![]() |
시장보고서
상품코드
1838890
마케팅용 인공지능(AI) 시장 : 기술, 용도, 전개, 조직 규모, 산업 분야별 - 세계 예측(2025-2032년)Artificial Intelligence in Marketing Market by Technology, Application, Deployment, Organization Size, Industry Vertical - Global Forecast 2025-2032 |
마케팅용 인공지능(AI) 시장은 2032년까지 연평균 복합 성장률(CAGR) 19.42%로 572억 9,000만 달러에 이를 것으로 예측됩니다.
주요 시장 통계 | |
---|---|
기준 연도 : 2024년 | 138억 4,000만 달러 |
추정 연도 : 2025년 | 165억 9,000만 달러 |
예측 연도 : 2032년 | 572억 9,000만 달러 |
CAGR(%) | 19.42% |
마케팅 기능 전반에 걸쳐 가속화되고 있는 인공지능의 통합은 조직이 고객을 끌어들이고, 참여시키고, 유지하는 방식을 재구성하고 있습니다. 이 소개에서는 마케팅에서 AI를 포인트 솔루션이 아닌 전략적 인에이블러로 포지셔닝하고, 개인화 향상, 미디어 투자 최적화, 크리에이티브 및 운영 워크플로우 자동화에 있어 AI의 역할을 강조합니다. AI를 능력과 관행의 집합으로 인식함으로써, 리더는 시범적인 피로감에서 벗어나 효율성과 고객 관련성을 측정 가능한 수준으로 개선하는 확장 가능한 프로그램으로 나아갈 수 있습니다.
최근 기계 인식, 자연어 이해, 예측 분석의 발전으로 AI가 해결할 수 있는 마케팅 문제의 범위가 넓어지고 있습니다. 이러한 기능은 현재 프로그래매틱 광고, 컨텐츠 제작, 대화 경험, 측정 프레임워크 전반에 통합되어 마케터들이 규칙 기반 작업에서 성과 중심의 오케스트레이션으로 전환할 수 있도록 돕습니다. 그 결과, 엄격한 거버넌스와 기능 간 운영 모델을 채택한 조직은 실험적 성공을 일관된 상업적 수익으로 전환할 수 있는 더 나은 체계를 갖출 수 있습니다.
또한, 소개는 생태계적 사고의 중요성을 강조하고 있습니다. 벤더, 크리에이티브 파트너, 데이터 제공업체, 클라우드 및 하드웨어 공급업체는 각각 AI 도입의 속도와 지속성에 영향을 미칩니다. 따라서 경영진은 자체 역량에 대한 투자와 전략적 파트너십의 균형을 맞추고, 거버넌스, 인재 육성, 기술 로드맵이 진화하는 소비자 기대와 규제 환경과 일치하도록 해야 합니다.
AI가 틈새 실험에서 고객 라이프사이클 전반에 걸쳐 운영할 수 있는 역량으로 전환됨에 따라 마케팅은 변화의 물결에 휩싸여 있습니다. 가장 눈에 띄는 변화 중 하나는 정적인 세분화에서 AI가 주도하는 지속적인 개인화(AI-driven continuous personalization)로의 전환으로, 소비자의 신호와 문맥 데이터에 따라 메시징과 크리에이티브를 거의 실시간으로 조정하는 것입니다. 이를 통해 보다 적절한 상호작용을 대규모로 가능하게 하고, 브랜드가 고객 여정과 평생 가치에 대해 생각하는 방식을 재정의할 수 있습니다.
또 다른 큰 변화는 통합 데이터 패브릭과 이벤트 중심 아키텍처를 중심으로 한 측정과 최적화의 통합입니다. AI를 활용한 어트리뷰션과 인크리멘탈리티 모델링은 기존 휴리스틱을 대체하여 마케터들이 보다 정확하게 비용을 배분하고, 측정 가능한 ROI를 중심으로 크리에이티브를 반복할 수 있도록 돕고 있습니다. 또한, 내장된 API와 로우코드 플랫폼을 통한 AI의 민주화로 인해 접근 곡선이 평탄해지고 소규모 팀도 고급 기능을 도입할 수 있게 되면서 벤더 선택과 통합 규율의 중요성이 커지고 있습니다.
