸®µå Á¶°Ç¿¡ ¸ðÅͰ¡ µ¿ÀûÀ¸·Î ÀûÀÀÇÒ ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù. ÀÌ¿Í ÇÔ²² ¾÷°è´Â ÀüÅëÀûÀÎ ¿©±â ±â¼ú¿¡¼­ ¿µ±¸ÀÚ¼® ¹× ¸±·°ÅϽº ±â¹Ý ¾ÆÅ°ÅØÃ³·ÎÀÇ ÀüȯÀ» °æÇèÇϰí ÀÖÀ¸¸ç, ÀÌ´Â ¿¡³ÊÁö È¿À²ÀÌ ³ô°í À¯Áöº¸¼ö°¡ ÀûÀº ¼Ö·ç¼ÇÀ» ã´Â ±¤¹üÀ§ÇÑ Ãß¼¼¸¦ ¹Ý¿µÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÀüȯÀº ¿øÈ°ÇÑ ¿ø°Ý ¸ð´ÏÅ͸µ, °íÀå Áø´Ü, ÀÚµ¿ À¯Áöº¸¼ö ¹× ½ºÄÉÁÙ¸µÀ» ¿ëÀÌÇÏ°Ô ÇÏ´Â »ç¹°ÀÎÅÍ³Ý ¿¬°áÀÇ ÅëÇÕÀ¸·Î º¸¿ÏµË´Ï´Ù.

2025³â ¹Ì±¹ °ü¼¼°¡ ¼¼°è °ø±Þ¸Á¿¡ ¹ÌÄ¡´Â ´Ù¸éÀûÀÎ ¿µÇâ µ¿±â½Ä ¸ðÅÍÀÇ »ý»ê ºñ¿ë ¹× °æÀï ¿ªÇÐ ºÐ¼®

2025³â ¹Ì±¹ÀÇ »õ·Î¿î °ü¼¼ µµÀÔÀ¸·Î µ¿±â½Ä ¸ðÅÍ Á¦Á¶¾÷üÀÇ ºñ¿ë ±¸Á¶¿Í °ø±Þ¸Á Àü·«Àº ´õ¿í º¹ÀâÇØÁö°í ÀÖ½À´Ï´Ù. ±¹³» »ý»êÀÚ¸¦ º¸È£Çϱâ À§ÇØ °í¾ÈµÈ ¹«¿ª Á¶Ä¡ÀÌÁö¸¸, ÀÌ·¯ÇÑ ¹«¿ª Á¶Ä¡·Î ÀÎÇØ ±â¾÷µéÀº Á¶´Þ °üÇà, ºÎǰ Á¶´Þ ¹× Á¦Á¶ ¹ßÀÚ±¹À» Àç°ËÅäÇØ¾ß ÇÏ´Â »óȲ¿¡ Ã³ÇØ ÀÖ½À´Ï´Ù. ±×µ¿¾È °ü¼¼ÀÇ ¿µÇâÀ» ¹Þ´Â ¿øÀÚÀç¿¡ ÀÇÁ¸ÇÏ´ø °ø±Þ¾÷üµéÀº ÅõÀÔ ºñ¿ë »ó½ÂÀ¸·Î ÀÎÇØ °¡°Ý Ã¥Á¤ ¸ðµ¨°ú °è¾à Çù»óÀ» ÀçÁ¶Á¤ÇØ¾ß ÇÏ´Â »óȲ¿¡ óÇß½À´Ï´Ù. ÀÌ¿¡ µû¶ó ÀϺΠ±â¾÷µéÀº ±× ¿µÇâÀ» ¿ÏÈ­ÇÏ°í °æÀï·ÂÀ» À¯ÁöÇϱâ À§ÇØ Áö¿ª »ý»ê±âÁö¿¡ ´ëÇÑ ÅõÀÚ¸¦ °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù.

Á¦Ç° À¯Çü, ºÎǰ, Àü¾Ð µî±Þ, ³Ã°¢ ½Ã½ºÅÛ, ÀÀ¿ë ºÐ¾ß¿¡ °ÉÄ£ »ó¼¼ÇÑ ¼¼ºÐÈ­ ºÐ¼®À» ÅëÇÑ ½ÃÀå ¿ªÇÐ ÆÄ¾Ç

µ¿±â½Ä ¸ðÅÍ ½ÃÀåÀ» ¼¼ºÎÀûÀ¸·Î ¼¼ºÐÈ­Çϸé Á¦Ç° ±¸¼º ¹× ¾ÖÇø®ÄÉÀÌ¼Ç ¿ì¼±¼øÀ§¿¡ ´ëÇÑ Áß¿äÇÑ ÀλçÀÌÆ®¸¦ ¾òÀ» ¼ö ÀÖ½À´Ï´Ù. Á÷·ù ¿©ÀÚÇü µ¿±â ¸ðÅÍ¿Í ¹«¿©ÀÚÇü µ¿±â ¸ðÅÍÀÇ Á¦Ç° À¯ÇüÀÇ Â÷ÀÌ´Â ¿¬±¸ °³¹ß ±ËÀûÀÇ Â÷À̸¦ °­Á¶Çϰí ÀÖ½À´Ï´Ù. ¹«ÀÚÈ­ µ¿±â ¸ðÅÍ Àü¹® Á¦Á¶¾÷ü´Â À¯Áöº¸¼ö °¨¼Ò ¹× È¿À²¼º Çâ»ó¿¡ ´ëÇÑ ¼ö¿ä¿¡ Èû ÀÔ¾î È÷½ºÅ׸®½Ã½º, ¿µ±¸ÀÚ¼® ¹× ¸±·°ÅϽº ±â¼ú¿¡ ´õ ¸¹Àº ÀÚ¿øÀ» ÇÒ´çÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú Çõ½ÅÀº ³ôÀº Á¤¹Ðµµ¿Í ³·Àº ¶óÀÌÇÁ»çÀÌŬ ºñ¿ëÀ» ÇÊ¿ä·Î ÇÏ´Â ºÎ¹®¿¡ ¸íÈ®ÇÑ °¡Ä¡ Á¦¾ÈÀ» âÃâÇϰí ÀÖ½À´Ï´Ù.

