시장보고서
상품코드
1848883

마이크로플레이트 시스템 시장 : 제품 유형, 감지 기술, 최종사용자, 웰 포맷, 자동화 레벨별 - 세계 예측(2025-2032년)

Microplate Systems Market by Product Type, Detection Technology, End User, Well Format, Automation Level - Global Forecast 2025-2032

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 190 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

마이크로플레이트 시스템 시장은 2032년까지 연평균 복합 성장률(CAGR) 5.41%로 17억 9,000만 달러에 이를 것으로 예측됩니다.

주요 시장 통계
기준 연도 : 2024년 11억 7,000만 달러
추정 연도 : 2025년 12억 3,000만 달러
예측 연도 : 2032년 17억 9,000만 달러
CAGR(%) 5.41%

마이크로플레이트 시스템의 기능적 촉진요인, 기술적 인에이블러, 실험실의 투자 결정을 유도하는 가치 제안을 자세히 설명하는 권위 있는 개요서

마이크로플레이트 시스템은 실험실 자동화, 고 처리량 실험, 정밀 검출의 교차점에 위치하여 연구 및 산업에서 생물학적 및 화학적 분석을 수행하는 방법을 형성하고 있습니다. 이 소개에서는 마이크로플레이트 시스템의 주요 기능 영역을 개괄하고, 처리량, 재현성 및 데이터 품질 향상에 있어 마이크로플레이트 시스템의 역할에 초점을 맞출 것입니다. 또한, 랩의 투자 결정을 좌우하는 주요 투자 결정 요인을 파악함으로써 본 보고서의 나머지 부분에 대한 독자들의 기대치를 구성하고 있습니다.

검출 기술, 모듈화된 자동화, 사용자 중심 소프트웨어의 발전은 장비의 유용성을 종합적으로 재정의하고, 많은 실험실에서 이전에는 접근하기 어려웠던 워크플로우를 가능하게 했습니다. 이러한 개선을 통해 수작업과 변동의 원인이 줄어들고, 연구자들은 일상적인 물류보다 실험 계획을 우선시할 수 있게 되었습니다. 그 결과, 조달 주기는 빠른 도입과 측정 가능한 반복성 향상을 약속하는 통합 솔루션이 점점 더 선호되고 있습니다.

이 섹션은 또한 후속 장에 걸쳐 채택된 분석 렌즈, 즉 제품 폼 팩터, 감지 능력, 최종 사용자 요구, 우물 형식, 자동화 수준이 운영상의 가치로 어떻게 변환되는지에 초점을 맞출 것임을 확립합니다. 이러한 주제의 벡터를 미리 명확히 함으로써, 마이크로플레이트 시스템 투자를 평가할 때 의사 결정자가 유연성, 처리량, 총 수명주기 지원 간의 전략적 절충점을 평가할 수 있도록 준비할 수 있습니다.

자동화 생태계, 멀티모달 감지 기술 혁신, 진화하는 최종 사용자의 기대치가 제품 로드맵과 실험실 워크플로우를 재정의하는 방법

마이크로플레이트 시스템 시장은 자동화, 강화된 감지 방식, 데이터 무결성에 대한 중요성이 높아짐에 따라 변화의 물결이 일고 있습니다. 첫째, 자동화는 고립된 로봇 팔에서 플레이트 디스펜서, 플레이트 리더, 플레이트 스태커, 플레이트 세척기가 통합된 오케스트레이션으로 작동하는 통합된 에코시스템으로 진화하고 있습니다. 이러한 변화는 핸드오프를 줄이고, 캘리브레이션을 간소화하며, 보다 원활한 워크플로우와 실험 주기 시간을 단축할 수 있습니다.

둘째, 검출 기술은 기존의 단일 모드 장치에서 흡광도, 형광, 발광 기능으로 확장되어 보다 풍부한 데이터 세트를 얻기 위해 다중화할 수 있게 되었습니다. 이러한 양식을 통해 더 민감한 분석, 더 넓은 동적 범위, 더 유연한 분석 설계가 가능해져 분석법 개발 및 크로스 플랫폼 검증을 가속화할 수 있습니다. 셋째, 소프트웨어와 연결성 강화로 인해 데이터의 실증성, 추적성, 규제 대응성을 확보하는 데 있어 기기 펌웨어와 분석 플랫폼의 역할이 커지고 있습니다.

