시장보고서
상품코드
1838945

자동차용 플라스틱 첨가제 시장 : 첨가제 유형, 폴리머 유형, 차량 유형, 용도별 - 세계 예측(2025-2032년)

Automotive Plastic Additives Market by Additive Type, Polymer Type, Vehicle Type, Application - Global Forecast 2025-2032

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 190 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

자동차용 플라스틱 첨가제 시장은 2032년까지 연평균 복합 성장률(CAGR) 7.05%로 142억 3,000만 달러에 이를 것으로 예측됩니다.

주요 시장 통계
기준 연도 : 2024년 82억 5,000만 달러
추정 연도 : 2025년 88억 3,000만 달러
예측 연도 : 2032년 142억 3,000만 달러
CAGR(%) 7.05%

최신 자동차 플랫폼의 성능, 규제 및 지속가능성 요구 사항을 충족시키기 위해 첨단 플라스틱 첨가제가 핵심적인 역할을 하는 이유를 중점적으로 소개합니다.

자동차 산업은 전기화, 지속가능성에 대한 소비자의 기대, 자동차 배기가스 및 사용 후 제품에 미치는 영향에 대한 규제 강화로 인해 근본적인 소재의 진화를 겪고 있습니다. 이러한 상황에서 플라스틱 첨가제는 폴리머의 경량화 및 비용 최적화를 지원하면서 성능, 안전성 및 미적 요구 사항을 충족시킬 수 있도록 하는 데 매우 중요한 역할을 합니다. 이 소개에서는 첨가제의 선택과 도입이 현대 차량 설계 및 공급업체 전략의 핵심인 이유를 설명합니다.

자동차 플랫폼이 다양해짐에 따라 전동화 파워트레인 및 첨단운전자보조시스템(ADAS)에서 발생하는 열적, 화학적 스트레스와 기계적 요구사항을 조화시키기 위해 수지의 배합이 변화하고 있습니다. 그 결과, 적층 기술자는 아키텍처 초기 단계의 논의에 없어서는 안 될 존재가 되어가고 있습니다. 이러한 변화는 재료 기술자, 부품 설계자, 조달 전문가의 다학제적 협력에 중점을 두어 제품 수명주기 동안 예측 가능하고 제조 가능한 결과를 가져오는 추가 기술 선택이 이루어질 수 있도록 보장합니다.

또한, 시장 진출기업은 내충격성, 자외선 안정성, 난연성, 색상 일관성, 가공성 등 기능적 기대치의 복잡한 매트릭스를 탐색하면서 동시에 순환성과 규제 준수에 대응해야 합니다. 전략적 첨가제 로드맵을 조기에 채택하면 통합 위험을 줄이고 광범위한 기업의 지속가능성 목표와 재료 결정을 일치시킬 수 있습니다. 결국, 성공의 열쇠는 재료 과학의 진보를 미래의 자동차의 진화하는 요구 사항을 충족하는 견고하고 확장 가능한 생산 방식으로 전환하는 조직의 능력에 달려 있습니다.

전동화, 지속가능성 의무화, 제조 현대화, 적층가공 혁신, 공급업체의 역할, 재료 선택 전략을 근본적으로 재정의하는 방법

자동차 소재를 둘러싼 환경은 공급업체의 역할, R&D 우선순위, 생산 공정를 재구성하는 변혁적 변화를 겪고 있습니다. 전동화는 기존 폴리머 시스템에서는 어려웠던 새로운 열적, 화학적 노출 프로파일을 도입하고, 열 안정성과 전기 절연성을 향상시키는 특수 첨가제로 수지를 재합성하기 위한 범부처적 노력을 촉진하고 있습니다. 동시에 자동차 경량화 추진으로 금속에서 엔지니어링 플라스틱으로의 대체가 진행되면서 충격 개질제와 난연제의 전략적 중요성이 높아지고 있습니다.