¾Æ¸Þ¸®Ä«, À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«, ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ µ¿±â ¸ðÅÍ Ã¤Åà ¹× ±â¼ú Çõ½ÅÀÇ Áö¿ªº° ½ÃÀå º¯È­ ¹× ¼ºÀå Ã˸ÅÁ¦ ºÐ¼®

µ¿±â½Ä ¸ðÅÍ ½ÃÀåÀÇ Áö¿ª ¿ªÇÐÀº °¢±â ´Ù¸¥ °æÁ¦ ÃËÁø¿äÀÎ, ±ÔÁ¦ ÇÁ·¹ÀÓ ¿öÅ© ¹× »ê¾÷ ¿ì¼± ¼øÀ§¿¡ µû¶ó Çü¼ºµË´Ï´Ù. ¾Æ¸Þ¸®Ä« ´ë·ú¿¡¼­´Â ƯÈ÷ Àç»ý¿¡³ÊÁö¿Í ¼®À¯È­ÇÐÀÇ È®ÀåÀ» Áß½ÉÀ¸·Î ÇÑ ÅºÅºÇÑ ÀÎÇÁ¶ó ÅõÀÚ°¡ °íÈ¿À² ¸ðÅÍ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ºÏ¹ÌÀÇ Á¦Á¶ ½Ã¼³¿¡¼­´Â ¾ö°ÝÇÑ ¹èÃâ ±âÁذú ¿î¿µ ºñ¿ë ¸ñÇ¥¸¦ ´Þ¼ºÇϱâ À§ÇØ ±âÁ¸ ¼³ºñ¸¦ ¾÷±×·¹À̵åÇϰí ÀÖÀ¸¸ç, ³²¹ÌÀÇ »ê¾÷ ȸ¶û¿¡¼­´Â ±¤¾÷ ¹× ³ó¾÷ °¡°øÀ» °­È­Çϱâ À§ÇØ µ¿±â½Ä ¸ðÅ͸¦ Ȱ¿ëÇϰí ÀÖ½À´Ï´Ù.

¼¼°è µ¿±â½Ä ¸ðÅÍ ½ÃÀå¿¡¼­ Àü·«Àû Á¦ÈÞ¿Í °æÀï»ç¿ÍÀÇ Â÷º°È­¸¦ ÃßÁøÇϰí ÀÖ´Â ¾÷°è ¼±µµ ±â¾÷ ÇÁ·ÎÆÄÀϸµ.

ÁÖ¿ä µ¿±â ¸ðÅÍ Á¦Á¶¾÷üµéÀº ¿¬±¸°³¹ß¿¡ ´ëÇÑ Àü·«Àû ÅõÀÚ, °øµ¿ ÆÄÆ®³Ê½Ê, Ÿ°ÙÆÃµÈ Àμö¸¦ ÅëÇØ Â÷º°È­¸¦ ²ÒÇϰí ÀÖ½À´Ï´Ù. ÀüÅë ÀÖ´Â ¼¼°è ±â¾÷µéÀº ¼ö½Ê ³â°£ÀÇ ±â¼ú Àü¹® Áö½ÄÀ» Ȱ¿ëÇÏ¿© ÇÙ½É ¸ðÅÍ ¾ÆÅ°ÅØÃ³¸¦ °³¼±Çϰí, Àü¹® ±â¾÷µéÀº °í¼º´É ¿µ±¸ÀÚ¼® ¸ðÅÍ¿Í ¸±·°ÅϽº ¸ðÅÍ ºÐ¾ß¿¡¼­ Æ´»õ ½ÃÀåÀ» °³Ã´Çϰí ÀÖ½À´Ï´Ù. ÅëÇÕ ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½º¿Í °í±Þ Á¦¾î Æß¿þ¾î¸¦ Á¦°øÇÏ´Â ÅÏŰ ¸ðÅÍ µå¶óÀÌºê ½Ã½ºÅÛÀ» Á¦°øÇϱâ À§ÇØ °¢ ¾÷üµéÀÌ °æÀïÀûÀ¸·Î ³ë·ÂÇϰí ÀÖÀ¸¸ç, ÀÌ·¯ÇÑ °æÀï ±¸µµ´Â ´õ¿í ½ÉÈ­µÇ°í ÀÖ½À´Ï´Ù.

¾÷°è ¸®´õµéÀÌ ±ÔÁ¦ÀÇ º¹À⼺À» ±Øº¹ÇÒ ¼ö ÀÖ´Â ½ÇÇà °¡´ÉÇÑ Àü·« µ¿±â½Ä ¸ðÅÍÀÇ ±â¼ú ¹ßÀüÀ» Ȱ¿ëÇÏ¿© °æÀï ¿ìÀ§¸¦ È®º¸ÇÒ ¼ö ÀÖ½À´Ï´Ù.

