시장보고서
상품코드
1834182

인공 T세포 시장 : 치료 유형, 세포원, 단계, 용도, 최종사용자별 - 세계 예측(2025-2032년)

Engineered T Cells Market by Therapy Type, Cell Source, Phase, Application, End User - Global Forecast 2025-2032

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 180 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

인공 T세포 시장은 2032년까지 CAGR 26.44%로 224억 2,000만 달러로 성장할 것으로 예측됩니다.

주요 시장 통계
기준 연도 2024년 34억 3,000만 달러
추정 연도 2025년 43억 4,000만 달러
예측 연도 2032 224억 2,000만 달러
CAGR(%) 26.44%

과학적 진보, 유망한 치료법, 규제 진화, 이해관계자의 우선순위를 강조한 인공 T세포의 전략적 도입

유전자재조합 T세포 치료제는 유전공학, 세포 제조, 번역과학의 발전에 힘입어 실험실에서의 호기심에서 현대 면역치료의 혁신의 주축으로 발전해 왔습니다. 최근에는 개념증명 연구뿐만 아니라 플랫폼 엔지니어링의 발전으로 보다 정확한 타겟팅, 지속성 향상, 안전 관리의 정교화가 가능해졌습니다. 이러한 개선으로 전임상 모델에서 초기 및 후기 임상 평가로 후보 치료제의 전환이 가속화되고 있으며, 개발자들의 치료 의지가 혈액악성종양에 국한되지 않고 자가면역질환 및 감염질환에 대한 적용으로 확대되고 있습니다.

과학적 역량이 성숙해짐에 따라 이해관계자들의 우선순위도 그에 따라 변화하고 있습니다. 개발자는 복잡한 생물학적 특성과 확장 가능한 제조 및 규제 당국의 기대치를 조화시켜야 하며, 지불자와 의료 서비스 제공자는 지속적인 유용성과 예측 가능한 안전성에 대한 증거를 점점 더 많이 요구하고 있습니다. 투자자와 전략적 파트너들은 TCR의 특이성 및 CAR의 모듈성과 같은 차별화 특징과 자가배양과 동종배양 사이의 세포 공급원 결정에 대한 명확성을 요구하고 있습니다. 이러한 배경에서 연구소의 혁신을 실용적인 임상 경로와 공급망 회복력에 연결하는 조직 전략이 어떤 프로그램이 앞으로 나아가고 어떤 프로그램이 멈출지를 결정하게 될 것이며, 이는 과학적 리더십과 실용적 실행 모두에 매우 중요한 순간이 될 것입니다. 중요한 순간입니다.

인공 T세포 개발, 상업적 경로, 혁신적 양식, 공동 생태계를 재구성하는 변혁적 변화를 매핑하는 것

인공 T세포 분야는 개발 패러다임과 상업적 경로를 재정의하는 상호 연관된 몇 가지 전환점을 맞이하고 있습니다. 유전자 편집, 벡터 디자인, 세포 제조의 기술적 발전은 특이성 향상, 오프 타겟 활성 감소, 모듈식 안전 스위치를 갖춘 차세대 CAR 및 TCR 접근법을 가능하게 하고 있습니다. 동시에, 단일 시설의 학술적 제조에서 중앙 집중식 품질 관리와 지역적 역량을 결합한 통합적이면서도 분산된 제조 네트워크로의 분명한 전환을 볼 수 있으며, 개인화된 치료와 기성품 치료의 운영 현실에 대응하고 있습니다.

임상 전략도 변화하고 있습니다. 개발자들은 규제의 엄격함을 유지하면서 바이오마커에 중점을 둔 환자 선택과 적응증 평가변수를 통합한 임상시험을 설계하고 있습니다. 생명공학 기업, 대형 제약사, 개발 위탁 기업, 임상 네트워크 간의 협력 모델은 탐색의 민첩성과 후기 개발 및 상업화의 강점을 결합할 필요성으로 인해 빠르게 확대되고 있습니다. 한편, 상환에 대한 논의는 개발 초기에 진행되고 있으며, 스폰서는 임상 프로토콜과 병행하여 의료 경제성 근거 창출 계획을 수립하도록 요구받고 있습니다. 이러한 변화는 투자 기준, 제휴 구조, 경쟁 구도를 변화시키고, 생물학적 혁신과 경영적 실행을 동시에 수행할 수 있는 조직에 유리하게 작용하고 있습니다.

