시장보고서
상품코드
1832287

바이오폴리머 시장 : 유형, 프로세스 유형, 용도, 최종 이용 산업별 - 세계 예측(2025-2032년)

Biopolymers Market by Type, Process Type, Application, End Use Industry - Global Forecast 2025-2032

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 186 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

바이오폴리머 시장은 2032년까지 연평균 복합 성장률(CAGR) 14.06%로 520억 9,000만 달러에 이를 것으로 예측됩니다.

주요 시장 통계
기준 연도 : 2024년 181억 7,000만 달러
추정 연도 : 2025년 207억 6,000만 달러
예측 연도 : 2032년 520억 9,000만 달러
CAGR(%) 14.06%

진화하는 바이오폴리머의 상황을 간결하게 설명하고, 의사결정권자를 위한 재료 혁신, 규제 현황, 상업적 우선순위에 대한 프레임워크를 제시합니다.

바이오폴리머 분야는 지속가능성에 대한 야망, 재료 과학의 발전, 규제 프레임워크의 변화의 교차점에 위치하며, 업계가 폴리머와 그 순환성에 대해 생각하는 방식을 재구성하고 있습니다. 최근 몇 년 동안 원료 조달, 고분자 화학 및 사용 후 제품 경로의 혁신으로 인해 바이오 폴리머는 틈새 시장에서 포장, 의료, 섬유, 자동차 등 다양한 분야에서 주류로 부상하고 있습니다. 가치사슬 전반의 이해관계자들이 탄소발자국 감소와 생분해성 향상을 추구하면서 기술 및 상업적 상황은 빠르게 진화하고 있습니다.

이 경영진 요약은 조달, 제품 설계, 정책 참여에 영향을 미치는 전략적 변곡점을 요약한 것입니다. 수요를 뒷받침하는 변혁적 변화, 관세 조치로 인한 정책적 역풍, 그리고 바이오폴리머가 경쟁 우위를 확보할 수 있는 위치를 결정하는 미묘한 세분화 역학을 강조합니다. 이 분석은 기술적 특성과 용도 수준의 요구사항을 연결하여 의사결정자가 위험, 기회, 전술적 수단을 일관성 있게 파악할 수 있도록 하는 것을 목표로 합니다.

미래에는 소재 혁신, 현실적인 공급망 복원력, 순환형 제품 설계, 목표에 맞는 규제 참여와 통합하는 기업이 지속가능성에 대한 약속을 지속 가능한 상업적 우위로 전환하는 데 있어 가장 유리한 위치에 서게 될 것입니다. 이 요약의 나머지 부분에서는 업계 리더를 위한 중요한 변화, 세분화 통찰력, 지역적 차이, 권장되는 전략적 조치를 추출합니다.

규제 강화, 원료 다양화, 엔지니어링 혁신이 바이오폴리머 분야의 재료 선택, 공급망, 상업적 파트너십을 재구성하는 방법

바이오폴리머를 둘러싼 환경은 지속가능성에 대한 요구 증가, 폴리머 성능 향상, 최종 사용자의 기대치 변화 등 여러 가지 중첩된 압력에 의해 크게 변화하고 있습니다. 일회용 플라스틱 및 사용 후 제품 정보 공개에 대한 규제가 강화되면서 브랜드는 생분해성 및 산업적 퇴비화가 확인된 소재를 선호하고 있습니다. 동시에, 배합 담당자는 공중합, 상용화제, 배리어 코팅의 발전으로 석유화학 기반 폴리머와의 성능 차이를 좁혀 까다로운 응용 분야에 폭넓게 적용할 수 있게 되었습니다.

이와 함께 원료의 다양화로 1세대 농업 투입물에 대한 의존도가 낮아지고, 폐기물 유래 당류, 신규 미생물 경로, 화학적으로 재활용된 중간체 등이 중요시되고 있습니다. 이러한 전환은 순환성에 대한 보다 확고한 주장을 뒷받침하고, 원자재 변동성에 대한 노출 리스크를 줄일 수 있습니다. 또한, 공정 강화 및 원료 전처리 혁신 등 생산 규모의 개선으로 생산 병목현상이 완화되고 다운스트림 공정의 적합성이 향상되고 있습니다.