이와 함께 지속가능성을 추구하는 움직임은 첨가제 개발 방향을 재활용성을 고려한 화학물질과 바이오 배합으로 전환하도록 유도하고 있습니다. 규제 압력과 OEM의 지속가능성 목표는 전통적인 우려 물질을 제거하고 기계적 재활용 및 화학적 재활용 흐름에 부합하는 첨가제를 채택하도록 촉구하고 있습니다. 이러한 환경 목표와 재료공학의 조화는 규제 준수와 제품 차별화의 경계를 점차 모호하게 만들고 있으며, 시장 리더들은 친환경 첨가제 솔루션을 가치 제안으로 활용하고 있습니다.

또한, 첨단 성형 기술과 인라인 품질 관리의 보급으로 제조 역학이 변화하고 있으며, 공정 견고성과 일관된 부품 성능을 위해 최적화된 첨가제가 요구되고 있습니다. 그 결과, 공급업체들은 보다 통합된 서비스 모델로 전환하여 응용 테스트, 화합물 개발 및 인증 주기를 단축하기 위한 공동 엔지니어링을 제공합니다. 이러한 변화를 종합하면, 소재의 혁신성, 서비스의 충실도, 공급망의 민첩성이 상업적 모멘텀을 좌우하는 경쟁의 장이 형성되고 있습니다.

최근 관세 동향으로 인해 프로그램의 연속성을 보호하기 위해 공급망 방향 전환, 공급처 다변화, 지역적 화합물에 대한 투자가 어떻게 강요되고 있는지를 평가합니다.

미국의 관세 정책은 2025년을 향해 조정되고 있으며, 자동차 첨가제 공급망 전체에 뚜렷한 역풍과 재조정의 필요성을 야기하고 있습니다. 무역 조치와 그 파급 효과는 공급 다변화, 니어쇼어링, 재고 최적화의 상대적 중요성을 높이고, 컴파운드 제조업체와 OEM 모두 비용 노출과 연속성 리스크를 줄이기 위해 조달 전략을 재검토하도록 강요하고 있습니다. 그 결과, 조달팀은 국경 간 비용 상황의 변화 속에서 공급업체 적격성 확인 작업과 비상 대응 계획을 강화하여 프로그램 타임라인을 유지하게 되었습니다.

이에 따라 일부 제조업체는 중요한 배합 능력과 공구의 현지화를 가속화하여 관세가 부과되는 긴 물류 경로에 대한 의존도를 낮추고 있습니다. 이 전술적 축은 종종 자체 첨가제 등급을 사양에 맞게 생산할 수 있도록 하기 위한 선행 투자 및 지역 화학 제조업체와의 협력 계약이 필요합니다. 동시에 기업들은 보다 투명한 가격 설정과 향후 관세 변동에 대한 계약상 보호를 위해 국제 공급업체와의 상업 조건 및 장기 계약을 재평가했습니다.

또한, 관세 환경은 대체 폴리머와 첨가제 조합 및 총 상륙 비용을 최적화하기 위한 재료 통합 전략을 검토하는 비용 중심 설계 접근법의 필요성을 강화시키고 있습니다. 전략적 조달은 현재 단기적인 재정적 압박과 장기적인 탄력성 목표의 균형을 맞추고 있으며, 관세 시나리오를 적극적으로 모델링하고 공급업체 생태계를 다양화하는 조직은 마진을 보호하고 지역 무역 규정을 준수하면서 프로그램 성과를 유지하는 데 유리한 입장에 있습니다. 프로그램 성과를 유지하기 위해 유리한 위치에 있습니다.

첨가제 기능, 고분자 기판, 차량 등급, 용도 아키텍처를 통합한 종합적인 세분화 분석을 통해 재료 전략을 안내합니다.