미국의 2025년 관세 조치가 인공 T세포 공급망, 부품 조달, 제조, 국제 협력을 재편할 수 있는 방안에 대한 평가

2025년에 시행되는 미국의 관세 조치는 인공 T 세포 프로그램의 세계 공급 및 운영 계산에 새로운 변수를 도입할 것입니다. 관세 변동은 바이러스 벡터, 일회용 소모품, 특수 시약과 같은 중요한 투입물의 상륙 비용을 상승시킬 수 있습니다. 원자재 및 위탁 제조를 위해 국경을 넘는 흐름에 의존하는 스폰서는 프로그램 타임라인과 임상 연속성을 유지하기 위해 공급업체 다변화, 완충재고, 계약 조건을 검토해야 합니다.

실제로 관세 환경은 단기적인 공급망 가시성과 비상 대응 계획의 중요성을 높이고 있습니다. 지역 조직은 영향을 받는 지역에서 저비용 부품을 조달하는 것과 임상 현장과 가까운 대체 공급업체가 제공하는 유연성과 탄력성 사이의 절충점을 평가하려는 경향이 강해질 것입니다. 전략적 대응으로는 관세 리스크 분산을 위한 공급업체 계약 재협상, 관세 안정 지역에서의 2차 공급업체 인증, 대체 제조 파트너로의 기술 이전 촉진 등을 들 수 있습니다. 규제 당국에 대한 신청과 임상 일정은 이러한 업무상의 변화를 반영하기 위해 조정이 필요할 수 있으며, 시판 계획에는 변경된 비용 구조와 유통에 미치는 영향을 반영해야 합니다. 전반적으로 관세의 변화는 프로그램의 모멘텀을 유지하기 위해 조달, 제조, 제약 및 상업 팀에 걸친 통합 계획의 필요성을 강조하고 있습니다.

치료제 유형, 세포원, 개발 단계, 임상 용도, 최종사용자, 연구개발의 초점과 전략이 어떻게 형성되고 있는지를 보여주는 부문 기반 인사이트

세분화는 이 영역의 전략, 임상 설계 및 투자 결정을 가장 의미 있게 평가할 수 있는 렌즈를 제공합니다. 치료 유형에 따라 프로그램은 CAR T와 TCR T 접근법으로 나뉘며, 각각 타겟팅 프레임워크, 제조 요건, 번역 위험 프로파일이 다르며, 이는 적응증 초점 및 파트너사의 관심사에 영향을 미칩니다. 세포 공급원에 따라 동종요법과 자가요법 사이에서 치료 시간, 확장성, 면역원성 위험, 공급망 복잡성, 제조 설계 및 상업화 모델에 영향을 미치는 트레이드오프가 결정됩니다. 단계에 따라 개발 상태는 전임상부터 1상, 2상, 3상까지 있으며, 각 단계마다 고유한 증거 요건, 생산 규모 요구, 규제와의 상호 작용이 있으며, 이는 자원 배분 및 GO/NO 타이밍을 형성합니다.

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 인사이트

제6장 미국 관세의 누적 영향 2025

제7장 AI의 누적 영향 2025

제8장 인공 T세포 시장 : 치료 종류별

  • CAR T
  • TCR T

제9장 인공 T세포 시장 : 세포원별

  • 동종이계
  • 자가이식

제10장 인공 T세포 시장 : 단계별

  • 단계 I
  • 단계 II
  • 단계 III
  • 전임상

제11장 인공 T세포 시장 : 용도별

  • 자가면역질환
    • 루푸스
    • 류마티스 관절염
  • 감염증
  • 종양학
    • 급성 림프구성 백혈병
    • 비호지킨림프종
    • 고형 종양
      • 신경 교모세포종
      • 폐암

제12장 인공 T세포 시장 : 최종사용자별

  • 병원
  • 조사기관
  • 전문 클리닉

제13장 인공 T세포 시장 : 지역별

  • 아메리카
    • 북미
    • 라틴아메리카
  • 유럽, 중동 및 아프리카
    • 유럽
    • 중동
    • 아프리카
  • 아시아태평양