이러한 변화를 종합하면 제품 팀과 조달 부서에 새로운 계산 기준이 생깁니다. 즉, 재료의 선택은 이제 환경적 신뢰성, 사출 성형 및 압출 성형과 같은 방법에 대한 가공 적합성, 의료기기에서 플렉서블 필름에 이르기까지 다양한 용도의 최종 용도 성능의 균형을 맞추기 위한 재료 선택이 이루어지고 있습니다. 그 결과, 소재 공급업체, 컨버터, 브랜드 소유자간의 제휴는 거래적 조달이 아닌 통합적 가치 창출을 반영하는 보다 전략적이고 장기적인 파트너십으로 변화하고 있습니다.

2025년 미국 관세 변경이 바이오폴리머 가치사슬 전반의 조달 전략, 지역 투자, 공급망 강건성에 미치는 전략적 파급효과를 이해합니다.

2025년을 목표로 발표된 미국의 관세 정책은 바이오폴리머 가치사슬의 참여자들에게 새로운 상업적 고려사항을 도입하여 비용 압박과 조달을 현지화하거나 재구성할 수 있는 전략적 인센티브를 창출했습니다. 관세 조정은 중합 시설의 위치, 장기 공급 계약의 구성 방법, 원료 가공에 대한 수직적 통합을 추구할 것인지 여부 등의 결정에 영향을 미치고 있습니다. 그 결과, 많은 이해관계자들은 특수 화학물질에 대한 접근성을 유지하면서 국경 간 관세 변동에 대한 노출을 줄이기 위해 공급업체 포트폴리오를 재평가했습니다.

이에 따라 일부 제조업체와 컨버터는 리드 타임을 유지하고 적시 공급 모델을 유지하기 위해 지역 생산 능력 확장 및 생산 능력 공유 계약에 대한 투자를 가속화하고 있습니다. 동시에 수입에 의존하는 컨버터는 고객 가격을 불안정하게 만들지 않고 관세 통과를 흡수하기 위해 헤지 접근법이나 보다 유연한 계약량을 모색해 왔습니다. 이러한 적응은 자본 배분에도 영향을 미치고 있으며, 관세의 영향을 최소화하기 위해 주요 최종 사용 시장 근처에 배치할 수 있는 모듈식, 확장성이 높은 플랜트로의 전환이 두드러지게 나타나고 있습니다.

중요한 것은 기업들이 관세 완화와 원료의 지속가능성, 라이프사이클 클레임, 가공 적합성 등 다른 우선순위와 균형을 맞추고 있다는 점입니다. 그 결과, 보다 강력한 브랜드 포지셔닝을 뒷받침하는 바이오 원료 및 인증 원료를 확보하기 위해 단기적으로 육지에서의 원가 상승을 수용하는 기업도 있습니다. 앞으로도 관세 제도는 전략적 의사 결정에 계속 영향을 미칠 것이며, 리더들은 경쟁력을 유지하기 위해 무역 정책 시나리오 계획을 상업 및 비즈니스 로드맵에 통합해야 합니다.

폴리머 유형, 가공 방법, 용도, 최종 사용 산업 요구 사항을 연관시키는 심층적인 세분화 통찰력을 통해 실용적인 재료 및 제조 우선순위를 파악할 수 있습니다.

세분화 분석을 통해 성능 특성, 가공 적합성, 최종 용도 요구사항이 바이오폴리머 산업 전반에 걸쳐 차별화된 가치 제안을 창출하기 위해 어디에 집중되어야 하는지를 파악할 수 있습니다. 유형별로 보면, 셀룰로오스계, PBAT, PBS, PCL, PHA, PLA, 전분 유래 폴리머는 각각 생분해성, 기계적 특성, 열적 거동의 균형이 다르기 때문에 특정 폴리머는 필름, 연포장, 의료기기에 적합합니다. 공정 유형에 따라 재료의 유변학 및 열 안정성에 따라 3D 프린팅, 블로우 성형, 압축 성형, 압출 성형, 필름 블로우, 사출 성형, 열 성형에 대한 적합성이 결정되며, 그 결과 컨버터 장비의 선택과 사이클 경제성이 결정됩니다.

