시장보고서
상품코드
1835192

그린 전력 시장 : 기술별, 출력별, 설치 유형별, 최종사용자별 - 세계 예측(2025-2032년)

Green Power Market by Technology, Power Output, Installation Type, End User - Global Forecast 2025-2032

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 184 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

그린 전력 시장은 2032년까지 CAGR 9.07%로 7,681억 7,000만 달러로 성장할 것으로 예측됩니다.

주요 시장 통계
기준연도 2024 3,833억 9,000만 달러
추정연도 2025 4,176억 달러
예측연도 2032 7,681억 7,000만 달러
CAGR(%) 9.07%

이해관계자의 우선순위, 분석 렌즈, 의사결정자를 위한 전략적 변곡점, 현대 녹색 전력 상황의 간결한 방향성 제시

탈탄소화, 에너지 안보에 대한 우려, 급속한 기술 성숙에 힘입어 녹색 전력으로의 전환은 정부, 전력회사, 기업, 투자자 모두에게 전략적 필수 사항으로 성숙했습니다. 의사결정자들은 현재 정책 신호, 자본 흐름, 공급망 역학이 교차하는 복잡한 비즈니스 환경에 직면해 있으며, 어떤 프로젝트를 진행할지, 어떤 기술을 확장할지, 밸류체인 전반에 걸쳐 위험을 어떻게 배분할지를 결정하고 있습니다.

이 보고서는 재생에너지 발전을 레거시 시스템 및 새로운 유연성 솔루션과 함께 배치하고, 현재의 상황을 설명하는 것으로 시작합니다. 비용 경쟁력, 시스템 통합, 탄력성과 같은 이해관계자의 우선순위를 강조하고, 이러한 우선순위가 조달 관행, 계약 구조, 자금 조달 모델을 어떻게 재구성하고 있는지를 설명합니다. 또한 서론에서는 본 조사를 통해 사용한 분석 렌즈를 명확히 하고, 기술 역량, 도입 환경, 최종사용자 요구 사항의 상호 작용에 초점을 맞추었습니다.

이 섹션은 추상적인 예측이 아닌 현실 세계의 의사결정 포인트를 중심으로 논의를 구성함으로써 독자들이 후속 분석을 실무적인 관점에서 해석할 수 있도록 준비합니다. 또한 정책 설계자, 프로젝트 스폰서, 기술 프로바이더, 시스템 운영자 간의 기능 간 협력이 필요하다는 점을 강조하고 있습니다. 마지막으로 오늘날의 전략적 선택이 향후 10년간 탈탄소화의 속도와 형태에 영향을 미칠 수 있는 중요한 변곡점을 식별하고, 이후 시장 변화와 정책적 영향을 자세히 검토할 수 있는 무대를 마련합니다.

그린에너지 생태계 전반의 전개 패턴과 경쟁 우위를 재정의하고 있는 기술, 규제, 자본의 전환이 수렴하고 있음을 철저하게 검증

기술의 발전, 규제 조정, 자본의 재분배 집중, 도입 패턴의 재구축으로 그린 에너지 생태계는 변화의 시기를 맞이하고 있습니다. 발전 기술의 비용 감소는 조달의 선호를 계속 기울이고 있으며, 전력 전자, 저장 통합, 디지털 제어 시스템의 개선은 신뢰성을 손상시키지 않고 가변 자원의 높은 도입을 가능하게 하고 있습니다. 이러한 발전은 프로젝트의 경제성을 변화시키고, 도시 지역에서 외딴 지역까지 실행 가능한 배포 모델을 확장합니다.

정책 및 규제 프레임워크는 시스템 통합 과제와 기후 변화 목표에 대응하여 적응하고 있습니다. 시장 설계의 개혁으로 유연성, 용량 속성, 분산형 자원에 대한 평가가 높아지면서 에너지뿐만 아니라 시스템 서비스에도 보상을 제공하는 새로운 계약 구조가 추진되고 있습니다. 동시에, 기업의 조달 전략도 고도화되어 오프 테이크 계약을 보다 광범위한 지속가능성 및 복원력 목표로 연결하고, 발전과 저장 및 계통 연계 소프트웨어를 결합한 하이브리드 솔루션의 도입을 촉진하고 있습니다.