¾÷°è ¸®´õµéÀº ´ë±Ô¸ð Àç¼³°è ¾øÀÌ ´Ù¾çÇÑ ¾ÖÇø®ÄÉÀÌ¼Ç ¿ä±¸»çÇ׿¡ ÀûÀÀÇÒ ¼ö ÀÖ´Â ¸ðµâ½Ä µ¿±â½Ä ¸ðÅÍ ¾ÆÅ°ÅØÃ³ÀÇ °³¹ßÀ» ¿ì¼±½ÃÇØ¾ß ÇÕ´Ï´Ù. °øÅë Çϵå¿þ¾î Ç÷§Æû°ú È®Àå °¡´ÉÇÑ ¼ÒÇÁÆ®¿þ¾î ŸŶÀ» äÅÃÇÔÀ¸·Î½á Á¦Á¶¾÷ü´Â ½ÃÀå Ãâ½Ã ½Ã°£À» ´ÜÃàÇÏ°í »ý»ê ºñ¿ëÀ» Àý°¨ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Àç·á °úÇÐ Çõ½Å°¡µé°úÀÇ ÆÄÆ®³Ê½ÊÀ» ÅëÇØ Â÷¼¼´ë ÀÚ¼º ÇÕ±Ý ¹× ÷´Ü Àý¿¬ ½Ã½ºÅÛ¿¡ ´ëÇÑ Á¢±ÙÀ» ¿ëÀÌÇÏ°Ô Çϰí, »õ·Î¿î ±ÔÁ¦ ±âÁØ¿¡ ºÎÇÕÇÏ´Â ¼º´É ¿ìÀ§¸¦ È®º¸ÇÒ ¼ö ÀÖ½À´Ï´Ù.

1Â÷ Àü¹®°¡ ÀÎÅͺä 2Â÷ µ¥ÀÌÅÍ °ËÁõ ¹× ¾ö°ÝÇÑ ºÐ¼® ÇÁ·¹ÀÓ¿öÅ©¸¦ ÅëÇÕÇÏ¿© ½ÃÀå ÀλçÀÌÆ®ÀÇ Á¤È®¼ºÀ» ³ôÀÌ´Â Á¾ÇÕÀûÀÎ Á¶»ç ¹æ¹ý·Ð¿¡ ´ëÇØ ÀÚ¼¼È÷ ¾Ë¾Æº¸¼¼¿ä.

ÀÌ ½ÃÀå ºÐ¼®Àº 1Â÷ Á¤º¸¿Í 2Â÷ Á¤º¸¸¦ °áÇÕÇÑ ´ÙÃþÀûÀÎ Á¶»ç ¹æ¹ýÀ» Ȱ¿ëÇϰí ÀÖ½À´Ï´Ù. ¸ðÅÍ ¼³°è ¿£Áö´Ï¾î, °ø±Þ¸Á °ü¸®ÀÚ, ÃÖÁ¾ ¿ëµµ Àü¹®°¡ µî ¾÷°è Àü¹®°¡µé°úÀÇ ½ÉÃþ ÀÎÅͺ並 ÅëÇØ 1Â÷ÀûÀÎ ÀλçÀÌÆ®¸¦ ¾ò¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ ´ëÈ­¸¦ ÅëÇØ ±â¼ú äÅÃÀÇ À庮, »õ·Î¿î ±ÔÁ¦ µ¿Çâ, ÁøÈ­ÇÏ´Â °í°´ ¼±È£µµ¿¡ ´ëÇÑ ÁúÀû °üÁ¡À» ¾òÀ» ¼ö ÀÖ¾ú½À´Ï´Ù. ½Å·ÚÇÒ ¼ö ÀÖ´Â ¾÷°è °£Ç๰, ±ÔÁ¦ ´ç±¹¿¡ Á¦ÃâµÈ ¼­·ù, ±â¼ú ¹é¼­¸¦ ÅëÇØ 2Â÷ Á¤º¸¸¦ ¼öÁýÇÏ¿© ºÐ¼®À» À§ÇÑ ÅºÅºÇÑ ÄÁÅØ½ºÆ® ±â¹ÝÀ» È®º¸Çß½À´Ï´Ù.

Àü·«Àû ÀλçÀÌÆ®¿Í ÇâÈÄ Àü¸ÁÀ» ÅëÇÕÇÏ¿© ÀÇ»ç°áÁ¤ÀÚµéÀÌ µ¿±â½Ä ¸ðÅÍ ºÐ¾ßÀÇ ÁøÈ­ÇÏ´Â ±âȸ¸¦ Ȱ¿ëÇÒ ¼ö ÀÖµµ·Ï ¾È³»ÇÕ´Ï´Ù.