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 인사이트

제6장 미국 관세의 누적 영향 2025

제7장 AI의 누적 영향 2025

제8장 바이오폴리머 시장 : 유형별

  • 셀룰로오스
  • 폴리부틸렌 아디페이트 테레프탈레이트(PBAT)
  • 폴리부틸렌 석시네이트(PBS)
  • 폴리카프로락톤(PCL)
  • 폴리하이드록시알카노에이트(PHA)
  • 폴리유산(PLA)
  • 전분

제9장 바이오폴리머 시장 프로세스 유형별

  • 3D 프린팅
  • 블로우 성형
  • 압축 성형
  • 압출
  • 필름 블로우
  • 사출 성형
  • 열 성형

제10장 바이오폴리머 시장 : 용도별

  • 농업
    • 제어 방출 시스템
    • 멀칭 필름
  • 자동차
    • 외장 부품
    • 내장 부품
  • 소비재
    • 가정용품
    • 퍼스널케어 용품
  • 일렉트로닉스
    • 케이싱
    • 커넥터
  • 의학
    • 약물전달
    • 의료기기
  • 포장
    • 필름
    • 연포장
    • 경질 포장
  • 섬유
    • 섬유
    • 부직포

제11장 바이오폴리머 시장 : 최종 이용 산업별

  • 농업
  • 자동차
  • 가전
    • 케이싱
    • 커넥터
  • 소비재
  • 식품 및 음료
  • 헬스케어 및 의료
    • 의료기기
    • 의약품 포장
  • 섬유

제12장 바이오폴리머 시장 : 지역별

  • 아메리카
    • 북미
    • 라틴아메리카
  • 유럽, 중동 및 아프리카
    • 유럽
    • 중동
    • 아프리카
  • 아시아태평양

제13장 바이오폴리머 시장 : 그룹별

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

제14장 바이오폴리머 시장 : 국가별

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 중국
  • 인도
  • 일본
  • 호주
  • 한국

제15장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • NatureWorks LLC
    • Corbion N.V.
    • BASF SE
    • DuPont de Nemours, Inc.
    • Evonik Industries AG
    • TotalEnergies Corbion BV
    • Braskem S.A.
    • Arkema SA
    • Royal DSM N.V.
    • Eastman Chemical Company
LSH 25.10.16

The Biopolymers Market is projected to grow by USD 52.09 billion at a CAGR of 14.06% by 2032.

KEY MARKET STATISTICS
Base Year [2024] USD 18.17 billion
Estimated Year [2025] USD 20.76 billion
Forecast Year [2032] USD 52.09 billion
CAGR (%) 14.06%

A concise orientation to the evolving biopolymers landscape that frames material innovation, regulatory momentum, and commercial priorities for decision-makers

The biopolymers sector sits at the confluence of sustainability ambitions, material science advances, and shifting regulatory frameworks, reshaping how industries conceive of polymers and their circularity. In recent years, innovation in feedstock sourcing, polymer chemistry, and end-of-life pathways has moved biopolymers from niche applications into mainstream consideration across packaging, medical, textiles, and automotive domains. As stakeholders across value chains pursue lower carbon footprints and enhanced biodegradability, the technology and commercial landscape continues to evolve rapidly.

This executive summary synthesizes the strategic inflection points influencing procurement, product design, and policy engagement. It highlights the transformative shifts underpinning demand, the policy headwinds emanating from tariff actions, and the nuanced segmentation dynamics that determine where biopolymers will gain competitive advantage. By bridging technical characteristics with application-level requirements, the analysis aims to equip decision-makers with a coherent view of risk, opportunity, and tactical levers.

Looking ahead, companies that integrate materials innovation with pragmatic supply chain resilience, circular product design, and targeted regulatory engagement will be best positioned to convert sustainability commitments into durable commercial advantage. The remainder of this summary distills the critical shifts, segmentation insights, regional differentials, and recommended strategic actions for industry leaders.