공급망 강건성이 전략 계획의 최전선에 부상하면서 니어쇼어링, 공급처 다변화, 공급업체 실사 강화 등 공급망 강건성이 전략 계획의 최전선에 등장하고 있습니다. 금융 시장은 장수명 자산에 대한 리스크 평가 방식을 개선하고, 수명주기 성과와 투자자의 기대 이익률을 더 잘 일치시키는 새로운 대출 수단을 지원함으로써 대응하고 있습니다. 이러한 변화를 종합하면 민첩성, 기술적 차별화, 정책 리터러시가 경쟁 우위를 결정하는 환경이 조성되고 있습니다.

2025년 무역 조치가 재생에너지 밸류체인 전반에 걸쳐 조달 역학, 제조 대응, 계약상 위험 배분을 어떻게 변화시켰는지를 종합적으로 평가

미국의 2025년까지의 관세 및 무역 조치 발동은 프로젝트 개발 일정, 조달 전략, 공급망 구성에 파급 효과를 가져왔습니다. 관세 제도는 수입 부품의 비교 비용 구조를 재구성하고 조달 의사결정에 영향을 미치기 때문에 개발자와 제조업체는 공급업체와의 관계와 재고 전략을 재검토해야 합니다. 그 누적 효과는 관세의 영향을 헤지하고 프로젝트의 실행 가능성을 유지하기 위한 조달 창구 및 계약 조건의 재조정입니다.

이해관계자들이 정책 조정 가능성과 부품 비용 상승이 운영에 미치는 영향을 비교 검토하므로 프로젝트 일정은 위험 평가의 변화에 따라 달라질 수 있습니다. 일부 개발자들은 관세 인상이 시행되기 전에 조달을 가속화하기로 결정한 반면, 다른 개발자들은 국내 제조 옵션이나 대체 공급업체와의 장기적인 파트너십을 검토하기 위해 잠시 멈췄습니다. 이러한 전략적 대응은 수요에 일시적인 왜곡을 가져왔고, 물류, 창고, 자본 배분 결정에 압박을 가했습니다.

산업적 차원에서 관세는 현지 생산 능력에 대한 투자를 촉진하고, 수입 의존도를 낮추기 위한 합작투자를 촉진했습니다. 정책 입안자와 업계 관계자들은 이러한 전환을 지원하기 위해 표적화된 인센티브와 노동력 구상로 대응했으나, 새로운 생산 라인의 확장을 위해서는 시간과 지속적인 시장 명확화가 필요합니다. 금융 관계자들은 투입 비용 구조의 변화를 반영하기 위해 인수 기준을 변경하고, 오프 테이커는 관세 관련 위험을 공유하기 위해 보다 명확한 패스 스루 조항을 요구했습니다. 전체적으로, 그 누적된 영향은 조달, 제조, 계약 관행 전반에 걸친 구조적 조정을 가속화하는 한편, 다양한 공급 전략과 정책적 개입의 가치를 부각시켰습니다.

기술 선택, 규모 계층, 설치 접근 방식, 최종사용자 부문이 어떻게 상호 작용하여 프로젝트의 경제성과 운영 위험을 형성하는지에 대한 전략적 인사이트

부문 수준의 역학은 기술 선택, 프로젝트 설계, 시장 진출 전략에 도움이 되는 차별화된 기회와 제약을 드러냅니다. 기술별로 보면 바이오매스, 지열, 수력, 해상풍력, 육상풍력, 태양광발전이 있으며, 태양광발전은 단결정, 다결정, 박막으로 분류됩니다. 바이오매스나 지열과 같은 송전 가능한 자원은 기저부하와 송전망의 안정성을 지원하며, 풍력과 태양광은 모듈성과 빠른 확장 가능성을 제공합니다. 단결정, 다결정, 박막 태양전지의 미묘한 성능과 비용 프로파일은 토지 이용, 효율성 우선순위, 수명주기 유지보수와 관련된 프로젝트 수준의 선택에 영향을 미칩니다.