제14장 인공 T세포 시장 : 그룹별

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

제15장 인공 T세포 시장 : 국가별

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 중국
  • 인도
  • 일본
  • 호주
  • 한국

제16장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • Novartis AG
    • Gilead Sciences, Inc.
    • Bristol-Myers Squibb Company
    • Johnson & Johnson
    • Legend Biotech Corporation
    • Allogene Therapeutics, Inc.
    • Adaptimmune Therapeutics plc
    • Poseida Therapeutics, Inc.
    • Celyad Oncology SA
    • Sangamo Therapeutics, Inc.
KSM 25.10.20

The Engineered T Cells Market is projected to grow by USD 22.42 billion at a CAGR of 26.44% by 2032.

KEY MARKET STATISTICS
Base Year [2024] USD 3.43 billion
Estimated Year [2025] USD 4.34 billion
Forecast Year [2032] USD 22.42 billion
CAGR (%) 26.44%

Strategic introduction to engineered T cells emphasizing scientific advances, therapeutic promise, regulatory evolution, and stakeholder priorities

Engineered T cell therapeutics have evolved from a laboratory curiosity into a transformative pillar of modern immunotherapy, driven by advances in genetic engineering, cell manufacturing, and translational science. Recent years have seen progress not only in proof-of-concept studies but also in platform engineering, enabling more precise targeting, improved persistence, and refined safety controls. These improvements have accelerated the movement of candidate therapies from preclinical models into early and later-stage clinical evaluation, and they have broadened the therapeutic ambitions of developers beyond hematologic malignancies to autoimmune and infectious disease applications.

As scientific capabilities mature, stakeholder priorities are shifting in response. Developers must reconcile complex biology with scalable manufacturing and regulatory expectations, while payers and providers increasingly demand evidence of durable benefit and predictable safety. Investors and strategic partners are looking for clarity around differentiating features such as TCR specificity versus CAR modularity, and around cell source decisions between autologous and allogeneic approaches. Against this backdrop, organizational strategies that connect lab innovation to pragmatic clinical pathways and supply chain resilience will determine which programs advance and which stall, making this a pivotal moment for both scientific leadership and pragmatic execution.

Mapping transformative shifts reshaping engineered T cell development, commercial pathways, breakthrough modalities, and collaborative ecosystems

The engineered T cell field is undergoing several interconnected shifts that are redefining development paradigms and commercial pathways. Technological advances in gene editing, vector design, and cell manufacturing are enabling next-generation CAR and TCR approaches with improved specificity, reduced off-target activity, and modular safety switches. At the same time, there is a clear move from single-site academic manufacturing toward integrated yet distributed production networks that blend centralized quality control with local capacity, responding to the operational realities of personalized and off-the-shelf therapies.

Clinical strategy is also changing: developers are increasingly designing trials that embed biomarker-driven patient selection and adaptive endpoints to accelerate readouts while preserving regulatory rigor. Collaborative models between biotechs, large pharma, contract developers, and clinical networks are proliferating, driven by the need to combine discovery agility with late-stage development and commercialization muscle. Meanwhile, reimbursement conversations are moving earlier in development, prompting sponsors to design health economic evidence generation plans alongside clinical protocols. These shifts are reshaping investment criteria, partnership structures, and the competitive landscape, favoring organizations that can simultaneously innovate biologically and execute operationally.

Assessment of how United States 2025 tariffs could reshape engineered T cell supply chains, component sourcing, manufacturing and international collaboration

United States tariff measures implemented in 2025 introduce new variables into the global supply and operational calculus for engineered T cell programs. Changes in tariff exposure can increase the landed cost of critical inputs such as viral vectors, single-use consumables, and specialized reagents, which in turn pressures manufacturing economics and decisions about where to site production capacity. Sponsors that rely on cross-border flows for raw materials or contract manufacturing will need to reassess supplier diversification, buffer inventories, and contractual terms to preserve program timelines and clinical continuity.