효과적인 세분화 통찰력을 얻기 위해서는 첨가제의 기능, 폴리머 기판, 차량 등급, 용도 아키텍처가 재료 선택 및 상용화 전략에 어떤 영향을 미치는지 종합적으로 이해해야 합니다. 첨가제의 유형에 따라 시장에서는 항산화제, 착색제, 난연제, 충격 개선제, 가소제, 자외선 안정제 등이 고려되며, 각각 수명, 미관, 난연 성능, 인성, 유연성, 광안정성 등 개별 성능 벡터에 대응합니다. 이러한 첨가제는 종종 특정 폴리머 매트릭스 내에서 상용성과 장기적인 노화 거동의 균형을 고려한 조합으로 사용됩니다.

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 인사이트

제6장 미국 관세의 누적 영향 2025

제7장 AI의 누적 영향 2025

제8장 자동차용 플라스틱 첨가제 시장 : 첨가제 유형별

  • 항산화물질
  • 착색제
  • 내화물
  • 충격 개질제
  • 가소제
  • 자외선 안정제

제9장 자동차용 플라스틱 첨가제 시장 : 폴리머 유형별

  • 폴리아미드
  • 폴리카보네이트
  • 폴리에틸렌
  • 폴리프로필렌
  • PVC

제10장 자동차용 플라스틱 첨가제 시장 : 차량 유형별

  • 상용차
  • 승용차

제11장 자동차용 플라스틱 첨가제 시장 : 용도별

  • 전기 전자부품
    • 커넥터
    • 하우징
    • 센서
    • 와이어 하네스
  • 외장 부품
    • 범퍼
    • 그릴
    • 미러 하우징
    • 스포일러
  • 내장 부품
    • 콘솔
    • 대시보드 패널
    • 도어 패널
    • 시트 컴포넌트
  • 보닛하 컴포넌트
    • 에어 인테이크 매니폴드
    • 냉각 시스템 컴포넌트
    • 엔진 커버
    • 연료 시스템 컴포넌트

제12장 자동차용 플라스틱 첨가제 시장 : 지역별

  • 아메리카
    • 북미
    • 라틴아메리카
  • 유럽, 중동 및 아프리카
    • 유럽
    • 중동
    • 아프리카
  • 아시아태평양

제13장 자동차용 플라스틱 첨가제 시장 : 그룹별

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

제14장 자동차용 플라스틱 첨가제 시장 : 국가별

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 중국
  • 인도
  • 일본
  • 호주
  • 한국

제15장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • BASF SE
    • Covestro AG
    • Saudi Basic Industries Corporation
    • Dow Inc.
    • Eastman Chemical Company
    • Evonik Industries AG
    • Solvay S.A.
    • Arkema S.A.
    • LANXESS AG
    • LyondellBasell Industries N.V.
LSH 25.10.22

The Automotive Plastic Additives Market is projected to grow by USD 14.23 billion at a CAGR of 7.05% by 2032.

KEY MARKET STATISTICS
Base Year [2024] USD 8.25 billion
Estimated Year [2025] USD 8.83 billion
Forecast Year [2032] USD 14.23 billion
CAGR (%) 7.05%

A focused introduction outlining why advanced plastic additives are central to meeting performance, regulatory, and sustainability demands across modern vehicle platforms

The automotive industry is undergoing a fundamental material evolution driven by electrification, consumer expectations for sustainability, and intensifying regulatory scrutiny on vehicle emissions and end-of-life impacts. Within this context, plastic additives play a pivotal role in enabling polymers to meet performance, safety, and aesthetic requirements while supporting weight reduction and cost optimization. This introduction frames why additive selection and deployment are central to modern vehicle design and supplier strategy.

As vehicle platforms diversify, resin formulations are being adapted to reconcile mechanical demands with thermal and chemical stresses arising from electrified powertrains and advanced driver assistance systems. Consequently, additive technologists are increasingly integral to early-stage architecture discussions. This shift places emphasis on multi-disciplinary collaboration among materials engineers, part designers, and procurement professionals to ensure that additive choices deliver predictable, manufacturable outcomes through the product lifecycle.