ÁøÈ­ÇÏ´Â µ¿±â½Ä ¸ðÅÍ È¯°æÀº ±â¼ú ±ËÀû°ú ±ÔÁ¦ ȯ°æÀÇ º¯È­¸¦ ¿¹ÃøÇÒ ¼ö ÀÖ´Â ÀÌÇØ°ü°èÀڵ鿡°Ô dzºÎÇÑ Àü·«Àû ±âȸ¸¦ Á¦°øÇÕ´Ï´Ù. ÷´Ü ¿©±â ±â¼úÀ» ÅëÇÕÇϰí, µðÁöÅÐÈ­ ´É·ÂÀ» Ȱ¿ëÇϰí, º¹ÀâÇÑ ¹«¿ª Á¤Ã¥À» ±Øº¹ÇÔÀ¸·Î½á ±â¾÷Àº °æÀï ¿ìÀ§¸¦ È®º¸Çϰí Â÷º°È­µÈ ¼Ö·ç¼ÇÀ» Á¦°ø ÇÒ ¼ö ÀÖ½À´Ï´Ù. Àü ¼¼°è°¡ Żź¼ÒÈ­¿Í ½º¸¶Æ® ÀÎÇÁ¶ó¸¦ ÇâÇØ ³ª¾Æ°¡´Â °¡¿îµ¥, ½ÌÅ©·Î³ªÀÌÁîµå ¸ðÅÍ ºÎ¹®Àº °æ¿µ È¿À²¼ºÀ» ³ôÀ̰í Áö¼Ó°¡´ÉÇÑ ¼ºÀåÀ» °¡´ÉÇÏ°Ô ÇÏ´Â ÇÙ½ÉÀûÀÎ Á¸Àç·Î ÀÚ¸®¸Å±èÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ¿ªÇÐ

Á¦6Àå ½ÃÀå ÀλçÀÌÆ®

  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®

Á¦7Àå ¹Ì±¹ °ü¼¼ÀÇ ´©Àû ¿µÇâ 2025

Á¦8Àå µ¿±â ¸ðÅÍ ½ÃÀå : Á¦Ç° À¯Çüº°

  • Á÷·ù ¿©ÀÚ µ¿±â ¸ðÅÍ
  • ºñ¿©ÀÚ µ¿±â ¸ðÅÍ
    • È÷½ºÅ׸®½Ã½º µ¿±â ¸ðÅÍ
    • ¿µ±¸ÀÚ¼®Çü µ¿±â ¸ðÅÍ
    • ¸±·°ÅϽº µ¿±â ¸ðÅÍ

Á¦9Àå µ¿±â ¸ðÅÍ ½ÃÀå : ¼³Ä¡ À¯Çüº°

  • ¼öÆò ¼³Ä¡
  • ¼öÁ÷ ¼³Ä¡

Á¦10Àå µ¿±â ¸ðÅÍ ½ÃÀå : ±¸¼º¿ä¼Òº°

  • º£¾î¸µ
  • ÀÍ»çÀÌÅÍ
  • ÇÁ·¹ÀÓ
  • ·ÎÅÍ
  • Ãà
  • ½ºÅ×ÀÌÅÍ

Á¦11Àå µ¿±â ¸ðÅÍ ½ÃÀå : Àü¾Ð Ŭ·¡½ºº°

  • 1 KV-6.6 KV
  • 6.6 KV ÀÌ»ó
  • 1 KV ¹Ì¸¸

Á¦12Àå µ¿±â ¸ðÅÍ ½ÃÀå : ³Ã°¢ À¯Çüº°

  • °ø·©½Ä
  • ¾×·©½Ä

Á¦13Àå µ¿±â ¸ðÅÍ ½ÃÀå : ¼Óµµº°

  • 300-1,000 ȸÀü
  • 1,000 RPM ÀÌ»ó
  • 300 ȸÀü ¹Ì¸¸

Á¦14Àå µ¿±â ¸ðÅÍ ½ÃÀå : ¿ëµµº°

  • ¿ø½ÉºÐ¸®±â
  • ÆÒ°ú ºí·Î¾î
  • HVAC ½Ã½ºÅÛ
  • ÆßÇÁ¿Í ÄÄÇÁ·¹¼­
  • Æ®·¢¼Ç

Á¦15Àå µ¿±â ¸ðÅÍ ½ÃÀå : ÃÖÁ¾ ¿ëµµº°

  • Ç×°ø¿ìÁÖ ¹× ¹æÀ§
  • ÀÚµ¿Â÷
  • ÇØ¾ç
  • ±¤¾÷
  • ¼®À¯ ¹× °¡½º

Á¦16Àå µ¿±â ¸ðÅÍ ½ÃÀå : ÆÇ¸Å ä³Îº°

  • ¿ÀÇÁ¶óÀÎ ÆÇ¸Å
  • ¿Â¶óÀÎ ÆÇ¸Å
    • ºê·£µå À¥»çÀÌÆ®
    • E-Commerce Ç÷§Æû

Á¦17Àå ¾Æ¸Þ¸®Ä«ÀÇ µ¿±â ¸ðÅÍ ½ÃÀå

  • ¹Ì±¹
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ºê¶óÁú
  • ¾Æ¸£ÇîÆ¼³ª

Á¦18Àå À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ µ¿±â ¸ðÅÍ ½ÃÀå

  • ¿µ±¹
  • µ¶ÀÏ
  • ÇÁ¶û½º
  • ·¯½Ã¾Æ
  • ÀÌÅ»¸®¾Æ
  • ½ºÆäÀÎ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
  • µ§¸¶Å©
  • ³×´ú¶õµå
  • īŸ¸£
  • Çɶõµå
  • ½º¿þµ§
  • ³ªÀÌÁö¸®¾Æ
  • ÀÌÁýÆ®
  • Æ¢¸£Å°¿¹
  • À̽º¶ó¿¤
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • ½ºÀ§½º

Á¦19Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ µ¿±â ¸ðÅÍ ½ÃÀå

  • Áß±¹
  • Àεµ
  • ÀϺ»
  • È£ÁÖ
  • Çѱ¹
  • Àεµ³×½Ã¾Æ
  • ű¹
  • Çʸ®ÇÉ
  • ¸»·¹À̽þÆ
  • ½Ì°¡Æ÷¸£
  • º£Æ®³²
  • ´ë¸¸