How regulatory tightening, feedstock diversification, and engineering breakthroughs are reshaping material selection, supply chains, and commercial partnerships within the biopolymers sector

The landscape for biopolymers is undergoing transformative shifts driven by converging pressures: escalating sustainability requirements, improvements in polymer performance, and changing end-user expectations. Regulatory regimes are tightening around single-use plastics and end-of-life disclosures, prompting brands to prioritize materials that deliver verified biodegradability or industrial compostability. At the same time, formulators have narrowed the performance gap with petrochemical-based polymers through advances in copolymerization, compatibilizers, and barrier coatings, enabling broader adoption in demanding applications.

In parallel, feedstock diversification has reduced reliance on first-generation agricultural inputs, with increasing emphasis on waste-derived sugars, novel microbial pathways, and chemically recycled intermediates. This transition supports more robust claims around circularity and diminishes exposure to commodity volatility. Moreover, manufacturing-scale improvements, including process intensification and feedstock pretreatment innovations, have lowered production bottlenecks and improved downstream processing compatibility.

Taken together, these shifts create a new calculus for product teams and procurement functions: material selection now balances environmental credentials, processing compatibility across methods such as injection molding and extrusion, and end-use performance in applications ranging from medical devices to flexible films. Consequently, alliances between material suppliers, converters, and brand owners are becoming more strategic and longer-term, reflecting integrated value creation rather than transactional sourcing.

Understanding the strategic ripple effects of United States tariff changes in 2025 on sourcing strategies, regional investments, and supply chain resilience across biopolymer value chains

United States tariff policy announced for 2025 has introduced a new layer of commercial consideration for participants in the biopolymers value chain, creating both cost pressures and strategic incentives to localize or reconfigure sourcing. Tariff adjustments have influenced decisions about where to site polymerization facilities, how to structure long-term supply contracts, and whether to pursue vertical integration into feedstock processing. As a result, many stakeholders are reassessing supplier portfolios to mitigate exposure to cross-border tariff volatility while preserving access to specialized chemistries.

In response, several manufacturers and converters have accelerated investment in regional capacity expansions and capacity-sharing agreements to preserve lead times and maintain just-in-time supply models. At the same time, import-dependent converters have explored hedging approaches and more flexible contracted volumes to absorb tariff pass-through without destabilizing customer pricing. These adaptations have implications for capital allocation, with a noticeable shift toward modular, scalable plants that can be deployed closer to major end-use markets to minimize tariff impacts.

Crucially, companies are balancing tariff mitigation with other priorities such as feedstock sustainability, lifecycle claims, and processing compatibility. Consequently, some firms have accepted higher landed costs in the short term to secure biobased or certified feedstocks that underpin stronger brand positioning. Going forward, tariff regimes will continue to influence strategic decisions, and leadership teams must integrate trade-policy scenario planning into their commercial and operational roadmaps to maintain competitiveness.

Deep segmentation insights linking polymer type, processing method, application demands, and end-use industry requirements to reveal actionable material and manufacturing priorities

Segmentation analysis reveals where performance characteristics, processing compatibility, and end-use requirements converge to create differentiated value propositions across the biopolymers landscape. Based on Type, cellulose-based materials, PBAT, PBS, PCL, PHA, PLA, and starch-derived polymers each offer distinct balances of biodegradability, mechanical properties, and thermal behavior, making certain polymers preferable for films, flexible packaging, or medical devices. Based on Process Type, variations in material rheology and thermal stability determine suitability for 3D printing, blow molding, compression molding, extrusion, film blowing, injection molding, and thermoforming, which in turn shape converter equipment choices and cycle economics.

