시장보고서
상품코드
1835099

전자 접착제 시장 : 용도, 최종 용도 산업, 제품 유형, 기술, 형태, 경화 메커니즘별 - 세계 예측(2025-2032년)

Electronic Adhesives Market by Application, End Use Industry, Product Type, Technology, Form, Cure Mechanism - Global Forecast 2025-2032

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 185 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

전자 접착제 시장은 2032년까지 115억 2,000만 달러, CAGR 7.52%로 성장할 것으로 예측됩니다.

주요 시장 통계
기준연도 2024 64억 5,000만 달러
추정연도 2025 69억 3,000만 달러
예측연도 2032 115억 2,000만 달러
CAGR(%) 7.52%

최신 전자 접착제의 기술적 및 상업적 관련성과 첨단 장치의 조립 및 신뢰성을 가능하게 하는 역할을 종합적으로 소개

서론에서는 전자 접착제가 현대 전자제품 제조의 기본 구성 요소가된 이유와 이해관계자가 재료 전략을 우선시해야 하는 이유를 밝힙니다. 접착제는 더 이상 수동적인 필러가 아니라 소형 센서에서 대형 디스플레이에 이르기까지 어셈블리의 열 관리, 전기적 성능, 기계적 안정성 및 장기적인 신뢰성을 능동적으로 실현합니다. 디바이스의 소형화, 전력 밀도 증가, 수명 연장에 따라 접착제의 선택이 제품 성능과 현장 견고성을 좌우하게 되었습니다. 따라서 배합, 공정 통합 및 용도 제약 조건의 상호 작용을 이해하는 것은 설계, 제조 및 조달 팀에게 필수적입니다.

이 섹션에서는 아크릴, 에폭시, 폴리우레탄, 폴리우레탄, 실리콘과 같은 주요 점착제 제품군과 주요 성능 패러다임에 대해 설명함으로써 독자가 현재 기술 배경에 대해 이해할 수 있도록 합니다. 또한 전도성, 비전도성, 열전도성 기술이 다양한 엔지니어링 요구사항에 어떻게 대응하는지, 필름, 액체, 페이스트, 고체와 같은 폼팩터가 가공 및 자동화 접근 방식에 어떤 영향을 미치는지 설명합니다. 이 소개에서는 진화하는 조립 방식과 함께 주요 재료 특성을 설명함으로써 의사결정자가 성능, 제조 가능성 및 규정 준수 사이의 절충점을 고려할 수 있도록 준비합니다. 재료의 기초에서 응용적인 인사이트로 넘어가면서, 이후 더 심도 있는 분석을 위한 명확한 토대를 마련합니다.

차세대 접착제의 혁신, 생산 적응성, 지속가능성 동향, 다기능 소재의 융합을 촉진하는 변혁적 변화 분석

전자제품용 접착제는 기술 및 공급망 진화에 따른 변화의 한가운데에 있습니다. 플렉서블 일렉트로닉스와 점점 더 소형화되는 반도체 패키징과 같은 새로운 디바이스 아키텍처는 더 높은 열전도율과 최소한의 전기적 간섭 및 개선된 기계적 컴플라이언스와 균형을 이루는 접착제를 요구하고 있습니다. 동시에 업계는 처리량, 인라인 테스트, 재작업성을 우선시하는 새로운 생산 패러다임에 적응하고 있으며, 자동 조립 라인에 적합한 경화 메커니즘과 폼팩터가 다시 한 번 강조되고 있습니다.

동시에 지속가능성과 규제 당국의 기대는 제형에 대한 접근 방식을 재구성하고 있습니다. 저배출 화학물질, 유해성분 저감, 사용 후 제품의 회수 가능성을 지원하는 소재에 대한 움직임이 증가하고 있습니다. 이러한 추세는 에너지 소비를 줄이고 공정의 유연성을 향상시키는 UV 경화 시스템이나 실온 경화 등 대체품에 대한 연구개발 투자에 반영되고 있습니다. 또한 재료 과학의 발전으로 다기능성을 갖춘 하이브리드 접착제가 개발되어 설계자가 재료를 통합하고 부품 스택을 더 얇게 만들 수 있게 되었습니다. 그 결과, 제조업체와 공급업체는 빠르게 진화하는 시장에서 경쟁력을 유지하기 위해 성능 요구, 가공 제약, 컴플라이언스 요구사항이 복잡하게 얽혀 있는 상황을 극복해야 합니다.