Á¦20Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼®, 2024
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º, 2024
  • °æÀï ºÐ¼®
    • ABB Ltd.
    • Danfoss A/S
    • Emerson Electric Co.
    • Fuji Electric Co., Ltd.
    • GE Vernova
    • Hitachi, Ltd.
    • Hyosung Corporation
    • Johnson Electric Holdings Limited
    • Kollmorgen Corporation
    • Lafert S.p.A.
    • Meidensha Corporation
    • Mitsubishi Electric Corporation
    • Nidec Corporation
    • NORD Drivesystems by Getriebebau NORD GmbH & Co. KG
    • Oriental Motor Co., Ltd.
    • Regal Rexnord Corporation
    • Rockwell Automation, Inc.
    • Schneider Electric SE
    • Siemens AG
    • TECO Electric & Machinery Co., Ltd.
    • TMEIC Corporation
    • Toshiba Corporation
    • VEM GmbH
    • WEG S.A.
    • Yaskawa Electric Corporation
    • Ingeteam Power Technology S.A.
    • CROUZET SASU
    • Bosch Rexroth AG
    • Tatung Co.
    • HD HYUNDAI ELECTRIC CO., LTD.

Á¦21Àå ¸®¼­Ä¡ AI

Á¦22Àå ¸®¼­Ä¡ Åë°è

Á¦23Àå ¸®¼­Ä¡ ÄÁÅÃÆ®

Á¦24Àå ¸®¼­Ä¡ ±â»ç

Á¦25Àå ºÎ·Ï

KSM 25.09.23

The Synchronous Motors Market was valued at USD 24.74 billion in 2024 and is projected to grow to USD 26.06 billion in 2025, with a CAGR of 5.60%, reaching USD 34.32 billion by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 24.74 billion
Estimated Year [2025] USD 26.06 billion
Forecast Year [2030] USD 34.32 billion
CAGR (%) 5.60%

Unveiling the Critical Role and Technological Advancements of Synchronous Motors in Driving Next-Generation Industrial Efficiency and the Global Energy Transition

Synchronous motors have emerged as pivotal components in modern industrial and energy systems, underpinning the efficiency, reliability, and performance of diverse applications. From heavy manufacturing plants to advanced renewable energy installations, these electromechanical machines convert electrical energy into precise mechanical motion, ensuring seamless integration into critical operations. As global industries pursue decarbonization and enhanced productivity, synchronous motors are being reimagined with cutting-edge materials, advanced control algorithms, and integrated digital monitoring solutions. This convergence of hardware innovation and software intelligence has elevated synchronous motors beyond traditional machinery, positioning them as key enablers of next-generation automation and sustainable energy initiatives.

Moreover, the maturation of power electronics and sensor technologies has accelerated the evolution of synchronous motors. Enhanced rotor designs and novel excitation systems are delivering remarkable improvements in starting torque, power factor correction, and variable speed performance. Coupled with predictive maintenance capabilities enabled by real-time data analytics, operators can anticipate performance deviations and optimize asset utilization. Consequently, the synchronous motor market is witnessing a surge in cross-industry adoption, as stakeholders recognize its potential to reduce total cost of ownership, bolster operational resilience, and support ambitious carbon reduction targets.

Looking ahead, the synergy between digital transformation and evolving energy landscapes will drive further enhancements in synchronous motor design and deployment. As the sector embraces modular architectures, scalable production techniques, and interoperability standards, manufacturers and end users alike will benefit from accelerated innovation cycles, streamlined integration, and measurable gains in energy efficiency.

Exploring the Technological and Market Shifts Reshaping Synchronous Motor Applications Across Industries Amid Sustainable Electrification Trends

The synchronous motor landscape is undergoing transformative shifts driven by the intersection of digitalization, sustainability mandates, and evolving end-user requirements. Advanced control systems powered by artificial intelligence algorithms are enabling real-time optimization of performance parameters, allowing motors to adapt dynamically to fluctuating loads and grid conditions. In parallel, the industry is experiencing a transition from conventional excitation techniques toward permanent magnet and reluctance-based architectures, reflecting a broader trend toward energy-efficient, low-maintenance solutions. This shift is complemented by the integration of Internet of Things connectivity, which facilitates seamless remote monitoring, fault diagnostics, and automated maintenance scheduling.

Furthermore, regulatory pressures to curb greenhouse gas emissions have accelerated the adoption of high-efficiency synchronous motors in energy-intensive sectors. Companies are prioritizing electrification initiatives and retrofitting legacy systems with smart motor technologies to achieve compliance while enhancing productivity. Concurrently, research efforts are expanding the limits of material science, exploring novel magnetic alloys and advanced winding techniques to boost power density and thermal management. As OEMs collaborate with technology partners and research institutions, they are creating a more agile innovation ecosystem that can rapidly translate laboratory breakthroughs into scalable industrial applications.

Consequently, the convergence of digital, regulatory, and technological forces is reshaping market dynamics. Manufacturers are forging strategic alliances, pursuing open-platform interoperability, and investing in modular design frameworks. These developments are not only accelerating time-to-market for next-generation synchronous motors but also empowering end users with granular performance insights and cost-effective maintenance strategies.