목차

제1장 서문

제2장 조사 방법

제3장 개요

제4장 시장 개요

제5장 시장 인사이트

제6장 미국 관세의 누적 영향 2025

제7장 AI의 누적 영향 2025

제8장 그린 전력 시장 : 기술별

  • 바이오매스
  • 지열
  • 수력발전
  • 해상 풍력
  • 육상 풍력
  • 태양광발전
    • 단결정
    • 다결정
    • 박막

제9장 그린 전력 시장 : 출력별

  • 1-10MW
  • 10MW 이상
  • 1MW 미만

제10장 그린 전력 시장 : 설치 유형별

  • 플로팅
  • 지상 설치형
  • 옥상

제11장 그린 전력 시장 : 최종사용자별

  • 상업·산업용
  • 주택용
  • 유틸리티

제12장 그린 전력 시장 : 지역별

  • 아메리카
    • 북미
    • 라틴아메리카
  • 유럽, 중동 및 아프리카
    • 유럽
    • 중동
    • 아프리카
  • 아시아태평양

제13장 그린 전력 시장 : 그룹별

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

제14장 그린 전력 시장 : 국가별

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 중국
  • 인도
  • 일본
  • 호주
  • 한국

제15장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • Trina Solar
    • Tata Power Solar Systems Limited
    • Enel Green Power S.p.A
    • Xcel Energy
    • Invenergy LLC
    • Sinovel Wind Group Co., Ltd.
    • ORIENT GREEN POWER COMPANY LIMITED
    • UpWind Solutions, Inc.
    • ABB Ltd
    • Vestas
KSA

The Green Power Market is projected to grow by USD 768.17 billion at a CAGR of 9.07% by 2032.

KEY MARKET STATISTICS
Base Year [2024] USD 383.39 billion
Estimated Year [2025] USD 417.60 billion
Forecast Year [2032] USD 768.17 billion
CAGR (%) 9.07%

A concise orientation to the contemporary green power landscape clarifying stakeholder priorities, analytical lens, and strategic inflection points for decision-makers

The green power transition has matured into a strategic imperative for governments, utilities, corporations, and investors alike, driven by decarbonization commitments, energy security concerns, and rapid technology maturation. Decision-makers now face a complex operating environment in which policy signals, capital flows, and supply chain dynamics intersect to determine which projects proceed, which technologies scale, and how risks are allocated across the value chain.

This report opens with an orientation to the contemporary landscape, situating renewable generation alongside legacy systems and emerging flexibility solutions. It emphasizes stakeholder priorities-such as cost competitiveness, grid integration, and resilience-and explains how these priorities are reshaping procurement practices, contract structures, and financing models. The introduction also clarifies the analytical lens used throughout the study, highlighting the interplay between technological capability, deployment settings, and end-user requirements.

By framing the discussion around real-world decision points rather than abstract projections, this section prepares readers to interpret subsequent analyses with an operational mindset. It underscores the need for cross-functional collaboration among policy designers, project sponsors, technology providers, and system operators. Finally, it identifies critical inflection points where strategic choices today will influence the pace and shape of decarbonization over the next decade, setting the stage for a detailed examination of market shifts and policy impacts that follow.

An in-depth exploration of the converging technological, regulatory, and capital shifts that are redefining deployment patterns and competitive advantage across the green energy ecosystem

The green energy ecosystem is undergoing transformative shifts as technological advances, regulatory adjustments, and capital reallocation converge to reshape deployment patterns. Cost declines in generation technologies continue to tilt procurement preferences, while improvements in power electronics, storage integration, and digital control systems enable higher penetrations of variable resources without compromising reliability. These advances alter project economics and expand viable deployment models across urban and remote geographies.

Policy and regulatory frameworks are adapting in response to grid integration challenges and climate targets. Market design reforms increasingly value flexibility, capacity attributes, and distributed resources, driving novel contract structures that reward system services in addition to energy. At the same time, corporate procurement strategies are becoming more sophisticated, linking offtake agreements to broader sustainability and resilience objectives and prompting hybrid solutions that combine generation with storage and grid-facing software.

Supply chain resilience has risen to the forefront of strategic planning, prompting nearshoring efforts, diversified sourcing, and stronger supplier due diligence. Financial markets are responding by refining risk assessment approaches for long-duration assets and supporting new financing instruments that better align lifecycle performance with investor return expectations. Taken together, these shifts create an environment where agility, technological differentiation, and policy literacy determine competitive advantage.

