시장보고서
상품코드
1835531

의료 영상 분석 소프트웨어 시장 : 컴포넌트, 영상 모달리티, 용도, 배포 모드, 최종사용자별 - 세계 예측(2025-2032년)

Medical Image Analysis Software Market by Component, Imaging Modality, Application, Deployment Mode, End User - Global Forecast 2025-2032

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 187 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

의료 영상 분석 소프트웨어 시장은 2032년까지 CAGR 10.09%로 86억 8,000만 달러로 성장할 것으로 예측됩니다.

주요 시장 통계
기준연도 2024년 40억 2,000만 달러
추정연도 2025년 44억 3,000만 달러
예측연도 2032년 86억 8,000만 달러
CAGR(%) 10.09%

기술 발전, 임상 워크플로우에 대한 요구, 규제 당국의 기대가 의료 영상 분석 툴의 역할과 도입 채널을 재정의하는 방법

의료 영상 분석의 상황은 알고리즘 기능, 데이터 오케스트레이션, 임상 워크플로우 통합의 발전에 힘입어 치열한 진화의 시기를 맞이하고 있습니다. 최근 딥러닝 아키텍처와 이미지 재구성 기술의 발전으로 다양한 영상 양식에서 민감도와 특이도가 향상되고 있습니다. 또한 상호운용성 표준과 클라우드 네이티브 기능을 통해 영상 진단 기기, 정보과학 플랫폼, 분석 엔진 간에 보다 원활한 데이터 교환이 가능합니다. 이러한 진화는 기술에만 기인한 것이 아니라 임상 워크플로우의 변화를 배경으로 하고 있으며, 영상의학과 팀은 금액 기준 결과, 진단의 신뢰성, 다직종 협업에 점점 더 중점을 두고 있습니다.

그 결과, 의료기관은 영상분석을 조달, 검증, 도입하는 방법을 재검토하고 있습니다. 초기 임상 도입자들은 엄격한 검증, 알고리즘 출력의 설명 가능성, 진단 워크플로우 및 환자 결과에 대한 입증 가능한 영향을 중요시합니다. 동시에, 지불자와 정책 관계자들은 결과 개선과 비용 효율성 주장에 대한 모니터링을 강화하여 채택의 경로를 더욱 형성하고 있습니다. 이러한 힘을 종합하면 벤더부터 병원 리더에 이르기까지 모든 이해관계자들은 차세대 영상 분석의 약속을 실현하기 위해 기술 혁신을 임상적 유용성, 규제 준수, 명확한 가치 제안과 일치시켜야 한다는 것을 의미합니다.

고립된 파일럿에서 기업급 통합 의료 영상 분석 도입으로 전환을 촉진하는 기술, 운영, 규정의 주요 변곡점

최근 수년간 알고리즘 개발, 데이터 관행, 기업 확장 모델에서 변혁적인 변화가 일어나면서 의료 영상 분석의 수준이 한꺼번에 높아졌습니다. 아키텍처적으로는 컨볼루션 백본과 트랜스포머 기반 주의 및 작업별 미세 튜닝을 통합한 하이브리드 모델이 이종 이미지 데이터세트 간의 범용성을 향상시킵니다. 알고리즘의 혁신과 함께 연합 학습과 프라이버시 보호 계산이 충분히 성숙하여 중앙 집중식 데이터 풀 없이도 연구 기관 간의 공동 모델 훈련이 가능해져 데이터 거버넌스 및 편향에 대한 오랜 우려를 해결하고 있습니다.

운영 측면에서 업계는 개념 증명 파일럿에서 이미지 저장 및 통신 시스템, 전자건강기록, 보고 워크플로우와의 상호 운용성에 중점을 둔 기업급 배포로 전환하고 있습니다. 이러한 전환을 위해서는 견고한 검증 채널, 결과의 재현성, 지속적인 모니터링 및 모델 재교육 메커니즘이 필요합니다. 규제 프레임워크도 진화하고 있습니다. 의료기기로서의 소프트웨어와 시판 후 감시(post-market surveillance)에 초점을 맞춘 지침은 벤더들이 위험 관리, 성능 모니터링 및 설명가능성 프로세스를 채택하도록 장려하고 있습니다. 이러한 동향을 종합하면 의료 영상 분석은 고립된 포인트 솔루션에서 진단 생태계의 통합 구성 요소로 변모하고 있으며, 엔지니어링, 임상, 상업 팀 간의 기능 간 협력이 더욱 강화되고 있습니다.