동시에 제너레이티브 방식으로 카피, 이미지, 동영상의 신속한 프로토타이핑이 가능해지면서 크리에이티브 제작도 진화하고 있습니다. 이로 인해 캠페인 시장 출시 시간이 단축되는 반면, 브랜드 일관성, 지적재산권 관리, 윤리적 가드레일에 대한 의문이 제기되고 있습니다. 마지막으로, 프라이버시와 규제의 발전은 AI 역량의 성숙과 교차하여 데이터 전략, 동의 관리, 국경 간 업무에 대한 재평가를 강요하고 있습니다. 이러한 변화에 따라 마케팅 리더들은 AI를 효과적이고 책임감 있게 활용하기 위해 인재, 거버넌스, 인프라에 투자해야 합니다.
2025년 미국의 무역 정책에서 비롯된 최근 관세 동향의 누적된 영향은 마케팅 기술 및 인프라 제공업체의 비용 구조와 운영 계획에 새로운 변수를 도입했습니다. 관세 관련 마찰은 데이터센터와 엣지 컴퓨팅을 지원하는 하드웨어 공급망에 영향을 미치며, 대규모 AI 워크로드를 강화하는 GPU, 전용 가속기, 네트워크 장비의 가용성과 비용에 영향을 미칩니다. 이러한 압력은 클라우드 서비스 제공업체, 시스템 통합사업자, 하드웨어에 의존하는 벤더에게 연쇄적으로 영향을 미쳐 조달 전략을 재협상하고 중요한 구성 요소의 리드 타임을 연장하도록 유도합니다.
하드웨어뿐만 아니라 관세는 국경을 초월한 소프트웨어 라이선스, 벤더와의 파트너십, 크리에이티브 제작 아웃소싱의 경제성에도 영향을 미칩니다. 세계 크리에이티브 팩토리와 다국적 공급망을 통한 광고 기술 스택에 의존하는 마케팅 조직은 관세에 대한 노출과 지연 위험을 줄이기 위해 조달 모델을 재평가했습니다. 이러한 재평가는 종종 관세의 복잡성을 내재화하고 관세 변동에 대한 노출을 줄이는 지역 공급업체와 번들 서비스 계약을 선호하는 것으로 이어집니다.
관세 변동은 데이터 거버넌스 및 컴플라이언스에도 영향을 미치며, 기업은 온쇼어 구축과 다른 관할권에서 호스팅되는 클라우드 기반 서비스 간의 절충점을 고려하게 될 것입니다. 일부 기업들은 워크로드 세분화를 가속화하여 민감한 데이터와 핵심 추론 시스템을 원하는 지역 내에 유지하면서, 민감하지 않은 워크플로우를 저비용 지역으로 오프로드하고 있습니다. 전반적으로 이러한 적응은 탄력적인 아키텍처, 공급업체 다양화, 시나리오 플래닝의 중요성을 높이고 있습니다. 따라서 마케팅 리더는 캠페인 계획과 기술 로드맵의 민첩성을 유지하기 위해 무역 정책에 대한 고려를 조달, 벤더 리스크 평가, 총소유비용(TCO) 논의에 포함시켜야 합니다.
세분화에 기반한 통찰력을 통해 AI에 대한 투자가 집중되는 곳과 역량 선택이 마케팅 목표에 어떻게 매핑되는지 파악할 수 있습니다. 기술별로 보면 컴퓨터 비전, 데이터 분석, 딥러닝, 머신러닝, 자연어 처리, 컴퓨터 비전, 데이터 분석, 딥러닝, 머신러닝, 자연어 처리로 확산되고 있습니다. 컴퓨터 비전 내에서 이미지 인식과 비디오 분석은 자동 자산 분류와 장면 이해를 가능하게 하고, 광고 타겟팅과 컨텐츠 조정 기능을 향상시킵니다. 데이터 분석은 설명적 분석, 예측적 분석, 처방적 분석으로 나뉘며, 각각 단계별 처방적 캠페인 액션을 지원하며, 딥러닝은 이미지 생성, 시퀀싱 모델링, 크리에이티브 합성을 지원하는 컨볼루션, 생성 역설적 신경망, 순환 신경망, 머신러닝은 입찰 전략, 반응 예측, 창발적 오디언스 예측을 포함합니다. 신경망, 생성 역설적 신경망, 순환 신경망, 머신러닝은 입찰 전략, 반응 예측, 창발적 오디언스 발견을 최적화하는 강화학습, 지도학습, 비지도학습, 자연어 처리, 다국어 컨텐츠, 브랜드 건강 모니터링, 자동 카피 생성을 강화하는 언어 번역, 감정 분석, 텍스트 생성, 다국어 컨텐츠, 브랜드 건전성 모니터링을 포함합니다.