A comprehensive assessment of how 2025 trade measures reshaped procurement dynamics, manufacturing responses, and contractual risk allocation across the renewable energy value chain

The imposition of tariffs and trade measures in the United States through 2025 has created ripple effects across project development timelines, procurement strategies, and supply chain configurations. Tariff regimes reconfigure comparative cost structures for imported components and influence sourcing decisions, prompting developers and manufacturers to reassess supplier relationships and inventory strategies. The cumulative effect is a recalibration of procurement windows and contractual terms that aim to hedge tariff exposure and maintain project viability.

Project timelines are subject to shifting risk assessments as stakeholders weigh the likelihood of policy adjustments and the operational implications of higher component costs. Some developers elected to accelerate procurement before tariff increases took effect, while others paused to explore domestic manufacturing options or long-term partnerships with alternative suppliers. These strategic responses have led to temporary distortions in demand and put pressure on logistics, warehousing, and capital allocation decisions.

At the industrial level, tariffs stimulated investment in localized manufacturing capacity and prompted joint ventures that reduce import dependency. Policymakers and industry actors responded with targeted incentives and workforce initiatives to support this transition, but the scaling of new production lines requires time and sustained market clarity. Financial stakeholders adapted underwriting criteria to reflect changed input cost structures, and off-takers sought more explicit pass-through clauses to share tariff-related risks. Overall, the cumulative impact has been to accelerate structural adjustments across procurement, manufacturing, and contracting practices while underscoring the value of diversified supply strategies and policy engagement.

Strategic insights into how technology choices, scale tiers, installation approaches, and end-user segments interact to shape project economics and operational risk

Segment-level dynamics reveal differentiated opportunities and constraints that inform technology selection, project design, and market entry strategies. Based on technology, the market encompasses Biomass, Geothermal, Hydro, Offshore Wind, Onshore Wind, and Solar PV, with Solar PV further differentiated into Monocrystalline, Polycrystalline, and Thin Film. Each technology exhibits distinct value propositions: dispatchable resources like biomass and geothermal support baseload and grid stability, while wind and solar deliver modularity and rapid scale-up potential. The nuanced performance and cost profiles of Monocrystalline, Polycrystalline, and Thin Film solar variants influence project-level choices around land use, efficiency priorities, and lifecycle maintenance.

Based on power output, the market spans Below 1 MW, 1 to 10 MW, and Above 10 MW installations, and these tiers dictate grid interconnection complexity, permitting timelines, and potential revenue streams. Smaller systems often prioritize distributed resilience and end-user control, whereas larger projects focus on wholesale market participation and economies of scale. Based on installation type, options include Floating, Ground Mounted, and Rooftop approaches, each with unique siting constraints, civil engineering considerations, and environmental permitting implications that affect capital planning and operational risk.

Based on end user, the market serves Residential, Commercial and Industrial, and Utility customers, and each segment drives different contractual frameworks, financing structures, and performance metrics. Residential deployments emphasize ease of installation and consumer financing, commercial and industrial applications prioritize predictable energy costs and sustainability reporting benefits, and utility-scale projects center on bulk procurement, long-term grid planning, and regulatory compliance. Understanding the interactions among technology choice, scale, siting, and end-use application is essential for tailoring offerings and for anticipating operational challenges across project portfolios.

A regionally nuanced perspective on how distinct regulatory frameworks, industrial strategies, and grid conditions drive differentiated deployment and investment choices across global markets

Regional conditions exert a powerful influence on deployment trajectories, regulatory priorities, and investment appetites, and a granular view helps clarify where strategic focus will yield the greatest returns. The Americas feature a mix of mature markets with competitive renewable auctions and emerging jurisdictions pursuing electrification and rural access initiatives; regulatory environments vary widely, and developers must navigate federal incentives alongside state or provincial rules that affect interconnection and permitting.

Europe, Middle East & Africa present a heterogeneous landscape where Europe advances integration and market coupling while Middle Eastern markets leverage renewable resources to diversify energy economies and Africa emphasizes leapfrogging infrastructure gaps through decentralized solutions. Grid modernization, cross-border trade, and climate policy commitments are central themes across this region, shaping project design and investor risk assessments.