관세 정책의 변화가 하드웨어 의존형과 소프트웨어 중심 이미지 분석 솔루션의 조달 선택, 공급망 복원력, 벤더 전략을 어떻게 재구성하고 있는가?

관세 조정 및 무역 정책 전환과 같은 정책 조치는 의료 영상 분석 솔루션에 필수적인 영상 장비, 하드웨어 가속기, 보조 부품공급망, 조달 전략, 가격 결정 역학에 하류에서 중대한 영향을 미칠 수 있습니다. 수입 이미지 처리 하드웨어, GPU, 특수 센서의 비용을 높이는 관세는 구매자가 조달 전략을 재검토하고, 가능하면 현지 조달을 가속화하고, 특정 하드웨어 플랫폼에 대한 의존도를 낮추는 소프트웨어 아키텍처를 우선시하는 동기가 될 수 있습니다. 많은 경우, 의료 시스템과 공급업체가 새로운 관세 제도 하에서 계약 개정 협상과 총소유비용을 평가하므로 조달 주기가 길어지는 경우가 많습니다.

관세는 가격에 대한 직접적인 영향뿐만 아니라 현지화, 제조 거점, 파트너십 형성에 대한 전략적 의사결정에도 영향을 미칩니다. 벤더는 국경 간 관세의 영향을 줄이기 위해 제조 및 클라우드 배포를 지역화할 수 있으며, 서비스 제공 업체는 최종사용자의 조달 복잡성을 흡수하기 위해 관리형 서비스를 확대할 수 있습니다. 이미지 분석에 특화된 경우, 하드웨어 비용을 높이는 관세 환경은 양식에 구애받지 않는 알고리즘, 상품 프로세서의 경량 추론, 클라우드 기반 처리 모델을 중시하는 소프트웨어 우선의 솔루션에 유리하게 작용할 수 있습니다. 결국, 관세 변경의 누적된 결과는 생태계 전반에 걸친 제품 설계, 공급망 복원력, 상업적 참여 모델의 우선순위를 재조정하는 것입니다.

구성 요소, 영상 양식, 임상 용도, 배포 모드, 최종사용자 요구를 연결하는 종합적인 세분화 관점으로 개발 및 상업화 우선순위를 결정

미묘한 세분화 프레임워크는 의료 영상 분석의 임상적 요구, 기술적 역량, 상업적 기회가 교차하는 지점을 명확히 합니다. 구성 요소별로는 서비스 및 소프트웨어가 구분되며, 각각 명확한 검증 요건과 경상 매출 역학이 있습니다. 서비스는 통합, 주석, 임상 검증에 중점을 두고, 소프트웨어는 알고리즘 개발, 배포, 수명주기관리에 중점을 둡니다. 영상 양식별로는 컴퓨터 단층촬영, 자기공명영상, 핵영상, 초음파, 엑스레이에 걸쳐 솔루션이 구성되어 있으며, 재구성 아티팩트, 시간 해상도, 선량 최적화 등의 양식별 과제가 알고리즘 설계 및 임상적 수용성을 형성합니다.

목차

제1장 서문

제2장 조사 방법

제3장 개요

제4장 시장 개요

제5장 시장 인사이트

제6장 미국 관세의 누적 영향 2025

제7장 AI의 누적 영향 2025

제8장 의료 영상 분석 소프트웨어 시장 : 컴포넌트별

  • 서비스
  • 소프트웨어

제9장 의료 영상 분석 소프트웨어 시장 : 영상 모달리티별

  • 컴퓨터 단층촬영
  • 자기공명영상
  • 핵이미징
  • 초음파
  • X선

제10장 의료 영상 분석 소프트웨어 시장 : 용도별

  • 암 탐지
    • 유방암
    • 폐암
    • 전립선암
  • 심혈관 영상 진단
    • 심장 MRI 분석
    • 관상동맥 질환 탐지
    • 심장 초음파 검사 분석
  • 신경학적 분석
  • 정형외과 분석