In practice, the tariff environment amplifies the importance of near-term supply chain visibility and contingency planning. Organizations will increasingly evaluate the tradeoffs between sourcing lower-cost components from affected geographies versus the flexibility and resiliency provided by alternative suppliers closer to clinical sites. Strategic responses include renegotiating supplier agreements to allocate tariff risk, qualifying secondary suppliers in tariff-stable jurisdictions, and accelerating technology transfer to alternate manufacturing partners. Regulatory filings and clinical timelines may require adjustment to reflect these operational changes, and commercial launch planning must incorporate revised cost structures and distribution implications. Overall, tariff shifts highlight the need for integrated planning across procurement, manufacturing, regulatory affairs, and commercial teams to maintain program momentum.

Segment-driven insights revealing how therapy types, cell sources, development phases, clinical applications, and end users shape R&D focus and strategy

Segmentation provides the lens through which strategy, clinical design, and investment decisions are most meaningfully assessed in this domain. Based on Therapy Type, programs divide between CAR T and TCR T approaches, each with distinct targeting frameworks, manufacturing requirements, and translational risk profiles, which influence indication focus and partnering interest. Based on Cell Source, decisions between Allogeneic and Autologous approaches determine tradeoffs among time to treatment, scalability, immunogenicity risk, and supply chain complexity, and they inform manufacturing design and commercialization models. Based on Phase, development status ranges from Preclinical to Phase I, Phase II, and Phase III, with each stage presenting unique evidence requirements, manufacturing scale demands, and regulatory interactions that shape resource allocation and go/no-go timing.

Based on Application, therapeutic ambitions extend across Oncology, Infectious Diseases, and Autoimmune Diseases. The Oncology category includes hematologic indications such as Acute Lymphoblastic Leukemia and Non-Hodgkin Lymphoma, as well as Solid Tumor programs targeting Glioblastoma and Lung Cancer, each presenting different tumor microenvironment challenges and delivery considerations. The Autoimmune Diseases segment further explores indications such as Lupus and Rheumatoid Arthritis, where long-term immune modulation and safety profiles require distinct trial designs. Based on End User, deployment contexts span Hospitals, Research Institutes, and Specialty Clinics, and these end users dictate logistics, in-hospital treatment pathways, and post-treatment monitoring frameworks. Together, these segmentation dimensions reveal where scientific opportunity aligns with operational capability and commercial access potential.

Regional dynamics across the Americas, EMEA, and Asia-Pacific that shape clinical trial activity, strategic partnerships, and patient access approaches

Regional dynamics materially influence development strategy, trial design, and access planning for engineered T cell programs. In the Americas, a dense ecosystem of clinical trial sites, academic centers, and specialized hospitals supports rapid patient accrual for hematologic and select solid tumor protocols, while regulatory pathways emphasize rigorous safety and efficacy evidence. Sponsors intending to launch in these markets must consider payer engagement earlier, as reimbursement expectations and hospital adoption patterns will shape commercial viability and pricing strategy. Cross-border collaborations with manufacturing and distribution partners are common, and logistical coordination across North and South American jurisdictions requires careful planning.

In EMEA, regulatory harmonization and clinical networks offer advantages for multicenter studies, but variations in national reimbursement and health technology assessment processes require tailored value demonstration strategies. Capacity constraints at transplantation and specialized cell therapy centers can influence site selection and operational timelines. In Asia-Pacific, there is a growing clinical and manufacturing footprint with strong public and private investment in advanced therapies, and adaptive regulatory initiatives in several markets can expedite local development and market entry. However, regional intellectual property considerations, local partnering norms, and differing healthcare delivery models require sponsors to adapt clinical, regulatory, and commercialization approaches to each submarket. Understanding these regional nuances is essential to align clinical development, manufacturing footprints, and market access plans.

Profiles of leading companies highlighting R&D platforms, manufacturing capabilities, partnership models, clinical pipelines, and commercialization priorities

Company-level dynamics are central to competitive positioning and partnership opportunities across the engineered T cell landscape. Leading developers are differentiating by technological platform-whether in CAR architecture, TCR discovery engines, gene editing methods, or safety switch implementations-and by the depth of their proprietary manufacturing know-how and scale capabilities. Strategic partnerships frequently pair early-stage innovators that hold unique targeting biology with larger organizations that provide late-stage development capacity, regulatory experience, and commercial infrastructure. Contract development and manufacturing organizations also play a pivotal role, offering modular solutions to reduce time to clinic and to support geographic expansion.