The Artificial Intelligence in Marketing Market is projected to grow by USD 57.29 billion at a CAGR of 19.42% by 2032.
KEY MARKET STATISTICS | |
---|---|
Base Year [2024] | USD 13.84 billion |
Estimated Year [2025] | USD 16.59 billion |
Forecast Year [2032] | USD 57.29 billion |
CAGR (%) | 19.42% |
The accelerating integration of artificial intelligence across marketing functions is reshaping how organizations attract, engage, and retain customers. This introduction frames AI in marketing as a strategic enabler rather than a point solution, emphasizing its role in elevating personalization, optimizing media investments, and automating creative and operational workflows. By positioning AI as both a capability and a set of practices, leaders can move beyond pilot fatigue toward scalable programs that deliver measurable improvements in efficiency and customer relevance.
Recent advances in machine perception, natural language understanding, and predictive analytics have broadened the set of marketing problems that AI can address. These capabilities are now embedded across programmatic advertising, content production, conversational experiences, and measurement frameworks, enabling marketers to shift from rule-based tasks to outcome-driven orchestration. As a result, organizations that adopt rigorous governance and cross-functional operating models are better equipped to translate experimental wins into consistent commercial returns.
This introduction also underscores the importance of ecosystem thinking. Vendors, creative partners, data providers, and cloud and hardware suppliers each influence the velocity and sustainability of AI adoption. Consequently, executives must balance investment in proprietary capabilities with strategic partnerships, ensuring that governance, talent development, and technology roadmaps remain aligned with evolving consumer expectations and regulatory environments.
Marketing is undergoing a wave of transformative shifts as AI moves from niche experimentation to operationalized capability across the customer lifecycle. One of the most visible shifts is the transition from static segmentation to continuous, AI-driven personalization that adjusts messaging and creative in near real time based on signals from consumers and contextual data. This enables more relevant interactions at scale and redefines how brands think about customer journeys and lifetime value.
Another major shift is the consolidation of measurement and optimization around unified data fabrics and event-driven architectures. AI-powered attribution and incrementality modeling are replacing legacy heuristics, empowering marketers to allocate spend more precisely and to iterate creative with measurable ROI focus. Moreover, the democratization of AI through prebuilt APIs and low-code platforms is flattening the access curve, allowing smaller teams to deploy sophisticated capabilities while increasing the importance of vendor selection and integration discipline.
Simultaneously, creative production is evolving as generative methods enable rapid prototyping of copy, imagery, and video. This reduces time-to-market for campaigns but also raises questions about brand consistency, IP management, and ethical guardrails. Finally, privacy and regulatory developments are intersecting with AI capability maturation, forcing a re-evaluation of data strategies, consent management, and cross-border operations. Together, these shifts demand that marketing leaders invest in talent, governance, and infrastructure to harness AI effectively and responsibly.
The cumulative impact of recent tariff developments originating from United States trade policy in 2025 has introduced new variables into the cost structures and operational plans of marketing technology and infrastructure providers. Tariff-related friction affects hardware supply chains that underpin data centers and edge computing, influencing the availability and cost of GPUs, specialized accelerators, and networking equipment that power large-scale AI workloads. These pressures cascade to cloud service providers, systems integrators, and hardware-dependent vendors, prompting re-negotiations of procurement strategies and longer lead times for critical components.
Beyond hardware, tariffs influence the economics of cross-border software licensing, vendor partnerships, and outsourced creative production. Marketing organizations that rely on global creative factories or ad tech stacks with multinational supply chains are reassessing sourcing models to mitigate duty exposure and latency risk. This reassessment often leads to a preference for regional suppliers or bundled service agreements that internalize customs complexity and reduce exposure to tariff volatility.
Tariff dynamics also interact with data governance and compliance, as companies weigh the trade-offs between onshore deployments and cloud-based offerings hosted in different jurisdictions. Some enterprises are accelerating segmentation of workloads to keep sensitive data and core inference systems within preferred geographies, while offloading non-sensitive workflows to lower-cost regions. In aggregate, these adaptations increase the emphasis on resilient architecture, supplier diversification, and scenario planning. Marketing leaders should therefore integrate trade-policy sensitivity into procurement, vendor risk assessment, and total-cost-of-ownership discussions to preserve agility in campaign planning and technology roadmaps.