제11장 의료 영상 분석 소프트웨어 시장 : 배포 모드별

  • 클라우드
  • 온프레미스

제12장 의료 영상 분석 소프트웨어 시장 : 최종사용자별

  • 학술연구기관
  • 진단 센터
  • 병원
  • 영상 센터
  • 제약 바이오테크놀러지 기업

제13장 의료 영상 분석 소프트웨어 시장 : 지역별

  • 아메리카
    • 북미
    • 라틴아메리카
  • 유럽, 중동 및 아프리카
    • 유럽
    • 중동
    • 아프리카
  • 아시아태평양

제14장 의료 영상 분석 소프트웨어 시장 : 그룹별

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

제15장 의료 영상 분석 소프트웨어 시장 : 국가별

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 중국
  • 인도
  • 일본
  • 호주
  • 한국

제16장 경쟁 구도

  • 시장 점유율 분석, 2024년
  • FPNV 포지셔닝 매트릭스, 2024년
  • 경쟁 분석
    • Siemens Healthineers AG
    • General Electric Company
    • Koninklijke Philips N.V.
    • Fujifilm Holdings Corporation
    • Canon Medical Systems Corporation
    • Agfa-Gevaert N.V.
    • Sectra AB
    • Intelerad Medical Systems, Inc.
    • Hologic, Inc.
    • International Business Machines Corporation
KSA 25.10.31

The Medical Image Analysis Software Market is projected to grow by USD 8.68 billion at a CAGR of 10.09% by 2032.

KEY MARKET STATISTICS
Base Year [2024] USD 4.02 billion
Estimated Year [2025] USD 4.43 billion
Forecast Year [2032] USD 8.68 billion
CAGR (%) 10.09%

How converging technological advances, clinical workflow demands, and regulatory expectations are redefining the role and adoption pathways of medical image analysis tools

The landscape of medical image analysis is experiencing a period of intense evolution driven by advances in algorithmic capability, data orchestration, and clinical workflow integration. Recent progress in deep learning architectures and image reconstruction techniques has improved sensitivity and specificity across a range of imaging modalities, while interoperability standards and cloud-native capabilities have enabled more seamless data exchange between imaging devices, informatics platforms, and analytic engines. This evolution is not isolated to technology alone; it occurs against a backdrop of changing clinical workflows, where radiology teams increasingly emphasize value-based outcomes, diagnostic confidence, and multidisciplinary collaboration.

Consequently, provider organizations are reassessing how imaging analytics are procured, validated, and deployed. Early clinical adopters emphasize rigorous validation, explainability of algorithmic outputs, and demonstrable impact on diagnostic workflows and patient outcomes. At the same time, payers and policy actors apply growing scrutiny to claims of improved outcomes and cost-effectiveness, further shaping adoption pathways. Taken together, these forces mean that stakeholders from vendors to hospital leaders must align technical innovations with clinical utility, regulatory compliance, and clear value propositions to realize the promise of next-generation imaging analytics.

Key technological, operational, and regulatory inflection points that are catalyzing a shift from isolated pilots to enterprise-grade integrated medical imaging analytics deployments

The last several years have brought transformative shifts across algorithm development, data practices, and enterprise deployment models that are collectively raising the bar for medical image analysis. Architecturally, hybrid models that integrate convolutional backbones with transformer-based attention and task-specific fine-tuning are delivering improved generalization across heterogeneous imaging datasets. Parallel to algorithmic innovation, federated learning and privacy-preserving computation have matured sufficiently to enable collaborative model training across institutions without centralized data pooling, thereby addressing long-standing concerns about data governance and bias.

Operationally, the industry is moving from proof-of-concept pilots to enterprise-grade deployments that emphasize interoperability with picture archiving and communication systems, electronic health records, and reporting workflows. This shift necessitates robust validation pathways, reproducibility of results, and mechanisms for continuous monitoring and model retraining. Regulatory frameworks are also evolving; guidance focused on software as a medical device and post-market surveillance is prompting vendors to adopt processes for risk management, performance monitoring, and explainability. Collectively, these trends are transforming medical imaging analytics from isolated point solutions into integrated components of diagnostic ecosystems, demanding greater cross-functional alignment among engineering, clinical, and commercial teams.