마지막으로, 최종 사용자의 기대가 제품 로드맵을 재구성하고 있습니다. 학술 및 연구 기관은 적응성과 비용 효율성을 중시하고, 생명공학 및 제약 회사는 처리량과 검증 지원을 우선시하며, 개발 위탁 기관은 여러 고객 프로젝트에 재확장할 수 있는 확장 가능한 솔루션을 중요시합니다. 이러한 트렌드를 종합하면, 벤더들의 로드맵은 모듈화, 상호운용성, 가동시간 및 장기적인 파트너십에 중점을 둔 서비스 중심의 비즈니스 모델로 재편되고 있습니다.

2025년을 향한 미국의 관세 조치가 마이크로플레이트 시스템 가치사슬 전반공급망, 조달 탄력성, 벤더 전략을 재구성한 방법

미국의 2025년 관세 도입은 마이크로플레이트 시스템 생태계 내 공급망, 조달 전략, 공급업체 관계에 연쇄적인 영향을 미치고 있습니다. 관세로 인한 비용 압박으로 인해 공급업체와 구매자는 장비와 소모품의 총 토지 비용을 고려해야 하며, 부품 조달, 재고 포지셔닝, 계약 재협상에 대한 전략적 결정을 내려야 합니다. 또한, 관세 준수에 따른 관리 부담으로 인해 투명성이 높은 공급업체 문서와 조화로운 무역규범의 중요성이 높아지고 있습니다.

제조업체들은 조립 발자국을 재평가하고, 관세 면제 지역의 대체 공급업체를 인증하고, 가능한 경우 니어쇼어링 이니셔티브를 가속화함으로써 대응하고 있습니다. 동시에 최종 사용자는 잠재적인 관세 지연을 고려하여 장기 서비스 계약을 활용하여 운영 리스크를 줄이는 장기 서비스 계약을 활용하기 위해 조달 일정을 변경했습니다. 예산이 빠듯한 실험실의 경우, 관세가 미치는 영향은 순수한 기술 사양에서 장기적인 운영 비용, 보증 조건, 종합적인 서비스 수준 계약으로 이야기를 전환하고 있습니다.

또한, 관세 환경은 거래의 복잡성을 어느 정도 흡수하고 통합 송장 및 다중 지역 보증을 제공할 수 있는 대리점 파트너십의 전략적 가치를 강조하고 있습니다. 이러한 누적된 영향은 가격 조정에 그치지 않고, 조달 기준을 재구성하고, 공급망 탄력성을 장비 선택의 핵심 요소로 강화할 것입니다.

통합 세분화 분석을 통해 제품군, 감지 방식, 최종 사용자 요구사항, 유정 밀도, 자동화 계층이 어떻게 차별화 된 조달 선택을 유도하는지를 파악할 수 있습니다.

제품 유형, 감지 기술, 최종 사용자 카테고리, 유정 형태, 자동화 수준이 경쟁 포지셔닝과 고객의 의사결정 기준에 어떻게 반영되는지 파악할 수 있습니다. 제품 유형에 따라 Plate Dispensers, Plate Readers, Plate Stackers, Plate Washers 시장이 조사되었으며, 각 제품 유형은 분석 라이프사이클의 각기 다른 단계에 대응하고 서비스 요구 사항과 통합의 복잡성이 다릅니다. 플레이트 디스펜서는 정밀도와 액체 취급의 유연성, 플레이트 리더는 감도와 멀티 모드 기능, 플레이트 스태커는 처리량 오케스트레이션, 플레이트 세척기는 세척의 엄격함과 면역 측정의 신뢰성을 평가받습니다.

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 인사이트

제6장 미국 관세의 누적 영향 2025

제7장 AI의 누적 영향 2025

제8장 마이크로플레이트 시스템 시장 : 제품 유형별

  • 플레이트 디스펜서
  • 플레이트 리더
  • 플레이트 스태커
  • 플레이트 워셔

제9장 마이크로플레이트 시스템 시장 : 감지 기술별

  • 흡광도
  • 형광
  • 발광

제10장 마이크로플레이트 시스템 시장 : 최종사용자별

  • 학술연구기관
  • 바이오테크놀러지 기업
  • 계약연구기관
  • 제약회사

제11장 마이크로플레이트 시스템 시장 : 웰 포맷별

  • 1536 Well
  • 384 Well
  • 96 Well

제12장 마이크로플레이트 시스템 시장 : 자동화 레벨별

  • 완전 자동화 시스템
  • 수동 시스템
  • 반자동 시스템

제13장 마이크로플레이트 시스템 시장 : 지역별

  • 아메리카
    • 북미
    • 라틴아메리카
  • 유럽, 중동 및 아프리카
    • 유럽
    • 중동
    • 아프리카
  • 아시아태평양