Moreover, market participants must navigate a complex matrix of functional expectations-impact resistance, UV stability, flame retardancy, color consistency, and processability-while simultaneously addressing circularity and regulatory compliance. Early adoption of strategic additive roadmaps reduces integration risk and aligns materials decisions with broader corporate sustainability goals. Ultimately, success hinges on the ability of organizations to translate material science advances into robust, scalable production practices that meet the evolving demands of tomorrow's vehicles.

How electrification, sustainability mandates, and manufacturing modernization are fundamentally redefining additive innovation, supplier roles, and material selection strategies

The automotive materials landscape is experiencing transformative shifts that are reshaping supplier roles, R&D priorities, and production processes. Electrification has introduced new thermal and chemical exposure profiles that challenge legacy polymer systems, prompting cross-functional efforts to requalify resins with specialized additives that deliver improved thermal stability and electrical insulation. Simultaneously, the push for lighter vehicles is driving increased substitution of metals with engineered plastics, elevating the strategic importance of impact modifiers and flame retardants that enable safety-compliant, weight-optimized components.

In parallel, sustainability drivers are prompting a reorientation of additive development toward recyclability-friendly chemistries and bio-based formulations. Regulatory pressure and OEM sustainability targets are incentivizing the removal of legacy substances of concern and the adoption of additives compatible with mechanical recycling and chemical recycling streams. This alignment between environmental objectives and materials engineering is progressively blurring the line between regulatory compliance and product differentiation, as market leaders leverage eco-conscious additive solutions as a value proposition.

Furthermore, manufacturing dynamics are changing with the proliferation of advanced molding techniques and in-line quality controls, which demand additives optimized for process robustness and consistent part performance. As a result, suppliers are moving toward more integrated service models, offering application trials, compound development, and co-engineering to shorten qualification cycles. Taken together, these shifts are creating a competitive arena where material innovation, service depth, and supply-chain agility determine commercial momentum.

Evaluating how recent tariff developments have compelled supply chain reorientation, sourcing diversification, and regional compounding investments to protect program continuity

Tariff policy adjustments in the United States for 2025 have created a distinct set of headwinds and recalibration needs across automotive additive supply chains. Trade measures and their ripple effects have increased the relative importance of supply diversification, nearshoring, and inventory optimization, compelling both compounders and OEMs to revisit sourcing strategies to mitigate cost exposure and continuity risk. Consequently, procurement teams have intensified supplier qualification efforts and contingency planning to preserve program timelines under shifting cross-border cost conditions.

In response, some manufacturers have accelerated localization of critical compounding capabilities and tooling to reduce dependency on long, tariff-exposed logistics corridors. This tactical pivot often requires upfront capital and collaborative agreements with regional chemical producers to ensure proprietary additive grades can be manufactured to specification. At the same time, firms are reassessing commercial terms and long-term contracts with international suppliers to obtain greater pricing transparency and contractual protection against future tariff volatility.

Moreover, the tariff environment has reinforced the need for design-for-cost approaches that consider alternative polymer-additive pairings and material consolidation strategies to optimize total landed cost. Strategic procurement now balances near-term financial pressures with long-term resilience objectives, and organizations that proactively model tariff scenarios and diversify supplier ecosystems will be better positioned to sustain program performance while protecting margin and maintaining compliance with regional trade regulations.

Comprehensive segmentation analysis that integrates additive function, polymer substrate, vehicle class, and application architecture to guide material strategy

Effective segmentation insight requires understanding how additive function, polymer substrate, vehicle class, and application architecture collectively influence material selection and commercialization strategy. Based on Additive Type, market considerations span antioxidants, colorants, flame retardants, impact modifiers, plasticizers, and UV stabilizers, each addressing discrete performance vectors such as longevity, aesthetics, fire performance, toughness, flexibility, and photo-stability. These additive classes are often deployed in combinations that must be balanced for compatibility and long-term aging behavior within specific polymer matrices.

Based on Polymer Type, material decisions revolve around polyamide, polycarbonate, polyethylene, polypropylene, and PVC, with each resin family presenting unique processing windows, surface requirements, and performance trade-offs. For instance, polyamides demand thermal and hydrolytic stability enhancements, whereas polycarbonates frequently require UV and flame retardant strategies. Transitioning between polymers or blending resins necessitates revalidated additive packages to maintain target properties and manufacturability.