Investors and potential partners evaluate companies on a combination of scientific differentiation, clinical evidence progression across phases, supply chain robustness, and the clarity of commercialization pathways for target indications. Companies that articulate a compelling translational rationale, backed by reproducible manufacturing processes and an evidence generation plan addressing both clinical outcomes and health economic endpoints, are most likely to secure strategic collaborations and downstream commercial opportunities. Operational execution-ranging from vector supply to site training and long-term follow-up mechanisms-remains a critical determinant of whether scientific promise converts into sustainable therapeutic programs.

Practical recommendations for leaders to speed translation, optimize supply chains, forge strategic partnerships, and align regulatory/reimbursement approaches

Industry leaders should take immediate, prioritized actions to bridge scientific innovation with operational and commercial readiness. First, align clinical development plans with evidence needs of regulators and payers by integrating biomarker strategies, long-term follow-up protocols, and health economic endpoints into trial designs early. This alignment reduces the risk of later-stage surprises and strengthens value conversations at launch. Second, build supply chain resilience by qualifying secondary suppliers, exploring regional manufacturing hubs, and negotiating supplier contracts that include tariff and logistics contingencies. These measures reduce exposure to external shocks and support reliable clinical supply.

Third, pursue partnership models that complement internal capabilities: consider risk-sharing and co-development structures with partners that bring regulatory and commercialization scale, while preserving optionality for lead asset development. Fourth, invest in manufacturing transferability and quality systems that enable reproducible processes across sites, thereby reducing time to clinic and supporting broader geographic rollout. Finally, create cross-functional governance that connects R&D, manufacturing, regulatory affairs, and commercial teams to ensure coordinated decision-making on clinical prioritization, evidence generation, and market access strategies. These steps will enable organizations to convert program potential into measurable clinical and commercial outcomes.

Transparent research methodology outlining data sources, expert engagements, analytical frameworks, validation steps, and study limitations for decision-making

The research approach underpinning these insights combined a multi-method framework to ensure analytical rigor and practical relevance. Primary inputs included structured interviews with subject matter experts spanning clinical investigators, manufacturing leads, regulatory advisors, and commercial strategists to capture real-world operational constraints and strategic considerations. Secondary research reviewed peer-reviewed literature, publicly available regulatory guidance, company disclosures, and clinical trial registries to contextualize pipeline activity and therapeutic approaches. Analytical frameworks incorporated segmentation by therapy type, cell source, development phase, application, and end user to map where scientific innovation intersects with operational demand.

Validation steps included cross-checking expert statements against publicly disclosed trial and regulatory milestones, and synthesizing patterns across multiple data sources to mitigate single-source bias. Study limitations are acknowledged: proprietary commercial agreements and confidential development programs may not be fully reflected, and emerging technologies can evolve rapidly, which necessitates ongoing monitoring. Nevertheless, the combination of expert engagement, evidence triangulation, and structured analytical lenses provides a robust foundation for strategic planning and decision-making.

Concluding synthesis of strategic imperatives, scientific pathways, operations, and collaborative models shaping the future of engineered T cell therapeutics

The cumulative analysis highlights a clear imperative: converting engineered T cell promise into durable clinical and commercial impact requires simultaneous excellence in biology, manufacturing, and market execution. Scientific advances in CAR and TCR engineering offer pathways to expanded indications and improved therapeutic windows, but technical novelty alone is insufficient without scalable, quality-assured manufacturing and compelling evidence that addresses payer and provider expectations. Operational realities-from cell sourcing choices between autologous and allogeneic options to the phase-specific demands of clinical development-must be anticipated and integrated into program planning to avoid costly delays.