최근 미국의 관세 변경이 접착제 부문의 조달 전략, 공급업체 다변화, 지역 공급망 강건성에 미치는 누적 영향 분석

2025년에 시행된 무역 정책 변경과 관세 조정은 전자 접착제 부문의 조달 및 공급망 전략에 큰 영향을 미쳤습니다. 관세 변화는 수입 전구체 화학물질, 특수 첨가제, 특정 접착제 성분의 비용 프로파일을 변화시켰고, 제조업체들이 조달 발자국을 재평가하고 전략적 헤지를 하도록 유도했습니다. 이에 따라 일부 제제 제조업체는 대체 원료 공급업체를 더 빨리 인증하고 단기적인 가격 변동과 리드 타임의 불확실성을 완화하기 위해 재고 버퍼를 늘리고 있습니다.

관세는 직접적인 비용에 대한 영향뿐만 아니라, 상대 브랜드 제조업체와 수탁제조업체가 리드 타임을 단축하고 국경을 넘는 혼란에 노출될 기회를 줄이기 위해 공급망의 지역화를 가속화했습니다. 이러한 움직임은 현지 기술 지원, 현지 배합 조정, 접착제 공급업체와 조립 공장 간의 공동 검증 프로그램에 대한 수요 증가로 이어졌습니다. 동시에 바이어들은 물류, 통관, 인증 비용 등 총 상륙 비용에 대한 조사를 강화했습니다. 그 결과, 공급업체 다변화, 현지 생산, 수요 예측의 엄격화에 투자한 기업은 더 높은 회복력을 달성한 반면, 단일 소스 국제 공급업체에 의존하는 기업은 경영 부담 증가에 직면했습니다. 그 누적 효과는 정책으로 인한 충격을 더 잘 흡수하고 생산의 연속성을 유지하기 위해 업계 전반의 조달 관행을 재조정하는 것이었습니다.

용도, 산업, 화학물질, 기술, 형태, 치료 메커니즘을 전략적 R&D 우선순위 및 프로세스 통합의 필요성에 매핑한 상세한 세분화 인사이트

세분화에 대한 인사이트를 통해 용도, 최종 사용 산업, 제품 유형, 기술, 형태, 경화 메커니즘에 걸쳐 차별화된 비즈니스 기회를 발견하고, 재료의 혁신과 상업적 초점을 어디에 집중해야 하는지를 강조합니다. 용도별로 접착제는 다이터치, 디스플레이 본딩, 밀봉 및 포팅, PCB 어셈블리, 반도체 패키징, 센서, 태양전지로 평가되며, PCB 어셈블리는 플렉서블 플랫폼과 리지드 플랫폼으로 세분화됩니다. 이러한 용도는 전력 밀도가 높은 다이터치의 경우 열전도율, 디스플레이 본딩의 경우 광학 투명성 및 저응력 본딩, 봉지 및 포팅의 경우 장기적인 환경 보호와 같은 우선순위를 결정합니다. 최종 사용 산업은 항공우주, 국방, 자동차 전자, 가전, 헬스케어, 산업용 전자, 통신에 이르기까지 다양하며, 각기 다른 규제, 신뢰성, 자격 요건, 배합 및 테스트 프로토콜이 형성되어 있습니다.

목차

제1장 서문

제2장 조사 방법

제3장 개요

제4장 시장 개요

제5장 시장 인사이트

제6장 미국 관세의 누적 영향 2025

제7장 AI의 누적 영향 2025

제8장 전자 접착제 시장 : 용도별

  • 다이 어태치
  • 디스플레이 본딩
  • 인캡슐레이션과 포팅
  • PCB 어셈블리
    • 플렉서블 PCB
    • 리지드 PCB
  • 반도체 패키징
  • 센서
  • 태양전지