제14장 마이크로플레이트 시스템 시장 : 그룹별

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

제15장 마이크로플레이트 시스템 시장 : 국가별

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 중국
  • 인도
  • 일본
  • 호주
  • 한국

제16장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • Thermo Fisher Scientific Inc.
    • Danaher Corporation
    • Agilent Technologies, Inc.
    • Becton, Dickinson and Company
    • Bio-Rad Laboratories, Inc.
    • PerkinElmer, Inc.
    • Tecan Group Ltd.
    • Corning Incorporated
    • Molecular Devices, LLC
    • Merck KGaA
LSH 25.10.31

The Microplate Systems Market is projected to grow by USD 1.79 billion at a CAGR of 5.41% by 2032.

KEY MARKET STATISTICS
Base Year [2024] USD 1.17 billion
Estimated Year [2025] USD 1.23 billion
Forecast Year [2032] USD 1.79 billion
CAGR (%) 5.41%

An authoritative overview of microplate systems detailing the functional drivers, technological enablers, and value propositions that guide laboratory investment decisions

The microplate systems landscape sits at the intersection of laboratory automation, high-throughput experimentation, and precision detection, shaping how biological and chemical assays are conducted across research and industry. This introduction outlines core functional domains of microplate systems and highlights their role in improving throughput, repeatability, and data quality. It also frames the reader's expectations for the remainder of the report by identifying the principal operational drivers shaping laboratory investment decisions.

Advances in detection technologies, modular automation, and user-centric software have collectively redefined instrument utility, enabling workflows that were previously out of reach for many labs. These improvements reduce manual handling and sources of variability, thereby enabling researchers to prioritize experimental design over routine logistics. As a result, procurement cycles increasingly favor integrated solutions that promise rapid onboarding and measurable gains in reproducibility.

This section also establishes the analytical lens employed across subsequent chapters: a focus on how product form factors, detection capabilities, end-user needs, well formats, and automation levels translate into operational value. By clarifying these thematic vectors upfront, the introduction prepares decision-makers to assess strategic trade-offs between flexibility, throughput, and total lifecycle support when evaluating microplate system investments.

How automation ecosystems, multi-modal detection innovations, and evolving end-user expectations are redefining product roadmaps and laboratory workflows

The microplate systems market is undergoing transformative shifts driven by the convergence of automation, enhanced detection modalities, and a rising emphasis on data integrity. First, automation has evolved from isolated robotic arms to cohesive ecosystems in which plate dispensers, plate readers, plate stackers, and plate washers operate under unified orchestration. This shift reduces handoffs and streamlines calibration, yielding smoother workflows and shorter experimental cycle times.

Second, detection technologies are expanding beyond legacy single-mode instruments to incorporate absorbance, fluorescence, and luminescence capabilities that can be multiplexed for richer datasets. These modalities enable higher-sensitivity assays, broader dynamic ranges, and more flexible assay design, which in turn accelerate method development and cross-platform validation. Third, software and connectivity enhancements have elevated the role of instrument firmware and analytics platforms in ensuring data provenance, traceability, and regulatory readiness.

Finally, end-user expectations are reshaping product roadmaps: academic and research institutes focus on adaptability and cost-effectiveness, biotechnology and pharmaceutical companies prioritize throughput and validation support, while contract research organizations value scalable solutions that can be redeployed across multiple client projects. Collectively, these trends are realigning vendor roadmaps toward modularity, interoperability, and service-driven business models that emphasize uptime and long-term partnerships.

How U.S. tariff measures for 2025 have reshaped supply chains, procurement resilience, and vendor strategies across the microplate systems value chain

The introduction of tariffs in the United States for 2025 has had a cascading impact on supply chains, procurement strategies, and supplier relationships within the microplate systems ecosystem. Tariff-driven cost pressures have compelled vendors and purchasers to examine the total landed cost of instruments and consumables, prompting strategic decisions about component sourcing, inventory positioning, and contract renegotiation. In addition, the administrative burden associated with tariff compliance has increased the importance of transparent supplier documentation and harmonized trade codes.