Asia-Pacific includes countries with large-scale manufacturing bases, high deployment rates, and diverse resource endowments, creating an ecosystem where rapid capacity additions coexist with intense supply chain competition. Policy support mechanisms, localization requirements, and industrial strategy play significant roles in shaping market access and partner selection. Across all regions, climate policy alignment, grid readiness, and the availability of financing tools determine the pace and form of sustainable power rollouts, so companies must adapt regional strategies while preserving global coherence in procurement and technology roadmaps.

An incisive view of competitive dynamics showing how technological leadership, vertical integration, and collaborative service models determine project success and market positioning

The competitive landscape centers on firms that combine technological depth, supply chain control, and strong stakeholder relationships. Leading equipment manufacturers differentiate through product efficiency, warranties, and integrated solutions that simplify procurement for developers and end users. Service providers that offer combined asset management, performance guarantees, and O&M platforms create value by reducing lifecycle risks and by enabling predictable output profiles for financiers and offtakers.

Project developers that successfully navigate permitting, land acquisition, and grid interconnection secure preferential access to high-quality sites, while vertically integrated players that coordinate manufacturing, construction, and long-term operations often achieve smoother project execution. Financial institutions and insurance providers are evolving offerings that specifically address renewable energy counterparty and technology risk, which shapes which projects move forward and on what terms.

Strategic collaboration between technology vendors and local partners can unlock market entry in jurisdictions with localization requirements or unique grid constraints. Meanwhile, new entrants with software-enabled optimization, digital twin modeling, and advanced asset analytics are gaining traction by improving asset utilization and by providing real-time grid services. Competitive positioning increasingly rests on the ability to bundle engineering expertise, risk mitigation, and customer-centric commercial models that accelerate deployment while preserving margins.

Practical and high-impact recommendations for businesses to build supply chain resilience, align contracts with evolving risks, and deploy integrated solutions to secure long-term competitive advantage

Industry leaders must prioritize resilience in supply chains, clarity in contractual risk-sharing, and agility in product and service offerings to navigate the evolving landscape effectively. First, diversify supplier networks and consider local sourcing partnerships to reduce exposure to trade disruptions while balancing cost and quality imperatives. Investing in supplier qualification, inventory management, and strategic stockpiles can mitigate near-term shocks and support project continuity.

Second, redesign commercial contracts to allocate tariff, logistics, and technology risks transparently. Incorporating adaptive pricing mechanisms, clear force majeure language, and flexible delivery schedules will help maintain project bankability and preserve relationships with offtakers and financiers. Third, pursue integrated solutions that couple generation with storage, digital controls, or demand-side measures to capture value in markets that reward flexibility and system services.

Fourth, invest in workforce development and local manufacturing capabilities where policy signals favor domestic production, thereby aligning with regional industrial strategies and improving permit and grid access outcomes. Finally, maintain active policy engagement to shape market design, incentive structures, and interconnection rules. By combining operational resilience with proactive commercial design and policy engagement, industry leaders can sustain momentum while managing downside risks inherent in rapid market evolution.

A transparent and rigorous mixed-methods research approach combining stakeholder interviews, technical case studies, and cross-validation to derive actionable insights for decision-makers

The research methodology combines qualitative and quantitative approaches to ensure robust, reproducible insights grounded in real-world decision contexts. Primary inputs include structured interviews with industry executives, project developers, technology suppliers, and grid operators to capture contemporary practices, pain points, and emerging strategies. These interviews were supplemented with technical consultations that clarified performance differentials across generation technologies and installation types, as well as with investor perspectives on financing structures and risk allocation.

Secondary research encompassed policy and regulatory documents, standards, and industry technical reports to establish the institutional and compliance context. Case studies of representative projects across multiple regions provided practical illustrations of procurement pathways, grid integration challenges, and operational outcomes. Comparative analysis techniques were applied to identify cross-cutting themes and to surface divergence among regions and segments.

Analytical rigor was maintained through cross-validation of qualitative findings against documented project experiences and third-party technical specifications. Sensitivity analysis helped identify which variables most influence project viability under different operational constraints. Throughout the methodology, emphasis remained on transparency, reproducibility, and practical relevance for decision-makers seeking to translate insights into strategic actions.