제9장 전자 접착제 시장 : 최종 용도 산업별

  • 항공우주 및 방위
  • 자동차용 전자기기
  • 가전
  • 헬스케어
  • 산업용 전자기기
  • 통신

제10장 전자 접착제 시장 : 제품 유형별

  • 아크릴
  • 에폭시
  • 폴리우레탄
  • 실리콘

제11장 전자 접착제 시장 : 기술별

  • 전도성
  • 비전도성
  • 열전도성

제12장 전자 접착제 시장 : 형태별

  • 액체
  • 페이스트
  • 고체

제13장 전자 접착제 시장 : 큐어 메커니즘

  • 열경화
  • 실온 경화
  • UV 경화

제14장 전자 접착제 시장 : 지역별

  • 아메리카
    • 북미
    • 라틴아메리카
  • 유럽, 중동 및 아프리카
    • 유럽
    • 중동
    • 아프리카
  • 아시아태평양

제15장 전자 접착제 시장 : 그룹별

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

제16장 전자 접착제 시장 : 국가별

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 중국
  • 인도
  • 일본
  • 호주
  • 한국

제17장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • Henkel AG & Co. KGaA
    • 3M Company
    • Sika AG
    • H. B. Fuller Company
    • Arkema S.A.
    • Dow Inc.
    • Wacker Chemie AG
    • Huntsman International LLC
    • Eastman Chemical Company
    • Pidilite Industries Limited
KSA

The Electronic Adhesives Market is projected to grow by USD 11.52 billion at a CAGR of 7.52% by 2032.

KEY MARKET STATISTICS
Base Year [2024] USD 6.45 billion
Estimated Year [2025] USD 6.93 billion
Forecast Year [2032] USD 11.52 billion
CAGR (%) 7.52%

Comprehensive introduction framing the technical and commercial relevance of modern electronic adhesives and their role in enabling advanced device assembly and reliability

The introduction establishes why electronic adhesives have become foundational components across modern electronics manufacturing and why stakeholders must prioritize material strategy. Adhesives are no longer passive fillers; they actively enable thermal management, electrical performance, mechanical stability, and long-term reliability in assemblies ranging from miniature sensors to large format displays. As devices shrink, power densities rise, and service lifecycles extend, adhesive selection increasingly dictates product performance and field robustness. Therefore, understanding the interplay of formulation, process integration, and application constraints is essential for design, manufacturing, and procurement teams.

This section situates the reader in the current technical context by describing principal adhesive families-acrylic, epoxy, polyurethane, and silicone-and their dominant performance paradigms. It further explains how electrically conductive, non-conductive, and thermally conductive technologies address different engineering requirements, and how form factors such as film, liquid, paste, and solid influence processing and automation approaches. By framing key material attributes alongside evolving assembly methods, the introduction prepares decision-makers to weigh trade-offs between performance, manufacturability, and regulatory compliance. Transitioning from material basics to applied considerations creates a clear foundation for the deeper analyses that follow.

Analysis of transformative shifts driving next-generation adhesive innovation, production adaptability, sustainability trends, and multifunctional material convergence

The landscape of electronic adhesives is in the midst of transformative shifts driven by both technology and supply chain evolution. Emerging device architectures such as flexible electronics and increasingly compact semiconductor packaging demand adhesives that balance higher thermal conductivity with minimal electrical interference and improved mechanical compliance. At the same time, the industry is adapting to new production paradigms that prioritize throughput, inline testing, and reworkability, which places renewed emphasis on cure mechanisms and form factors that align with automated assembly lines.

Simultaneously, sustainability and regulatory expectations are reshaping formulation approaches. There is a growing move toward lower-emission chemistries, reduced hazardous constituents, and materials that support end-of-life recoverability. This trend is feeding R&D investments into alternatives such as UV cure systems and room temperature cures that lower energy consumption and improve process flexibility. Moreover, materials science advances are producing hybrid adhesives with multifunctional capabilities, enabling designers to consolidate materials and thin component stacks. Consequently, manufacturers and suppliers must navigate a complex mix of performance demands, processing constraints, and compliance requirements to remain competitive in a rapidly evolving market.

Cumulative impact analysis of recent United States tariff changes on procurement strategies, supplier diversification, and regional supply chain resilience within the adhesives sector

Trade policy changes and tariff adjustments enacted in 2025 have had a notable influence on the procurement and supply chain strategies within the electronic adhesives sector. Tariff shifts altered cost profiles for imported precursor chemicals, specialty additives, and certain adhesive components, prompting manufacturers to reassess sourcing footprints and engage in strategic hedging. In response, some formulators accelerated qualification of alternative raw material suppliers and increased inventory buffering to mitigate short-term price volatility and lead-time uncertainty.