Analyzing the Multifaceted Impact of 2025 United States Tariffs on Global Supply Chains Production Costs and Competitive Dynamics in Synchronous Motors

In 2025, the introduction of new United States tariffs has added complexity to the cost structures and supply chain strategies of synchronous motor manufacturers. Although designed to protect domestic producers, these trade measures have prompted companies to reassess their sourcing practices, component procurement, and manufacturing footprints. Suppliers previously reliant on tariff-impacted materials have experienced higher input costs, leading to a recalibration of pricing models and contract negotiations. As a result, some organizations have accelerated investments in regional production hubs to mitigate exposure and preserve competitiveness.

Simultaneously, downstream users in sectors such as oil and gas, marine propulsion, and heavy machinery have begun incorporating tariff-related surcharges into project budgeting. This shift has spurred efforts to optimize motor selection, focusing on total cost of ownership analysis rather than initial purchase price alone. In response, leading manufacturers are fine-tuning product portfolios, emphasizing designs with standardized components and modular assemblies that can be sourced from multiple geographies. Such flexibility reduces vulnerability to trade policy fluctuations and enhances resilience against future policy adjustments.

Looking forward, the cumulative effects of these tariffs are likely to influence strategic partnerships and tier-one supplier relationships. By diversifying raw material sources, investing in local component manufacturing, and leveraging digital supply chain visibility tools, industry players are positioning themselves to navigate an increasingly protectionist trade environment. This proactive stance will be critical to maintaining market momentum, safeguarding margins, and ensuring uninterrupted delivery of synchronous motor solutions to global clients.

Dissecting Market Dynamics Through In-Depth Segmentation Analysis Spanning Product Types Mounting Configurations Components Voltage Classes Cooling Systems and Application Domains

A nuanced segmentation of the synchronous motor market reveals critical insights into product configurations and application priorities. Product type distinctions between direct current excited synchronous motors and non-excited variants highlight diverging R&D trajectories. Manufacturers specializing in non-excited synchronous motors are further allocating resources to hysteresis, permanent magnet, and reluctance technologies, driven by the demand for reduced maintenance and enhanced efficiency. These innovations are creating distinct value propositions for sectors requiring high precision and low lifecycle costs.

Mounting type considerations, from horizontal foundations to vertical installations, play a pivotal role in optimizing spatial layouts and operational workflows. Industrial facilities with height constraints or specialized production lines are increasingly specifying vertical mounting to conserve floor space and integrate seamlessly with existing infrastructure. Component-level segmentation underscores the critical importance of bearing systems, exciter units, frame structures, rotors, shafts, and stators. Each element presents an opportunity for incremental performance improvements, whether through advanced lubrication technologies, enhanced magnetic materials, or precision machining processes.

Voltage class selection spans under 1 kilovolt, 1 kilovolt to 6.6 kilovolts, and above 6.6 kilovolts, reflecting diverse power distribution schemes. Lower voltage synchronous motors remain prevalent in packaged HVAC systems and small-scale pumping units, whereas medium voltage variants dominate heavy industrial operations and large bore extraction pumps. High voltage machines are increasingly adopted in utility-scale energy projects and marine propulsion, where efficiency gains translate directly to operational cost savings. Cooling methodologies bifurcate into air-cooled and liquid-cooled systems, with each approach tailored to thermal management requirements dictated by load profiles, ambient conditions, and enclosure constraints.

Speed segmentation, comprising operational ranges up to 300 revolutions per minute, between 300 and 1,000 revolutions per minute, and above 1,000 revolutions per minute, informs application matching in processes requiring precise torque control or high rotational velocity. Low-speed synchronous motors are favored in applications such as heavy cranes and large mixers, while high-speed variants power compressors, fans, and turbines. Application domains including centrifugal machines, fans and blowers, HVAC systems, pumps and compressors, and traction underscore the market's versatility. End-use industries like aerospace and defense, automotive, marine, mining, and oil and gas each impose unique performance criteria, driving customization efforts. Finally, sales channels bifurcate into traditional offline distribution and digital commerce platforms, where brand websites and third-party e-commerce portals are increasingly leveraged to enhance market reach and customer engagement.

Unraveling Regional Market Nuances and Growth Catalysts Across Americas Europe Middle East Africa and Asia-Pacific for Synchronous Motor Adoption and Innovation

Regional dynamics in the synchronous motor market are shaped by distinct economic drivers, regulatory frameworks, and industrial priorities. In the Americas, robust infrastructure investments, particularly in renewable energy and petrochemical expansion, are fueling demand for high-efficiency motor solutions. North American manufacturing facilities are upgrading legacy equipment to meet stringent emissions standards and operational cost targets, while South American industrial corridors capitalize on synchronous motors for mining and agricultural processing enhancements.

Across Europe, the Middle East, and Africa, energy transition agendas have created fertile ground for electrification projects in power generation, public transportation, and smart manufacturing. European markets lead in regulatory compliance and incentives for premium efficiency motors, driving a shift toward permanent magnet architectures. In the Middle East, petrochemical complexes and desalination plants prioritize reliability and long service intervals, endorsing synchronous motor designs that minimize downtime. Meanwhile, Africa's emerging infrastructure initiatives are creating new opportunities for modular motor solutions that can withstand challenging environmental conditions and fluctuating grid stability.

In the Asia-Pacific region, rapid industrialization, urbanization, and electrification programs are generating substantial demand across automotive assembly, electronics manufacturing, and mass transit sectors. China and India are investing heavily in domestic motor production capabilities, fostering competitive pricing and accelerating technology adoption. At the same time, Southeast Asian manufacturing hubs are leveraging synchronous motors to optimize process efficiencies in food and beverage, textile, and chemical processing industries. Collectively, these regions exemplify how localized drivers, supported by government incentives and private sector investments, are steering the evolution of synchronous motor applications on a global scale.