Based on Vehicle Type, the differentiation between commercial vehicles and passenger cars affects additive priorities and lifecycle expectations, as durability and load-bearing requirements diverge between use cases. Additionally, based on Application, additive performance must be tailored to component function: electrical and electronic components-such as connectors, housings, sensors, and wire harnesses-require electrical insulation and thermal management support; exterior components-like bumpers, grilles, mirror housings, and spoilers-demand color stability, impact resistance, and weatherability; interior components-consoles, dashboard panels, door panels, and seat components-prioritize tactile feel, flame retardancy, and low VOC profiles; and under-the-hood components-air intake manifolds, cooling system components, engine covers, and fuel system components-require enhanced heat resistance, chemical compatibility, and mechanical durability. By integrating these segmentation dimensions, organizations can more precisely align additive development with application-specific requirements and regulatory constraints.

Regional dynamics revealing how supply chain resilience, regulatory stringency, and manufacturing scale drive divergent additive priorities across global markets

Regional dynamics shape where innovation, manufacturing capacity, and regulatory pressures converge to influence additive development and adoption. In the Americas, supply chains are increasingly focused on reshoring critical compounding and accelerating collaboration between resin makers and tier suppliers to shorten qualification cycles and reduce exposure to tariff risk. This environment supports a pragmatic emphasis on cost optimization combined with resilience, with OEMs seeking partners who can deliver predictable logistics and technical support across North and South American manufacturing footprints.

Europe, Middle East & Africa presents a different mix of drivers, where stringent environmental regulations and ambitious circularity targets elevate demand for additives that facilitate recyclability and lower life-cycle impact. OEMs and regulators in this region are driving transparency around material chemistries, which in turn incentivizes suppliers to invest in compliant, traceable formulations and to demonstrate compatibility with evolving end-of-life recovery systems. Additionally, technical requirements for safety and consumer expectations result in high adoption rates of advanced flame retardants and UV stabilizers adapted to diverse climate conditions across the region.

Asia-Pacific remains both a manufacturing powerhouse and a hotbed for material innovation, with rapid vehicle platform proliferation and strong demand from both legacy ICE and growing EV programs. The region's large production volumes make it a focal point for scale-driven additive manufacturing and cost-competitive compound sourcing, while localized R&D centers are increasingly tailoring additive chemistries to regional polymer preferences and processing standards. Across these geographies, companies that align additive roadmaps with local regulatory trajectories and manufacturing realities secure strategic advantage.

Insight into how leading additive suppliers, specialist firms, and contract compounders combine technical depth and operational rigor to accelerate qualification

Key companies in the automotive additive value chain demonstrate a mix of deep formulation expertise, application engineering capabilities, and strategic partnerships that collectively accelerate adoption and qualification. Market leaders typically combine broad additive portfolios with targeted co-development programs, providing application-specific trials, in-vehicle validation support, and long-term technical backing for OEMs and tier suppliers. Their capabilities extend beyond chemistry to include processing know-how and analytical services that reduce integration risk and shorten time-to-production.

Mid-sized specialty firms often focus on niche chemistries or high-value application segments, leveraging agility and close customer collaboration to deliver tailored solutions. These companies tend to be agile in reformulating products to comply with regional regulatory updates and can pivot quickly to support pilot programs or low-volume specialty platforms. Their strategic value is frequently realized through partnerships with compounders and converters that scale validated formulations into production-ready compounds.

Contract compounders and material processors play a crucial role in translating additive formulations into consistent, manufacturable resins. Their operational discipline in maintaining tight process controls and batch-to-batch consistency underpins quality assurance frameworks for the automotive supply chain. Collectively, the interplay between multinational additive suppliers, specialist firms, and compounders creates an ecosystem where technical competence, service depth, and supply-chain integration determine which solutions become standard on vehicle programs.