Beyond immediate cost implications, tariffs contributed to an accelerated regionalization of supply chains as original equipment manufacturers and contract manufacturers sought to shorten lead times and reduce exposure to cross-border disruptions. This move translated into greater demand for local technical support, onshore formulation adjustments, and collaborative validation programs between adhesive suppliers and assembly houses. At the same time, buyers intensified scrutiny of total landed costs, including logistics, customs handling, and certification expenses. Consequently, companies that invested in supplier diversification, localized production, and tighter demand forecasting achieved greater resilience, while those that relied on single-source international suppliers faced elevated operational strain. The cumulative effect has been an industry-wide recalibration of procurement practices to better absorb policy-induced shocks and sustain production continuity.

In-depth segmentation insights mapping applications, industries, chemistries, technologies, forms, and cure mechanisms to strategic R&D priorities and process integration imperatives

Segmentation insights reveal differentiated opportunities across application, end-use industry, product type, technology, form, and cure mechanism, underscoring where material innovation and commercial focus should be concentrated. Based on Application, adhesives are evaluated across die attach, display bonding, encapsulation and potting, PCB assembly, semiconductor packaging, sensors, and solar cells, with PCB assembly further subdivided into flexible and rigid platforms; these application contexts dictate priorities such as thermal conductivity for power-dense die attach, optical clarity and low-stress bonding for display bonding, and long-term environmental protection for encapsulation and potting. Based on End Use Industry, the spectrum ranges from aerospace and defense to automotive electronics, consumer electronics, healthcare, industrial electronics, and telecommunications, each of which imposes distinct regulatory, reliability, and qualification demands that shape formulation and testing protocols.

Based on Product Type, material choices among acrylic, epoxy, polyurethane, and silicone define intrinsic trade-offs in adhesion strength, elongation, and thermal stability, influencing where each chemistry is best deployed. Based on Technology, electrically conductive, non-conductive, and thermally conductive systems enable designers to satisfy either interconnect functionality or heat dissipation mandates without compromising electrical isolation. Based on Form, the availability of film, liquid, paste, and solid formats dictates manufacturing compatibility, throughput, and automation integration, while Based on Cure Mechanism, heat cure, room temperature cure, and UV cure options determine cycle times, energy use, and substrate sensitivity. Collectively, these segmentation dimensions guide portfolio prioritization, highlight critical qualification vectors, and identify where cross-functional collaboration between materials scientists and process engineers can unlock competitive advantage.

Comprehensive regional perspectives revealing how Americas, Europe Middle East & Africa, and Asia-Pacific dynamics influence formulation priorities, compliance, and manufacturing strategies

Regional dynamics in the electronic adhesives space are defined by differing demand drivers, regulatory landscapes, and local manufacturing capabilities, which shape where investment and innovation concentrate. In the Americas, demand is increasingly tied to automotive electronics and advanced industrial equipment, with an emphasis on formulations that meet stringent reliability and thermal performance requirements for electrification and automation platforms. Investment in regionalization and supplier qualification has strengthened local responsiveness, enabling faster validation cycles for adhesives used in safety-critical applications and large-scale manufacturing.

Europe, Middle East & Africa exhibits a pronounced focus on regulatory compliance and sustainability, prompting formulators to prioritize low-VOC chemistries and materials that align with circular economy objectives. This region also shows strong demand for high-reliability adhesives in aerospace and healthcare sectors, which drives rigorous testing and certification processes. Asia-Pacific remains a major epicenter for consumer electronics, semiconductor packaging, and display manufacturing, with rapid adoption of new form factors and large-scale production volumes. It continues to be a hub for material innovation and scale production, yet it also faces tightening environmental regulations that influence formulation choices. Together, these regional characteristics demand differentiated go-to-market approaches, localized technical support, and an ability to reconcile global technology roadmaps with regional compliance and manufacturing realities.