Based on Application, agriculture, automotive, consumer goods, electronics, medical, packaging, and textiles present unique performance and regulatory constraints. For instance, agriculture applications such as controlled release systems and mulch films demand predictable degradation profiles and minimal ecotoxicity, whereas automotive exterior and interior components require UV resistance and dimensional stability. Consumer goods span household products and personal care items that prioritize tactile properties and regulatory compliance. Electronics applications like casings and connectors emphasize flame retardancy and dielectric properties, while medical use cases for drug delivery and medical devices require rigorous biocompatibility and sterilization compatibility. Packaging variants-films, flexible packaging, and rigid packaging-differ in barrier performance and recyclability considerations. Textiles deployed as fibers or nonwovens must balance tensile strength, dyeability, and end-of-life pathways.

Based on End Use Industry, agriculture, automotive, consumer electronics, consumer goods, food & beverage, healthcare & medical, and textiles drive divergent specification demands and procurement cycles. Consumer electronics components such as casings and connectors impose tight dimensional tolerances and thermal requirements, whereas healthcare and medical end uses require materials validated for medical devices and pharmaceutical packaging. Integrating these segmentation lenses highlights where formulation adjustments, processing investments, and certification roadmaps will most effectively align materials to market needs.

Regional dynamics shaping feedstock access, regulatory incentives, and infrastructure readiness that determine adoption trajectories for biopolymers across global markets

Geographic dynamics materially influence feedstock availability, regulatory incentives, and adoption timelines, with distinct patterns emerging across the Americas, Europe, Middle East & Africa, and Asia-Pacific regions. In the Americas, a combination of agricultural feedstock access and evolving procurement priorities is driving investments in both fermentation-based and chemically derived biopolymers, while state and federal policy signals shape infrastructure funding for composting and industrial processing. As a result, manufacturers increasingly evaluate North American plants as strategic nodes for serving regional demand where policy support aligns with brand commitments.

Europe, Middle East & Africa exhibits pronounced regulatory leadership on single-use plastics and labeling, which accelerates adoption of certified biodegradable materials and circular packaging solutions. Producer responsibility frameworks and composting infrastructure are particularly influential in shaping which biopolymers gain traction for municipal and industrial waste streams. Conversely, the Asia-Pacific region combines rapid industrial demand with cost-sensitive manufacturing ecosystems, prompting large-scale capacity investments and a focus on improving process efficiencies to meet both domestic and export markets. Feedstock innovation in Asia-Pacific is also notable, with increasing attention to waste-to-feedstock pathways that reduce reliance on virgin agricultural inputs.

Taken together, these regional distinctions imply that material developers and converters must calibrate product portfolios, certification strategies, and supply footprints to regional regulatory regimes, waste-management capabilities, and end-customer expectations. Cross-regional partnerships and technology transfer agreements will become critical for scaling solutions that must meet diverse compliance and performance benchmarks.

Competitive positioning and strategic partnerships that define leaders in biopolymer innovation, supply reliability, and circularity-enabled value creation

The competitive landscape is characterized by a mix of established chemical companies, specialized biopolymer producers, and agile startups that are redefining supply chains and application ecosystems. Legacy chemical producers are leveraging scale and polymer expertise to broaden their biopolymer portfolios, integrating upstream feedstock processing and downstream compounding to offer converters materials with more consistent performance. Simultaneously, specialized biopolymer firms and innovators are differentiating through niche performance attributes, sustainability certifications, and targeted applications such as medical-grade resins or compostable packaging solutions.

Partnerships and strategic collaborations are prominent, often pairing material developers with converters and brand owners to co-develop formulations that meet specific processing and end-use requirements. Contract manufacturing arrangements and tolling models are increasingly used to accelerate market entry while managing capital intensity. At the same time, some players are vertically integrating into feedstock sourcing or recycling operations to secure circular inputs and improve margin visibility. Investment activity favors companies that demonstrate reproducible performance in regulated applications and those that can provide robust lifecycle documentation.

Overall, competitive advantage is accruing to organizations that combine material science leadership with demonstrable supply reliability, transparent sustainability credentials, and the ability to support converters with processing know-how. The most successful firms are those that invest in application support, scale-appropriate manufacturing, and certification pathways to reduce adoption friction for downstream customers.