How shifts in tariff policy are reshaping procurement choices, supply chain resilience, and vendor strategies for hardware-dependent and software-centric imaging analytics solutions

Policy measures such as tariff adjustments and trade policy shifts can have material downstream effects on supply chains, sourcing strategies, and pricing dynamics for imaging equipment, hardware accelerators, and ancillary components essential to medical image analysis solutions. Tariffs that raise the cost of imported imaging hardware, GPUs, or specialized sensors incentivize buyers to reexamine procurement strategies, accelerate local sourcing where feasible, or prioritize software architectures that reduce reliance on specific hardware platforms. In many cases, procurement cycles lengthen as health systems and vendors negotiate revised contracts and assess total cost of ownership under new tariff regimes.

Beyond direct price effects, tariffs influence strategic decisions around localization, manufacturing footprint, and partnership formation. Vendors may opt to regionalize production or cloud deployment to mitigate exposure to cross-border duties, while service providers might expand managed services to absorb procurement complexity for end users. For imaging analytics specifically, a tariff environment that raises hardware costs can favor software-first solutions that emphasize modality-agnostic algorithms, lightweight inference on commodity processors, and cloud-based processing models. Ultimately, the cumulative outcome of tariff changes is a re-prioritization of product design, supply chain resilience, and commercial engagement models across the ecosystem.

A comprehensive segmentation perspective linking components, imaging modalities, clinical applications, deployment modes, and end-user needs to prioritize development and commercialization

A nuanced segmentation framework illuminates where clinical need, technical capability, and commercial opportunity intersect within medical image analysis. Based on Component, the landscape differentiates Services and Software, each with distinct validation requirements and recurring revenue dynamics; services focus on integration, annotation, and clinical validation while software concentrates on algorithm development, deployment, and lifecycle management. Based on Imaging Modality, solutions are organized across Computed Tomography, Magnetic Resonance Imaging, Nuclear Imaging, Ultrasound, and X-Ray, with modality-specific challenges such as reconstruction artifacts, temporal resolution, and dose optimization shaping algorithm design and clinical acceptance.

Based on Application, clinical use cases range from Cancer Detection to Cardiovascular Imaging, Neurological Analysis, and Orthopedic Analysis; within Cancer Detection, targeted workflows address Breast Cancer, Lung Cancer, and Prostate Cancer, each requiring protocol-tailored models and validation cohorts. For Cardiovascular Imaging, subdomains such as Cardiac MRI Analysis, Coronary Artery Disease Detection, and Echocardiography Analysis demand distinct annotation schemas, temporal modeling approaches, and clinician-facing visualizations. Based on Deployment Mode, offerings span Cloud and On-Premises implementations, with trade-offs between latency, data residency, and scalability guiding adoption. Based on End User, solutions serve Academic And Research Institutes, Diagnostic Centers, Hospitals, Imaging Centers, and Pharmaceutical & Biotechnological Firms, each possessing unique procurement cycles, clinical workflows, and evidence expectations. By synthesizing these segmentation axes, stakeholders can prioritize technology investments, validation strategies, and go-to-clinical plans aligned to specific modality and end-user requirements.

Regional adoption patterns and regulatory nuances across the Americas, Europe, Middle East & Africa, and Asia-Pacific that determine clinical validation, procurement, and scaling strategies

Regional dynamics exert a profound influence on adoption pathways, clinical validation practices, and commercialization strategies for medical image analysis solutions. In the Americas, health systems often emphasize value-based care and evidence of clinical utility, prompting vendors to demonstrate outcome improvements and workflow efficiencies through focused clinical studies and pilot programs. Reimbursement environments and consolidated provider networks can accelerate enterprise deployments where vendors align product capabilities with specific operational pain points.

Europe, Middle East & Africa present a heterogeneous landscape where regulatory harmonization, data protection regimes, and variation in clinical infrastructure shape differentiated adoption. Pan-regional regulatory frameworks and national-level health priorities influence validation timelines and data sharing practices, encouraging partnerships with local clinical stakeholders to establish trust and relevance. In Asia-Pacific, rapid digitization, government-led initiatives to expand imaging capacity, and an increasing emphasis on domestic innovation create attractive conditions for scalable cloud-native solutions and public-private collaborations. Across all regions, successful strategies blend local clinical engagement, adaptable deployment models, and compliance with regional data governance standards to drive sustained adoption.