Strategic competitive insights into how leading firms are differentiating through R&D, supply chain integration, partnership models, and application engineering support

Competitive dynamics among key companies center on technological differentiation, scale of manufacturing, and the ability to support customers through application engineering and qualification. Leading adhesive providers are investing in advanced R&D to deliver multifunctional formulations that address thermal management, electrical isolation, and mechanical resilience simultaneously. These investments include expanding in-house testing capabilities, piloting application-specific trials with OEMs, and developing modular product platforms that can be tuned for specific substrates and process constraints. At the same time, upstream integration with specialty chemical suppliers and strategic partnerships with equipment makers enables some firms to create systemic advantages in cost, quality, and time-to-market.

Moreover, companies that emphasize regulatory compliance, supply chain transparency, and sustainability credentials tend to gain preferential access to sectors with stringent procurement standards such as aerospace and healthcare. Mergers, acquisitions, and collaborative licensing have emerged as viable strategies to accelerate capability growth while reducing time to commercialize novel chemistries. For buyers, supplier selection increasingly hinges on demonstrated failure-mode analysis, long-term availability commitments, and the depth of technical support for process optimization. Consequently, differentiation is driven not only by material properties but also by the supplier's ability to co-develop solutions and mitigate integration risk across the product lifecycle.

Actionable and prioritized recommendations for industry leaders to align formulation agility, supplier diversification, sustainability integration, and engineering-enabled sales strategies

Industry leaders must adopt actionable strategies that align material development with evolving product architectures and supply chain realities. First, firms should prioritize investments in formulation versatility that enable rapid tuning for thermal, electrical, and mechanical specifications across multiple applications; this reduces time-to-qualification and supports cross-selling into adjacent end markets. Second, strengthening supplier diversification and local manufacturing capabilities will reduce exposure to tariff-driven disruptions and accelerate response times during demand surges. Building dual-sourcing arrangements for critical precursors and establishing safety-stock protocols can materially improve supply continuity.

Third, companies should integrate sustainability and regulatory foresight into product roadmaps by advancing lower-emission chemistries, improving recyclability credentials, and ensuring alignment with regional compliance regimes. Fourth, embed application engineering services as a core component of commercial offerings: hands-on validation, customized curing profiles, and co-located pilot runs increase customer switching costs and improve adoption rates. Finally, leverage digital twins and predictive quality analytics to shorten qualification cycles and optimize process parameters. By implementing these measures, leaders can enhance resilience, accelerate innovation adoption, and secure stronger commercial outcomes in a competitive, fast-moving environment.

Transparent and rigorous research methodology combining primary stakeholder engagement, technical validation workshops, and secondary literature and standards analysis to ensure credible insights

The research methodology combines primary engagement with industry stakeholders and rigorous secondary synthesis to ensure robust, reproducible insights. Primary methods include structured interviews with materials scientists, process engineers, procurement leaders, and quality assurance professionals across assembly and semiconductor environments. These conversations explored practical performance constraints, qualification workflows, and procurement considerations, producing qualitative evidence on material selection drivers and validation hurdles. Complementing these interviews, targeted technical workshops and hands-on validation sessions with adhesive suppliers and OEM partners informed assessments of cure mechanisms, substrate compatibility, and in-line processing implications.

Secondary methods entailed a comprehensive review of technical literature, patent activity, regulatory guidance, and standards relevant to adhesives and electronic assembly. Data triangulation was applied to reconcile practitioner perspectives with documented material properties and manufacturing best practices. Analytical techniques included thematic coding of interview transcripts, cross-case comparisons across application segments, and scenario analysis to test supplier response strategies under tariff-driven and regulatory stressors. Quality assurance was maintained through peer review of methodology, clear documentation of inclusion criteria, and transparent treatment of limitations to ensure that findings are credible and actionable for technical and commercial stakeholders.

Concise conclusion tying together how formulation innovation, process integration, and supply chain resilience combine to determine competitive success in electronic adhesives

The conclusion synthesizes the principal narrative threads: electronic adhesives are evolving from commodity materials into differentiating system components that materially influence performance, manufacturability, and sustainability outcomes. As device architectures become more demanding, adhesives must address a wider array of functional requirements while fitting into increasingly automated and energy-conscious production environments. Market-facing teams and R&D organizations that align formulation development with process engineering and regulatory foresight will be best positioned to capture value and de-risk product introductions.