Actionable strategic steps for industry leaders to integrate material innovation, supply resilience, and credible sustainability verification into commercial roadmaps

Industry leaders should prioritize integrated strategies that align material innovation with operational resilience, regulatory engagement, and customer-centric value propositions. First, companies must accelerate collaboration across the value chain-material suppliers, converters, and brand owners should co-develop formulations optimized for targeted processing routes and end-of-life systems to minimize reformulation cycles and accelerate commercialization. Concurrently, investment in modular production assets can reduce sensitivity to trade disruptions and tariff shifts while enabling local responsiveness to demand patterns.

Second, firms need to embed rigorous sustainability verification and product stewardship into commercial offerings. This includes transparent lifecycle assessments, third-party certifications where applicable, and clear end-of-life guidance tailored to regional waste infrastructure. By contrast, vague environmental claims will increasingly erode trust and invite regulatory scrutiny. Third, organizations should pursue a pragmatic feedstock diversification strategy that balances cost, scalability, and circularity benefits; exploring waste-derived inputs and scalable fermentation routes will be essential to secure long-term raw material availability.

Finally, sales and product teams must align go-to-market strategies with segment-level requirements-medical and electronics customers demand higher validation and longer qualification cycles, while packaging and consumer goods often prioritize cost-to-performance and supply security. Executing these recommendations will require coordinated capital planning, cross-functional capability development, and proactive regulatory monitoring to translate sustainability mandates into competitive differentiation.

A transparent methodological approach combining stakeholder interviews, technical literature, and lifecycle assessment frameworks to validate trend analysis and strategic implications

This analysis synthesizes primary qualitative inputs and secondary technical literature to ensure robust, reproducible findings. Primary research consisted of structured interviews with material scientists, converters, brand procurement leads, and waste-management specialists to capture practical constraints around processing, certification, and end-of-life management. Interview protocols emphasized scenario-based questions to understand how stakeholders balance performance trade-offs, supply risk, and sustainability claims in procurement and product design decisions.

Secondary research incorporated peer-reviewed literature, patent landscape reviews, regulatory filings, and publicly available corporate disclosures to triangulate trends in feedstock innovation, process improvements, and certification pathways. Lifecycle assessment methodologies and standardized test protocols were consulted to evaluate biodegradation claims and application suitability. Where possible, cross-validation between primary and secondary evidence was used to reduce bias and to surface divergent viewpoints that inform risk assessment.

Analytical rigor was preserved through methodology transparency, iterative validation with domain experts, and sensitivity checks on qualitative assumptions. Limitations include reliance on available public technical data for emerging chemistries and variable regional data granularity for waste infrastructure. These caveats have been considered in framing strategic recommendations and scenario implications for decision-makers.

Concluding synthesis that ties material innovation, regulatory realities, and operational preparedness into a pragmatic roadmap for capturing sustainable commercial value

The biopolymers sector is at a pivotal juncture where technological maturity, regulatory momentum, and commercial imperatives intersect to create substantive opportunity for materials that can demonstrably reduce environmental impact while meeting application-specific performance standards. Stakeholders that act decisively-investing in scalable manufacturing, aligning product claims with credible verification, and forging cross-sector partnerships-will realize the most durable advantages. Conversely, those that rely on unverified claims or fail to integrate processing and end-of-life realities will face adoption barriers and reputational risk.

In summary, the path forward requires an integrated approach that balances innovation with pragmatic deployment. Material selection should be guided by a clear understanding of processing compatibility and end-of-life pathways, while strategic investments should prioritize flexible capacity and feedstock diversification. By doing so, companies can navigate tariff uncertainties, regional infrastructure differences, and evolving regulatory expectations to convert sustainability commitments into measurable business outcomes.