Insights into competitive positioning, partnership strategies, and capability differentiation among specialized vendors, platform providers, and clinical integrators in imaging analytics

Competitive dynamics in medical image analysis are characterized by a mix of specialized analytics vendors, larger platform providers, and clinical service integrators, each bringing complementary strengths to product development and commercialization. Specialized analytics vendors typically lead with focused clinical evidence and rapid iteration cycles, offering deep expertise in narrow applications that facilitate early clinical adoption. Platform providers contribute scale, integration capabilities, and established relationships with health systems, enabling broader distribution and enterprise-grade interoperability. Service integrators play a critical role in bridging technical solutions and clinical workflows, providing annotation, validation, and change-management services that are essential for real-world deployment.

Partnership strategies increasingly emphasize co-development with clinical institutions, certification pathways, and cloud partnerships to ensure scalability and compliance. Strategic alliances that combine clinical domain expertise, regulatory experience, and engineering capacity accelerate time-to-deployment and reduce friction in adoption. At the same time, new entrants are differentiating through niche clinical indications, improved model explainability, and performance on underrepresented cohorts. Together, these dynamics favor vendors who can demonstrate rigorous validation, transparent performance metrics, and robust post-deployment monitoring frameworks that align with institutional governance and clinician expectations.

Actionable recommendations for leaders to accelerate adoption through validation, explainability, resilient deployment, and clinician-centric commercial strategies

Industry leaders should adopt a pragmatic, evidence-led approach to advance adoption while protecting clinical and commercial investment. Prioritize rigorous clinical validation that aligns algorithmic outputs to tangible workflow improvements and clinician decision points, ensuring trials are designed to measure diagnostic confidence, reporting efficiency, and downstream clinical impact. In parallel, invest in explainability and human-in-the-loop interfaces that facilitate clinician trust and support interpretability during both pre-market evaluation and post-market surveillance. These capabilities materially reduce barriers to adoption and amplify the perceived utility of analytic outputs.

Additionally, supply chain and deployment decisions should be informed by resilience and flexibility. Embrace deployment architectures that allow hybrid cloud and on-premises inference to meet diverse data residency and latency requirements, while building modular software components to ease integration with existing PACS and EHR systems. Forge partnerships with clinical institutions for co-development and real-world performance monitoring, and establish transparent governance for bias mitigation and continuous model validation. From a commercial perspective, align pricing and contracting approaches with clinical validation pathways and outcomes-oriented value propositions to reduce procurement friction and encourage broader adoption across health systems.

Methodological foundations and multi-source research design used to triangulate clinical practice, technical performance, and regulatory considerations for imaging analytics

The research synthesis underpinning this report integrates a multi-source approach designed to capture technological, clinical, and commercial dimensions of medical image analysis. Primary inputs include structured interviews with clinical leaders, imaging scientists, and procurement executives to understand real-world workflows, evidence requirements, and purchasing behaviors. Technical assessments draw on algorithmic benchmarks, peer-reviewed literature, and performance evaluations across diverse imaging modalities to gauge generalizability and robustness. Secondary sources supplement these findings with regulatory guidance documents, clinical practice recommendations, and technology trend analyses to ensure a rounded perspective.

Methodologically, the work emphasizes triangulation across qualitative insights and technical performance data, with iterative validation of emergent themes through stakeholder workshops and scenario analyses. Ethical and governance considerations are incorporated by reviewing bias mitigation strategies, data governance best practices, and surveillance requirements. Wherever feasible, claims and conclusions are corroborated with multiple independent sources and cross-validated against clinician feedback to ensure practical relevance and reliability for decision-makers.

Concluding synthesis on the maturation of medical image analysis emphasizing validation, interoperability, and lifecycle governance as keys to sustainable clinical impact

Medical image analysis is undergoing a maturation from experimental techniques toward integrated clinical tools that must meet rigorous standards for validation, interoperability, and governance. The interplay of algorithmic advances, evolving regulatory expectations, and shifting procurement priorities is creating an environment where clinical evidence and operational integration determine long-term success. Organizations that invest in transparent validation, clinician-centric design, and supply chain resilience will be better positioned to translate analytic capability into sustained clinical impact.