Profiling Leading Industry Players Driving Innovation Strategic Collaborations and Competitive Differentiation in the Global Synchronous Motor Landscape

Leading synchronous motor manufacturers are differentiating through strategic investments in R&D, collaborative partnerships, and targeted acquisitions. Long-established global players are leveraging decades of technical expertise to refine core motor architectures, while specialized firms are carving niches in high-performance permanent magnet and reluctance motor segments. These competitive dynamics are intensifying as companies vie to offer turnkey motor-drive systems that deliver integrated power electronics and advanced control firmware.

Strategic alliances between motor producers and automation technology vendors are fostering end-to-end solutions that simplify installation, commissioning, and lifecycle management. Additionally, selective mergers and acquisitions are enabling firms to expand their component manufacturing capabilities, from precision bearing production to custom rotor winding services. By consolidating upstream supply chain elements, leading companies are enhancing quality control, reducing lead times, and securing access to critical raw materials. Concurrently, investments in digital platforms for condition monitoring and predictive maintenance are providing customers with proactive performance insights, further strengthening vendor-customer relationships.

Actionable Strategies for Industry Leaders to Navigate Regulatory Complexities Leverage Technological Advances and Cultivate Competitive Advantages in Synchronous Motors

Industry leaders should prioritize the development of modular synchronous motor architectures that can be adapted to diverse application requirements without extensive reengineering. By embracing common hardware platforms and scalable software toolkits, manufacturers can reduce time-to-market and lower production costs. In tandem, forging partnerships with material science innovators will facilitate access to next-generation magnetic alloys and advanced insulation systems, securing performance advantages that align with emerging regulatory standards.

To mitigate trade policy risks, companies must enhance supply chain transparency through digital tracking and supplier segmentation strategies. Establishing regional manufacturing nodes and qualifying secondary sources for critical components will improve resilience and cost predictability. Furthermore, embedding digital twins within product lifecycles will empower predictive service models, enabling operators to transition from reactive to condition-based maintenance and unlock new service revenue streams. Finally, collaborating with end-use customers to co-create customized motor solutions will not only strengthen market positioning but also drive continuous innovation rooted in real-world operational insights.

Detailing a Comprehensive Research Methodology Integrating Primary Expert Interviews Secondary Data Validation and Rigorous Analytical Frameworks for Market Insight Accuracy

This market analysis leverages a multi-tiered research methodology combining primary and secondary data sources. Primary insights were obtained through in-depth interviews with industry experts, including motor design engineers, supply chain managers, and end-use application specialists. These conversations provided qualitative perspectives on technology adoption barriers, emerging regulatory trends, and evolving customer preferences. Secondary data was sourced from reputable industry publications, regulatory filings, and technical whitepapers, ensuring a robust contextual foundation for the analysis.

Data triangulation and rigorous validation protocols were applied to reconcile conflicting information and enhance overall accuracy. Quantitative inputs, such as production volumes, trade flow statistics, and component cost benchmarks, were cross-verified against multiple independent databases. Analytical models were developed to simulate the effects of tariff scenarios, segmentation dynamics, and regional growth patterns. Throughout the research process, quality control measures, including peer reviews and methodological audits, were employed to uphold the integrity and reliability of the findings.

Synthesizing Strategic Insights and Forward-Looking Perspectives to Guide Decision Makers in Capitalizing on Evolving Opportunities Within the Synchronous Motor Sector

The evolving synchronous motor landscape presents a wealth of strategic opportunities for stakeholders who can anticipate technological trajectories and regulatory shifts. By integrating advanced excitation techniques, harnessing digitalization capabilities, and navigating trade policy complexities, organizations can secure competitive advantages and deliver differentiated solutions. As the world accelerates toward decarbonization and smart infrastructure, the synchronous motor sector will remain central to enhancing operational efficiency and enabling sustainable growth.

Decision makers are encouraged to leverage the insights presented here to inform capital expenditure planning, technology roadmaps, and partnership strategies. Continuous monitoring of market developments, coupled with proactive investment in R&D and supply chain optimization, will be essential to capitalize on emerging trends. Ultimately, success in the synchronous motor market will hinge on an organization's ability to blend engineering innovation with agile business models, ensuring resilience amid shifting industry dynamics.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

  • 4.1. Introduction
  • 4.2. Market Sizing & Forecasting

5. Market Dynamics

  • 5.1. Advancements in high-efficiency synchronous motor designs for industrial applications
  • 5.2. Development of compact and lightweight synchronous motors for electric vehicles
  • 5.3. Rising demand for energy-efficient synchronous motors in renewable energy projects
  • 5.4. Adoption of variable frequency drives to improve synchronous motor control and efficiency
  • 5.5. Implementation of predictive maintenance technologies in synchronous motor operations
  • 5.6. Growth of synchronous motors in automation and robotics industries
  • 5.7. Impact of global supply chain disruptions on synchronous motor manufacturing and costs
  • 5.8. Innovations in synchronous motor cooling systems to enhance performance
  • 5.9. Shift towards eco-friendly materials in synchronous motor production
  • 5.10. Integration of smart sensors and IoT technology into synchronous motors