The subsequent sections of this report provide deeper technical appendices, scenario planning tools, and implementation guides to translate these high-level conclusions into actionable project roadmaps for engineering, procurement, and commercial teams.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Development of bio-based PLA composites reinforced with nanocellulose fibers for sustainable food packaging
  • 5.2. Advances in marine biodegradable bioplastics derived from seaweed polysaccharides for flexible films
  • 5.3. Implementation of enzymatic polymerization routes for high-molecular-weight bio-PET alternatives
  • 5.4. Integration of microbial fermentation processes for tailored polyhydroxyalkanoate copolymer production
  • 5.5. Scaling up of lignin-based thermoplastic formulations for sustainable automotive interior components
  • 5.6. Regulatory harmonization and certification standards for industrial compostability of biopolymer films
  • 5.7. Innovations in 3D printing filaments using algae-sourced biopolymers for biomedical scaffold fabrication

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Biopolymers Market, by Type

  • 8.1. Cellulose
  • 8.2. Polybutylene Adipate Terephthalate (PBAT)
  • 8.3. Polybutylene Succinate (PBS)
  • 8.4. Polycaprolactone (PCL)
  • 8.5. Polyhydroxyalkanoates (PHA)
  • 8.6. Polylactic Acid (PLA)
  • 8.7. Starch

9. Biopolymers Market, by Process Type

  • 9.1. 3D Printing
  • 9.2. Blow Molding
  • 9.3. Compression Molding
  • 9.4. Extrusion
  • 9.5. Film Blowing
  • 9.6. Injection Molding
  • 9.7. Thermoforming

10. Biopolymers Market, by Application

  • 10.1. Agriculture
    • 10.1.1. Controlled Release Systems
    • 10.1.2. Mulch Films
  • 10.2. Automotive
    • 10.2.1. Exterior Components
    • 10.2.2. Interior Components
  • 10.3. Consumer Goods
    • 10.3.1. Household Products
    • 10.3.2. Personal Care Items
  • 10.4. Electronics
    • 10.4.1. Casings
    • 10.4.2. Connectors
  • 10.5. Medical
    • 10.5.1. Drug Delivery
    • 10.5.2. Medical Devices
  • 10.6. Packaging
    • 10.6.1. Films
    • 10.6.2. Flexible Packaging
    • 10.6.3. Rigid Packaging
  • 10.7. Textiles
    • 10.7.1. Fibers
    • 10.7.2. Nonwoven

11. Biopolymers Market, by End Use Industry

  • 11.1. Agriculture
  • 11.2. Automotive
  • 11.3. Consumer Electronics
    • 11.3.1. Casings
    • 11.3.2. Connectors
  • 11.4. Consumer Goods
  • 11.5. Food & Beverage
  • 11.6. Healthcare & Medical
    • 11.6.1. Medical Devices
    • 11.6.2. Pharmaceutical Packaging
  • 11.7. Textiles

12. Biopolymers Market, by Region

  • 12.1. Americas
    • 12.1.1. North America
    • 12.1.2. Latin America
  • 12.2. Europe, Middle East & Africa
    • 12.2.1. Europe
    • 12.2.2. Middle East
    • 12.2.3. Africa
  • 12.3. Asia-Pacific

13. Biopolymers Market, by Group

  • 13.1. ASEAN
  • 13.2. GCC
  • 13.3. European Union
  • 13.4. BRICS
  • 13.5. G7
  • 13.6. NATO

14. Biopolymers Market, by Country

  • 14.1. United States
  • 14.2. Canada
  • 14.3. Mexico
  • 14.4. Brazil
  • 14.5. United Kingdom
  • 14.6. Germany
  • 14.7. France
  • 14.8. Russia
  • 14.9. Italy
  • 14.10. Spain
  • 14.11. China
  • 14.12. India
  • 14.13. Japan
  • 14.14. Australia
  • 14.15. South Korea

15. Competitive Landscape

  • 15.1. Market Share Analysis, 2024
  • 15.2. FPNV Positioning Matrix, 2024
  • 15.3. Competitive Analysis
    • 15.3.1. NatureWorks LLC
    • 15.3.2. Corbion N.V.
    • 15.3.3. BASF SE
    • 15.3.4. DuPont de Nemours, Inc.
    • 15.3.5. Evonik Industries AG
    • 15.3.6. TotalEnergies Corbion BV
    • 15.3.7. Braskem S.A.
    • 15.3.8. Arkema SA
    • 15.3.9. Royal DSM N.V.
    • 15.3.10. Eastman Chemical Company
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제