Looking ahead, continuous monitoring and lifecycle management of deployed models will become non-negotiable as institutions demand reproducibility and equitable performance across patient populations. Strategic alignment between technical teams, clinical champions, and procurement stakeholders will accelerate adoption and scale. Ultimately, the technologies that succeed will be those that demonstrably improve diagnostic confidence, streamline workflows, and integrate seamlessly into the clinical fabric of imaging services.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Integration of federated learning techniques to build privacy preserving medical imaging models
  • 5.2. Implementation of cloud native AI platforms enabling scalable medical image analysis workflows
  • 5.3. Adoption of explainable AI frameworks for transparent diagnostic medical image interpretation
  • 5.4. Deployment of edge computing in portable imaging devices for real time point of care analysis
  • 5.5. Integration of multimodal imaging data including MRI PET CT with AI for comprehensive disease profiling
  • 5.6. Use of synthetic data generation to augment limited annotated medical image datasets for model training
  • 5.7. Adherence to evolving AI regulatory guidelines for validation and approval of diagnostic imaging software

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Medical Image Analysis Software Market, by Component

  • 8.1. Services
  • 8.2. Software

9. Medical Image Analysis Software Market, by Imaging Modality

  • 9.1. Computed Tomography
  • 9.2. Magnetic Resonance Imaging
  • 9.3. Nuclear Imaging
  • 9.4. Ultrasound
  • 9.5. X-Ray

10. Medical Image Analysis Software Market, by Application

  • 10.1. Cancer Detection
    • 10.1.1. Breast Cancer
    • 10.1.2. Lung Cancer
    • 10.1.3. Prostate Cancer
  • 10.2. Cardiovascular Imaging
    • 10.2.1. Cardiac Mri Analysis
    • 10.2.2. Coronary Artery Disease Detection
    • 10.2.3. Echocardiography Analysis
  • 10.3. Neurological Analysis
  • 10.4. Orthopedic Analysis

11. Medical Image Analysis Software Market, by Deployment Mode

  • 11.1. Cloud
  • 11.2. On-Premises

12. Medical Image Analysis Software Market, by End User

  • 12.1. Academic And Research Institutes
  • 12.2. Diagnostic Centers
  • 12.3. Hospitals
  • 12.4. Imaging Centers
  • 12.5. Pharmaceutical & Biotechnological Firms

13. Medical Image Analysis Software Market, by Region

  • 13.1. Americas
    • 13.1.1. North America
    • 13.1.2. Latin America
  • 13.2. Europe, Middle East & Africa
    • 13.2.1. Europe
    • 13.2.2. Middle East
    • 13.2.3. Africa
  • 13.3. Asia-Pacific

14. Medical Image Analysis Software Market, by Group

  • 14.1. ASEAN
  • 14.2. GCC
  • 14.3. European Union
  • 14.4. BRICS
  • 14.5. G7
  • 14.6. NATO

15. Medical Image Analysis Software Market, by Country

  • 15.1. United States
  • 15.2. Canada
  • 15.3. Mexico
  • 15.4. Brazil
  • 15.5. United Kingdom
  • 15.6. Germany
  • 15.7. France
  • 15.8. Russia
  • 15.9. Italy
  • 15.10. Spain
  • 15.11. China
  • 15.12. India
  • 15.13. Japan
  • 15.14. Australia
  • 15.15. South Korea

16. Competitive Landscape

  • 16.1. Market Share Analysis, 2024
  • 16.2. FPNV Positioning Matrix, 2024
  • 16.3. Competitive Analysis
    • 16.3.1. Siemens Healthineers AG
    • 16.3.2. General Electric Company
    • 16.3.3. Koninklijke Philips N.V.
    • 16.3.4. Fujifilm Holdings Corporation
    • 16.3.5. Canon Medical Systems Corporation
    • 16.3.6. Agfa-Gevaert N.V.
    • 16.3.7. Sectra AB
    • 16.3.8. Intelerad Medical Systems, Inc.
    • 16.3.9. Hologic, Inc.
    • 16.3.10. International Business Machines Corporation
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제