6. Market Insights

  • 6.1. Porter's Five Forces Analysis
  • 6.2. PESTLE Analysis

7. Cumulative Impact of United States Tariffs 2025

8. Synchronous Motors Market, by Product Type

  • 8.1. Introduction
  • 8.2. Direct Current Excited Syncronous Motor
  • 8.3. Non Excited Synchronous Motors
    • 8.3.1. Hysteresis Syncronous Motor
    • 8.3.2. Permanent Magnet Synchronous Motor
    • 8.3.3. Reluctance Syncronous Motor

9. Synchronous Motors Market, by Mounting Type

  • 9.1. Introduction
  • 9.2. Horizontal Mounting
  • 9.3. Vertical Mounting

10. Synchronous Motors Market, by Component

  • 10.1. Introduction
  • 10.2. Bearing
  • 10.3. Exciter
  • 10.4. Frame
  • 10.5. Rotor
  • 10.6. Shaft
  • 10.7. Stator

11. Synchronous Motors Market, by Voltage Class

  • 11.1. Introduction
  • 11.2. 1 KV to 6.6 KV
  • 11.3. Above 6.6 KV
  • 11.4. Under 1 KV

12. Synchronous Motors Market, by Cooling Type

  • 12.1. Introduction
  • 12.2. Air Cooled
  • 12.3. Liquid Cooled

13. Synchronous Motors Market, by Speed

  • 13.1. Introduction
  • 13.2. 300 RPM to 1,000 RPM
  • 13.3. Above 1,000 RPM
  • 13.4. Up to 300 RPM

14. Synchronous Motors Market, by Application

  • 14.1. Introduction
  • 14.2. Centrifugal Machines
  • 14.3. Fans & Blowers
  • 14.4. HVAC Systems
  • 14.5. Pumps & Compressors
  • 14.6. Traction

15. Synchronous Motors Market, by End-Use

  • 15.1. Introduction
  • 15.2. Aerospace & Defense
  • 15.3. Automotive
  • 15.4. Marine
  • 15.5. Mining
  • 15.6. Oil & Gas

16. Synchronous Motors Market, by Sales Channel

  • 16.1. Introduction
  • 16.2. Offline Sales
  • 16.3. Online Sales
    • 16.3.1. Brand Websites
    • 16.3.2. E-commerce Platforms

17. Americas Synchronous Motors Market

  • 17.1. Introduction
  • 17.2. United States
  • 17.3. Canada
  • 17.4. Mexico
  • 17.5. Brazil
  • 17.6. Argentina

18. Europe, Middle East & Africa Synchronous Motors Market

  • 18.1. Introduction
  • 18.2. United Kingdom
  • 18.3. Germany
  • 18.4. France
  • 18.5. Russia
  • 18.6. Italy
  • 18.7. Spain
  • 18.8. United Arab Emirates
  • 18.9. Saudi Arabia
  • 18.10. South Africa
  • 18.11. Denmark
  • 18.12. Netherlands
  • 18.13. Qatar
  • 18.14. Finland
  • 18.15. Sweden
  • 18.16. Nigeria
  • 18.17. Egypt
  • 18.18. Turkey
  • 18.19. Israel
  • 18.20. Norway
  • 18.21. Poland
  • 18.22. Switzerland

19. Asia-Pacific Synchronous Motors Market

  • 19.1. Introduction
  • 19.2. China
  • 19.3. India
  • 19.4. Japan
  • 19.5. Australia
  • 19.6. South Korea
  • 19.7. Indonesia
  • 19.8. Thailand
  • 19.9. Philippines
  • 19.10. Malaysia
  • 19.11. Singapore
  • 19.12. Vietnam
  • 19.13. Taiwan

20. Competitive Landscape

  • 20.1. Market Share Analysis, 2024
  • 20.2. FPNV Positioning Matrix, 2024
  • 20.3. Competitive Analysis
    • 20.3.1. ABB Ltd.
    • 20.3.2. Danfoss A/S
    • 20.3.3. Emerson Electric Co.
    • 20.3.4. Fuji Electric Co., Ltd.
    • 20.3.5. GE Vernova
    • 20.3.6. Hitachi, Ltd.
    • 20.3.7. Hyosung Corporation
    • 20.3.8. Johnson Electric Holdings Limited
    • 20.3.9. Kollmorgen Corporation
    • 20.3.10. Lafert S.p.A.
    • 20.3.11. Meidensha Corporation
    • 20.3.12. Mitsubishi Electric Corporation
    • 20.3.13. Nidec Corporation
    • 20.3.14. NORD Drivesystems by Getriebebau NORD GmbH & Co. KG
    • 20.3.15. Oriental Motor Co., Ltd.
    • 20.3.16. Regal Rexnord Corporation
    • 20.3.17. Rockwell Automation, Inc.
    • 20.3.18. Schneider Electric SE
    • 20.3.19. Siemens AG
    • 20.3.20. TECO Electric & Machinery Co., Ltd.
    • 20.3.21. TMEIC Corporation
    • 20.3.22. Toshiba Corporation
    • 20.3.23. VEM GmbH
    • 20.3.24. WEG S.A.
    • 20.3.25. Yaskawa Electric Corporation
    • 20.3.26. Ingeteam Power Technology S.A.
    • 20.3.27. CROUZET SASU
    • 20.3.28. Bosch Rexroth AG
    • 20.3.29. Tatung Co.
    • 20.3.30. HD HYUNDAI ELECTRIC CO., LTD.

21. ResearchAI

22. ResearchStatistics

23. ResearchContacts

24. ResearchArticles

25. Appendix

»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