Collaborative models that pair nimble scientific organizations with partners that offer development scale and access capabilities will continue to dominate successful pathways to market. Regionally informed strategies are essential, as regulatory, clinical capacity, and reimbursement conditions vary across the Americas, EMEA, and Asia-Pacific. By aligning translational science with pragmatic operational planning and early payer engagement, stakeholders can increase the probability that engineered T cell innovations reach patients and sustain commercial viability. The path forward rewards integrated thinking and disciplined execution across the entire value chain.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Advancements in off-the-shelf allogeneic CAR-T therapies using gene editing to reduce graft-versus-host risk
  • 5.2. Development of armored CAR-T cells secreting cytokines to enhance solid tumor microenvironment infiltration
  • 5.3. Incorporation of CRISPR-mediated multiplex gene editing to improve T cell persistence and safety profiles
  • 5.4. Integration of automated closed-system manufacturing platforms to scale up CAR-T production and reduce costs
  • 5.5. Combination strategies pairing engineered T cells with immune checkpoint inhibitors for synergistic antitumor response
  • 5.6. Emergence of bispecific CAR-T constructs targeting dual antigens to prevent tumor antigen escape in treatment-resistant cancers
  • 5.7. Regulatory pathways evolving for engineered T cell therapies with emphasis on harmonized global approval processes
  • 5.8. Adoption of artificial intelligence algorithms to design personalized neoantigen-targeted T cell receptors
  • 5.9. Launch of induced pluripotent stem cell-derived CAR-T products aiming to standardize cell therapy supply chains
  • 5.10. Implementation of real-time in vivo CAR-T cell tracking using molecular imaging for safety and efficacy monitoring
  • 5.11. Market access initiatives focusing on innovative reimbursement models and outcomes-based contracting for CAR-T therapies

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Engineered T Cells Market, by Therapy Type

  • 8.1. CAR T
  • 8.2. TCR T

9. Engineered T Cells Market, by Cell Source

  • 9.1. Allogeneic
  • 9.2. Autologous

10. Engineered T Cells Market, by Phase

  • 10.1. Phase I
  • 10.2. Phase Ii
  • 10.3. Phase Iii
  • 10.4. Preclinical

11. Engineered T Cells Market, by Application

  • 11.1. Autoimmune Diseases
    • 11.1.1. Lupus
    • 11.1.2. Rheumatoid Arthritis
  • 11.2. Infectious Diseases
  • 11.3. Oncology
    • 11.3.1. Acute Lymphoblastic Leukemia
    • 11.3.2. Non Hodgkin Lymphoma
    • 11.3.3. Solid Tumor
      • 11.3.3.1. Glioblastoma
      • 11.3.3.2. Lung Cancer

12. Engineered T Cells Market, by End User

  • 12.1. Hospital
  • 12.2. Research Institutes
  • 12.3. Specialty Clinics

13. Engineered T Cells Market, by Region

  • 13.1. Americas
    • 13.1.1. North America
    • 13.1.2. Latin America
  • 13.2. Europe, Middle East & Africa
    • 13.2.1. Europe
    • 13.2.2. Middle East
    • 13.2.3. Africa
  • 13.3. Asia-Pacific

14. Engineered T Cells Market, by Group

  • 14.1. ASEAN
  • 14.2. GCC
  • 14.3. European Union
  • 14.4. BRICS
  • 14.5. G7
  • 14.6. NATO

15. Engineered T Cells Market, by Country

  • 15.1. United States
  • 15.2. Canada
  • 15.3. Mexico
  • 15.4. Brazil
  • 15.5. United Kingdom
  • 15.6. Germany
  • 15.7. France
  • 15.8. Russia
  • 15.9. Italy
  • 15.10. Spain
  • 15.11. China
  • 15.12. India
  • 15.13. Japan
  • 15.14. Australia
  • 15.15. South Korea

16. Competitive Landscape

  • 16.1. Market Share Analysis, 2024
  • 16.2. FPNV Positioning Matrix, 2024
  • 16.3. Competitive Analysis
    • 16.3.1. Novartis AG
    • 16.3.2. Gilead Sciences, Inc.
    • 16.3.3. Bristol-Myers Squibb Company
    • 16.3.4. Johnson & Johnson
    • 16.3.5. Legend Biotech Corporation
    • 16.3.6. Allogene Therapeutics, Inc.
    • 16.3.7. Adaptimmune Therapeutics plc
    • 16.3.8. Poseida Therapeutics, Inc.
    • 16.3.9. Celyad Oncology SA
    • 16.3.10. Sangamo Therapeutics, Inc.
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제