A concluding synthesis highlighting the strategic priorities and integrated approaches that will determine which organizations lead the next phase of sustainable power deployment

The cumulative narrative of this report underscores that successful participation in the green power transition requires more than technology selection; it demands coherent strategies that align procurement, financing, localization, and operational excellence. Stakeholders who integrate supply chain resilience, adaptive contracting, and technology-agnostic project design are better positioned to capture opportunities while mitigating policy and market volatility.

Across technologies and geographies, the emphasis on flexibility and system services is reshaping what constitutes value, driving the convergence of generation, storage, and software-enabled controls. Developers who embrace integrated solutions and who maintain strong local partnerships will find it easier to navigate permitting, interconnection, and community acceptance hurdles. At the corporate and utility level, strategic procurement that accounts for lifecycle performance and grid compatibility enhances long-term resilience and supports regulatory compliance.

Ultimately, the path to sustainable power deployment is iterative: learning from early projects, refining contractual and technical approaches, and scaling capabilities in response to policy evolution and market signals. Organizations that adopt a pragmatic, forward-looking posture-balancing near-term operational continuity with strategic investments in localization and digital capabilities-will lead the next wave of successful projects and partnerships.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Rising corporate renewable energy procurement through power purchase agreements to meet net zero targets
  • 5.2. Increasing adoption of green hydrogen solutions for industrial decarbonisation and energy storage integration
  • 5.3. Emergence of virtual power plants aggregating distributed renewable assets to optimize grid flexibility and resilience
  • 5.4. Escalating investments in floating offshore wind projects driven by technological advancements and government incentives
  • 5.5. Integration of battery storage systems with solar farms to mitigate intermittency and enhance capacity utilisation rates
  • 5.6. Implementation of blockchain platforms for transparent tracking of renewable energy certificates and carbon credits trading

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Green Power Market, by Technology

  • 8.1. Biomass
  • 8.2. Geothermal
  • 8.3. Hydro
  • 8.4. Offshore Wind
  • 8.5. Onshore Wind
  • 8.6. Solar PV
    • 8.6.1. Monocrystalline
    • 8.6.2. Polycrystalline
    • 8.6.3. Thin Film

9. Green Power Market, by Power Output

  • 9.1. 1 To 10 MW
  • 9.2. Above 10 MW
  • 9.3. Below 1 MW

10. Green Power Market, by Installation Type

  • 10.1. Floating
  • 10.2. Ground Mounted
  • 10.3. Rooftop

11. Green Power Market, by End User

  • 11.1. Commercial And Industrial
  • 11.2. Residential
  • 11.3. Utility

12. Green Power Market, by Region

  • 12.1. Americas
    • 12.1.1. North America
    • 12.1.2. Latin America
  • 12.2. Europe, Middle East & Africa
    • 12.2.1. Europe
    • 12.2.2. Middle East
    • 12.2.3. Africa
  • 12.3. Asia-Pacific

13. Green Power Market, by Group

  • 13.1. ASEAN
  • 13.2. GCC
  • 13.3. European Union
  • 13.4. BRICS
  • 13.5. G7
  • 13.6. NATO

14. Green Power Market, by Country

  • 14.1. United States
  • 14.2. Canada
  • 14.3. Mexico
  • 14.4. Brazil
  • 14.5. United Kingdom
  • 14.6. Germany
  • 14.7. France
  • 14.8. Russia
  • 14.9. Italy
  • 14.10. Spain
  • 14.11. China
  • 14.12. India
  • 14.13. Japan
  • 14.14. Australia
  • 14.15. South Korea

15. Competitive Landscape

  • 15.1. Market Share Analysis, 2024
  • 15.2. FPNV Positioning Matrix, 2024
  • 15.3. Competitive Analysis
    • 15.3.1. Trina Solar
    • 15.3.2. Tata Power Solar Systems Limited
    • 15.3.3. Enel Green Power S.p.A
    • 15.3.4. Xcel Energy
    • 15.3.5. Invenergy LLC
    • 15.3.6. Sinovel Wind Group Co., Ltd.
    • 15.3.7. ORIENT GREEN POWER COMPANY LIMITED
    • 15.3.8. UpWind Solutions, Inc.
    • 15.3.9. ABB Ltd
    • 15.3.10. Vestas
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제