Actionable recommendations for embedding additive expertise in product development, diversifying sourcing, and aligning validation protocols with lifecycle performance goals

Industry leaders must pursue an integrated approach that blends materials science, supplier strategy, and program governance to capture value from additive innovation. First, embed additive experts into early-stage vehicle architecture and part design teams to ensure material considerations are aligned with performance targets and manufacturing constraints. This early involvement reduces rework and accelerates qualification by ensuring that additive choices are validated under representative processing and service conditions.

Second, diversify supplier ecosystems and invest in regional compounding partnerships to reduce supply disruption risk and tariff exposure. Parallel qualification of alternative additive grades and multi-source strategies for critical chemistries will preserve program timelines under fluctuating trade conditions. Moreover, prioritize additive chemistries compatible with recyclability and low-emission profiles to meet tightening regulatory and OEM sustainability targets, thereby converting compliance into a commercial differentiator.

Third, invest in robust validation protocols that simulate lifecycle aging, thermal cycling, and chemical exposure relevant to both ICE and electrified platforms. Complement laboratory data with field trials and in-production quality monitoring to detect drift and secure long-term performance. Finally, foster supplier relationships that extend beyond transactional supply to include joint development, shared IP frameworks, and capacity commitments that enable scalable, predictable adoption of new additive solutions across vehicle programs.

A rigorous mixed-methods research approach combining expert interviews, technical literature review, and supply-chain scenario analysis to produce validated strategic insights

The research methodology underpinning this analysis synthesizes primary technical insights with secondary literature and cross-functional stakeholder interviews to ensure robust, actionable conclusions. Primary inputs include structured interviews with materials scientists, process engineers, procurement leaders, and quality assurance professionals across OEMs, tier suppliers, additive manufacturers, and contract compounders. These conversations focused on technical performance requirements, qualification timelines, supply chain constraints, and strategic investment priorities.

Secondary inputs involved comprehensive review of technical journals, regulatory texts, patent landscapes, and industry standards relevant to polymer additives and automotive material specifications. Comparative analysis of regional regulatory frameworks and trade policy developments provided context for supply chain and sourcing recommendations. Throughout the research process, findings were validated through triangulation across multiple data sources and iterative feedback sessions with industry experts to refine assumptions and ensure practical applicability.

Analytical techniques included material compatibility mapping, risk assessment of supply chain scenarios, and qualitative scoring of supplier capabilities based on service breadth, technical depth, and regional manufacturing footprint. The methodology emphasized transparency and reproducibility, documenting interview protocols, source hierarchies, and validation checks so that strategic decisions can be traced back to corroborated evidence and expert judgment.

Concluding synthesis that reframes additives as strategic enablers and prescribes integration, resilience, and circularity as competitive imperatives

The conclusion synthesizes the principal takeaways and underscores the strategic imperatives for organizations operating at the intersection of automotive design and polymer science. Additives are no longer peripheral commodities; they are strategic enablers that unlock polymer substitution, support electrified architectures, and address heightened regulatory and consumer expectations. Success requires integrating additive expertise into core development cycles, prioritizing formulations that balance performance with recyclability, and building supplier relationships that deliver both technical support and manufacturing scale.

Supply chain resilience must be a deliberate design criterion, not an afterthought. Tariff volatility and regional policy shifts necessitate diversified sourcing and regionally aligned compounding capabilities to protect program timelines and margins. Simultaneously, the industry must accelerate adoption of additives that facilitate circularity to meet regulatory mandates and evolving OEM sustainability objectives. Ultimately, organizations that combine early-stage materials collaboration, rigorous validation protocols, and strategic supplier partnerships will be best positioned to convert additive innovation into dependable, scalable vehicle components.