Looking ahead, resilience in sourcing and nimble qualification processes will be critical as policy shifts and regional manufacturing dynamics continue to reshape supply chains. Firms that invest in multifunctional chemistries, localized technical collaboration, and sustainability credentials will not only meet current customer needs but will also create strategic barriers to entry. The takeaway is clear: integrative approaches that link materials science, process capability, and commercial strategy are essential to sustain competitive advantage and enable reliable product performance across the spectrum of electronic assembly applications.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Adoption of bio-based and sustainable polyurethane adhesives in automotive electronics
  • 5.2. Integration of high thermal conductivity silver-filled epoxy adhesives for power modules
  • 5.3. Development of UV-curable adhesives for rapid assembly in 5G communication devices
  • 5.4. Shift toward low outgassing silicone adhesives in aerospace optoelectronics applications
  • 5.5. Rising utilization of conductive anisotropic adhesives in microelectronic packaging solutions
  • 5.6. Emergence of two-component epoxy adhesives optimized for high voltage electric vehicles
  • 5.7. Demand for high peel strength acrylic adhesives in wearables and flexible sensor markets
  • 5.8. Implementation of nano-enhanced adhesives to improve thermal management in power electronics
  • 5.9. Growth of moisture-curing polyurethane adhesives for LED lighting and display manufacturing
  • 5.10. Increasing focus on halogen-free flame retardant adhesives for safety compliant electronics

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Electronic Adhesives Market, by Application

  • 8.1. Die Attach
  • 8.2. Display Bonding
  • 8.3. Encapsulation And Potting
  • 8.4. PCB Assembly
    • 8.4.1. Flexible PCB
    • 8.4.2. Rigid PCB
  • 8.5. Semiconductor Packaging
  • 8.6. Sensors
  • 8.7. Solar Cells

9. Electronic Adhesives Market, by End Use Industry

  • 9.1. Aerospace And Defense
  • 9.2. Automotive Electronics
  • 9.3. Consumer Electronics
  • 9.4. Healthcare
  • 9.5. Industrial Electronics
  • 9.6. Telecommunications

10. Electronic Adhesives Market, by Product Type

  • 10.1. Acrylic
  • 10.2. Epoxy
  • 10.3. Polyurethane
  • 10.4. Silicone

11. Electronic Adhesives Market, by Technology

  • 11.1. Electrically Conductive
  • 11.2. Non Conductive
  • 11.3. Thermally Conductive

12. Electronic Adhesives Market, by Form

  • 12.1. Film
  • 12.2. Liquid
  • 12.3. Paste
  • 12.4. Solid

13. Electronic Adhesives Market, by Cure Mechanism

  • 13.1. Heat Cure
  • 13.2. Room Temperature Cure
  • 13.3. UV Cure

14. Electronic Adhesives Market, by Region

  • 14.1. Americas
    • 14.1.1. North America
    • 14.1.2. Latin America
  • 14.2. Europe, Middle East & Africa
    • 14.2.1. Europe
    • 14.2.2. Middle East
    • 14.2.3. Africa
  • 14.3. Asia-Pacific

15. Electronic Adhesives Market, by Group

  • 15.1. ASEAN
  • 15.2. GCC
  • 15.3. European Union
  • 15.4. BRICS
  • 15.5. G7
  • 15.6. NATO

16. Electronic Adhesives Market, by Country

  • 16.1. United States
  • 16.2. Canada
  • 16.3. Mexico
  • 16.4. Brazil
  • 16.5. United Kingdom
  • 16.6. Germany
  • 16.7. France
  • 16.8. Russia
  • 16.9. Italy
  • 16.10. Spain
  • 16.11. China
  • 16.12. India
  • 16.13. Japan
  • 16.14. Australia
  • 16.15. South Korea

17. Competitive Landscape

  • 17.1. Market Share Analysis, 2024
  • 17.2. FPNV Positioning Matrix, 2024
  • 17.3. Competitive Analysis
    • 17.3.1. Henkel AG & Co. KGaA
    • 17.3.2. 3M Company
    • 17.3.3. Sika AG
    • 17.3.4. H. B. Fuller Company
    • 17.3.5. Arkema S.A.
    • 17.3.6. Dow Inc.
    • 17.3.7. Wacker Chemie AG
    • 17.3.8. Huntsman International LLC
    • 17.3.9. Eastman Chemical Company
    • 17.3.10. Pidilite Industries Limited
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제