Segmentation-driven insights reveal where AI investments are concentrated and how capability choices map to marketing objectives. Based on Technology, the landscape spans Computer Vision, Data Analytics, Deep Learning, Machine Learning, and Natural Language Processing; within Computer Vision, Image Recognition and Video Analytics enable automated asset classification and scene understanding that improve ad targeting and content moderation; Data Analytics breaks down into Descriptive Analytics, Predictive Analytics, and Prescriptive Analytics, each supporting progressively prescriptive campaign actions; Deep Learning encompasses Convolutional Neural Networks, Generative Adversarial Networks, and Recurrent Neural Networks which underpin image generation, sequence modeling, and creative synthesis; Machine Learning includes Reinforcement Learning, Supervised Learning, and Unsupervised Learning that optimize bidding strategies, response prediction, and emergent audience discovery; and Natural Language Processing covers Language Translation, Sentiment Analysis, and Text Generation powering multilingual content, brand health monitoring, and automated copy creation.
Based on Application, deployments range from Ad Personalization, Campaign Management, Chatbots, Content Generation, Customer Segmentation, and Lead Generation; Ad Personalization includes Dynamic Creative Optimization and Real-Time Bidding, enabling responsive creative swaps and auction-time decisions; Campaign Management comprises Email Campaign Management and Social Media Campaign Management for lifecycle outreach and cross-channel orchestration; Chatbots differentiate between AI Chatbots and Rule-Based Chatbots to balance conversational depth with deterministic flows; Content Generation spans Automated Copywriting, Image Generation, and Video Generation, accelerating creative iteration; Customer Segmentation uses Behavioral Segmentation, Demographic Segmentation, and Psychographic Segmentation to refine targeting; and Lead Generation combines Automated Outreach with Predictive Lead Scoring to increase pipeline efficiency.
Based on Deployment, choices between Cloud and On-Premise deployments influence latency, control, and compliance trade-offs, shaping where inference and training workloads reside. Based on Organization Size, Large Enterprises prioritize integration, governance, and vendor consolidation while Small & Medium Enterprises emphasize turnkey solutions, cost-effectiveness, and rapid time-to-value. Based on Industry Vertical, applications differ across BFSI, Healthcare, IT and Telecom, Manufacturing, Media and Entertainment, and Retail; within Manufacturing, Automotive, Consumer Electronics, and Industrial Manufacturing present distinct use cases from personalized aftersales communications to predictive maintenance messaging, and within Media and Entertainment, Gaming, Publishing, and Streaming Services focus on audience engagement, content recommendation, and monetization strategies. These segmentation layers inform technology roadmaps and procurement priorities, helping leaders identify adjacent capabilities that accelerate impact without disproportionate risk.
Regional dynamics shape the adoption pace, regulatory constraints, and partner ecosystems that marketing teams must navigate. In the Americas, investment tends to prioritize rapid innovation, ecosystem partnerships, and programmatic sophistication, with a strong emphasis on integrating AI into media buying and customer experience platforms. This region also features advanced data infrastructure and a robust vendor landscape, which together enable more experimental deployments, though privacy regulations and state-level data rules require careful compliance architectures.
Across Europe, Middle East & Africa, varied regulatory regimes and linguistic diversity drive differential adoption patterns. Stricter privacy frameworks and heightened scrutiny of algorithmic transparency encourage investments in explainability, consent-first data models, and localized creative strategies. Markets in this region often favor interoperable standards and vendor solutions that can be tailored to multiple legal regimes and languages, which in turn fosters growth in specialist providers focused on compliance and localization.
In Asia-Pacific, the competitive pressure to adopt AI at scale is intense, with a mix of highly digitized markets and rapidly modernizing economies. This region often leads in mobile-first experiences, social commerce integration, and platform-driven ad ecosystems, producing use cases that emphasize lightweight on-device inference, real-time personalization, and creative automation tailored to high-frequency consumer interactions. Each regional posture influences partnership selection, deployment models, and talent strategies, making geographic sensitivity a key element of any global AI marketing program.