Looking ahead, material decisions will increasingly be judged by their total system impact-performance in service, compatibility with recycling flows, and contribution to platform-level objectives such as weight reduction and cost efficiency. Those who act decisively to align additive roadmaps with these multi-dimensional criteria will create durable competitive advantage.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Integration of nanocomposite fillers in automotive plastics for enhanced thermal and mechanical properties
  • 5.2. Adoption of bio-based polymer additives to reduce carbon footprint in interior automotive applications
  • 5.3. Development of multifunctional additives combining flame retardancy and UV protection for exterior automotive trim
  • 5.4. Innovation in recycled plastic additive formulations to comply with stringent automotive circular economy regulations
  • 5.5. Advanced anti-scratch and anti-fingerprint additives improving durability of automotive touchscreens and interior panels
  • 5.6. Lightweighting through incorporation of high-performance polymer fillers in electric vehicle battery enclosures
  • 5.7. Use of smart color-change additives for real-time temperature and impact sensing in automotive components
  • 5.8. Emergence of tailored 3D printable plastic additive blends to accelerate prototyping for automotive under-the-hood parts

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Automotive Plastic Additives Market, by Additive Type

  • 8.1. Antioxidants
  • 8.2. Colorants
  • 8.3. Flame Retardants
  • 8.4. Impact Modifiers
  • 8.5. Plasticizers
  • 8.6. UV Stabilizers

9. Automotive Plastic Additives Market, by Polymer Type

  • 9.1. Polyamide
  • 9.2. Polycarbonate
  • 9.3. Polyethylene
  • 9.4. Polypropylene
  • 9.5. PVC

10. Automotive Plastic Additives Market, by Vehicle Type

  • 10.1. Commercial Vehicles
  • 10.2. Passenger Cars

11. Automotive Plastic Additives Market, by Application

  • 11.1. Electrical And Electronic Components
    • 11.1.1. Connectors
    • 11.1.2. Housing
    • 11.1.3. Sensors
    • 11.1.4. Wire Harnesses
  • 11.2. Exterior Components
    • 11.2.1. Bumpers
    • 11.2.2. Grilles
    • 11.2.3. Mirror Housings
    • 11.2.4. Spoilers
  • 11.3. Interior Components
    • 11.3.1. Consoles
    • 11.3.2. Dashboard Panels
    • 11.3.3. Door Panels
    • 11.3.4. Seat Components
  • 11.4. Under-The-Hood Components
    • 11.4.1. Air Intake Manifolds
    • 11.4.2. Cooling System Components
    • 11.4.3. Engine Covers
    • 11.4.4. Fuel System Components

12. Automotive Plastic Additives Market, by Region

  • 12.1. Americas
    • 12.1.1. North America
    • 12.1.2. Latin America
  • 12.2. Europe, Middle East & Africa
    • 12.2.1. Europe
    • 12.2.2. Middle East
    • 12.2.3. Africa
  • 12.3. Asia-Pacific

13. Automotive Plastic Additives Market, by Group

  • 13.1. ASEAN
  • 13.2. GCC
  • 13.3. European Union
  • 13.4. BRICS
  • 13.5. G7
  • 13.6. NATO

14. Automotive Plastic Additives Market, by Country

  • 14.1. United States
  • 14.2. Canada
  • 14.3. Mexico
  • 14.4. Brazil
  • 14.5. United Kingdom
  • 14.6. Germany
  • 14.7. France
  • 14.8. Russia
  • 14.9. Italy
  • 14.10. Spain
  • 14.11. China
  • 14.12. India
  • 14.13. Japan
  • 14.14. Australia
  • 14.15. South Korea

15. Competitive Landscape

  • 15.1. Market Share Analysis, 2024
  • 15.2. FPNV Positioning Matrix, 2024
  • 15.3. Competitive Analysis
    • 15.3.1. BASF SE
    • 15.3.2. Covestro AG
    • 15.3.3. Saudi Basic Industries Corporation
    • 15.3.4. Dow Inc.
    • 15.3.5. Eastman Chemical Company
    • 15.3.6. Evonik Industries AG
    • 15.3.7. Solvay S.A.
    • 15.3.8. Arkema S.A.
    • 15.3.9. LANXESS AG
    • 15.3.10. LyondellBasell Industries N.V.
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제