The competitive landscape among vendors and solution providers is defined by a spectrum that ranges from infrastructure and cloud specialists to creative platforms and niche AI boutiques. Infrastructure providers focus on scalable compute, inference acceleration, and data governance tools, while platform vendors bundle analytics, campaign management, and creative automation into end-to-end suites. Niche providers differentiate on domain expertise, offering tailored models and verticalized features for industries such as financial services, healthcare, and retail.
Partnership models are increasingly important as no single vendor typically covers the full stack of needs for sophisticated marketing organizations. Systems integrators and consultancies play a pivotal role in stitching together best-of-breed components, implementing governance, and enabling change management. Meanwhile, data providers and identity-resolution specialists remain central to building persistent consumer profiles, especially where first-party data strategies are being prioritized.
Buy-side teams should evaluate potential suppliers on criteria that include model explainability, data lineage, latency guarantees, and support for regional compliance. Equally important are the vendor roadmaps and openness to co-innovation, as the pace of AI evolution means that long-term product fit will depend on the partner's ability to adapt and to collaborate on bespoke use cases. Leadership teams that balance strategic platform commitments with tactical integrations gain the flexibility to iterate rapidly while preserving control over critical capabilities.
Leaders should take decisive actions to capture AI-driven value while managing attendant risks. First, prioritize governance frameworks that codify data ethics, model validation, and explainability requirements across use cases; establishing cross-functional committees that include legal, privacy, and product stakeholders reduces operational friction and increases stakeholder confidence. Second, invest in modular architectures and API-first platforms that permit incremental adoption without vendor lock-in, enabling teams to swap models or integrate new data sources as needs evolve.
Talent strategies must blend internal capability-building with strategic external hires. Upskilling marketing teams in data literacy and model interpretation accelerates adoption, while targeted recruitment of data engineers and ML engineers ensures operational robustness. Procurement and vendor-management practices should be updated to assess total cost of ownership, resilience to trade policy shifts, and support for regional compliance. Additionally, embed measurement frameworks that prioritize experimental design and continuous validation so that investments in AI translate into verifiable business outcomes.
Finally, leaders should pilot generative creative initiatives with clear brand and IP guardrails, and pair these pilots with policy and training to mitigate misuse. By combining governance, modular technology choices, talent development, and disciplined measurement, organizations can scale AI responsibly and sustainably in their marketing organizations.
This research synthesizes primary and secondary inputs to construct an evidence-based perspective on AI in marketing, combining stakeholder interviews, vendor briefings, and technical literature reviews with practical case studies and documented deployments. Primary inputs include structured discussions with marketing executives, data scientists, and solution architects who described implementation challenges, success factors, and governance approaches. These interviews were anonymized and analyzed to identify recurring themes in adoption, procurement, and integration practices.
Secondary inputs consist of technical documentation, vendor white papers, and peer-reviewed research that detail algorithmic approaches, performance trade-offs, and deployment considerations. Together, these sources were evaluated for methodological rigor and relevance to enterprise marketing contexts, with particular attention to reproducibility and operational constraints. Case studies were selected to represent diverse organization sizes, industry verticals, and deployment models, illustrating how different constraints shape architectural and organizational choices.
Analytical methods included comparative capability mapping, scenario analysis for supply chain contingencies, and qualitative coding of interview transcripts to surface governance and talent patterns. Throughout, emphasis was placed on actionable insights rather than speculative projections, ensuring that recommendations are grounded in observed practice and validated approaches that marketing leaders can adapt to their own operating environments.
In conclusion, artificial intelligence is transforming marketing from a series of tactical activities into an integrated, data-driven discipline where personalization, creative automation, and measurement converge. Organizations that pair ambitious technology adoption with robust governance, modular architecture choices, and talent development will be best positioned to capture the benefits while containing risk. The cumulative effects of trade policy, regional regulation, and vendor dynamics underscore the need for resilient procurement and deployment strategies that reflect both geopolitical and operational realities.
Successful programs view AI as a capability that must be institutionalized through cross-functional processes and continuous validation rather than as a set of isolated pilots. By aligning investment decisions with clear measurement frameworks and by maintaining flexibility in vendor relationships, marketing leaders can reduce execution risk and accelerate time-to-impact. Ultimately, the organizations that win will be those that balance strategic clarity with practical implementation discipline, turning AI potential into sustained customer value.