Manufacturers have responded by reevaluating assembly footprints, qualifying alternate suppliers in tariff-exempt jurisdictions, and accelerating near-shoring initiatives where feasible. Concurrently, end users have adapted procurement timelines to factor in potential customs delays and to leverage longer-term service agreements that buffer operational risk. For laboratories operating under stringent budgets, tariff effects have shifted the conversation from purely technical specifications toward long-term operational costs, warranty terms, and inclusive service-level agreements.

Moreover, the tariff environment has highlighted the strategic value of distributor partnerships that can absorb some transactional complexity and offer consolidated invoicing or multi-jurisdictional warranty coverage. The cumulative impact goes beyond price adjustments; it reshapes procurement criteria and elevates supply-chain resilience as a core component of instrument selection.

Integrated segmentation analysis revealing how product families, detection modalities, end-user demands, well density, and automation tiers drive differentiated procurement choices

A nuanced view of segmentation uncovers how product types, detection technologies, end-user categories, well formats, and automation levels inform competitive positioning and customer decision criteria. Based on Product Type, the market is studied across Plate Dispensers, Plate Readers, Plate Stackers, and Plate Washers, each addressing distinct stages of the assay lifecycle and differing in their service requirements and integration complexity. Plate dispensers are being evaluated for precision and liquid handling flexibility, plate readers for sensitivity and multi-mode capability, plate stackers for throughput orchestration, and plate washers for wash-stringency and reliability in immunoassays.

Based on Detection Technology, the market is studied across Absorbance, Fluorescence, and Luminescence, and these modalities determine assay design constraints, limits of detection, and compatibility with high-density well formats. Absorbance remains foundational for colorimetric assays and high-throughput screening, fluorescence enables multiplexing and labeled assays, and luminescence delivers high sensitivity for low-signal applications. Based on End User, the market is studied across Academic And Research Institutes, Biotechnology Companies, Contract Research Organizations, and Pharmaceutical Companies, where differences in throughput expectations, validation requirements, and budgetary cycles drive distinct purchasing behaviors.

Based on Well Format, the market is studied across 1536 Well, 384 Well, and 96 Well, and well density impacts instrument optics, reagent consumption, and assay miniaturization strategies. Based on Automation Level, the market is studied across Fully Automated Systems, Manual Systems, and Semi Automated Systems, reflecting trade-offs between capital intensity, operational flexibility, and human oversight. Synthesizing these segmentation vectors reveals that optimal product selection is context-dependent: laboratories prioritize different combinations of throughput, sensitivity, and automation depending on their scientific objectives and operational constraints.

Regional dynamics and service expectations that dictate adoption patterns and vendor strategies across the Americas, Europe Middle East and Africa, and Asia-Pacific markets

Regional dynamics exert a strong influence on adoption patterns, service models, and vendor footprints, with contrasts that require tailored commercial approaches. In the Americas, investments in translational research and a robust biopharma ecosystem drive demand for high-throughput and validated solutions; support infrastructure and service networks are critical considerations for customers seeking predictable uptime and fast replacement cycles. In contrast, Europe, Middle East & Africa presents a mosaic of regulatory regimes and research intensities, where interoperability, standard compliance, and multi-language support often determine supplier selection.

Asia-Pacific continues to demonstrate rapid adoption of automation and miniaturized assay formats, supported by expanding research funding and growing contract research capacity. Local manufacturing capabilities and regional distribution partnerships are increasingly relevant in Asia-Pacific as buyers look to shorten lead times and reduce import-related complexities. Across regions, the need for localized training, regional spare-parts availability, and culturally attuned support services are common determinants of vendor preference, but their weighting varies by geography and institutional maturity.

Taken together, regional insights underscore the necessity for vendors to combine global product consistency with regional responsiveness, balancing standardized platforms with adaptable service and financing options to meet diverse customer expectations.

Corporate strategies and partnership dynamics shaping product modularity, service-led differentiation, and ecosystem integration among instrument providers

Companies operating in the microplate systems space are converging around several strategic priorities that influence product development, go-to-market tactics, and aftermarket services. Leading instrument providers are investing in modular hardware designs that simplify upgrades and enable mixed-technology decks, while software teams prioritize intuitive user interfaces, secure data trails, and API-driven interoperability. Service-led models are becoming a differentiator; companies that combine preventive maintenance programs, remote diagnostics, and rapid-response field service earn higher lifetime value from customers.

Strategic partnerships and ecosystem plays are also evident as vendors collaborate with reagent suppliers, laboratory automation integrators, and software analytics providers to present bundled solutions. This cross-company orchestration helps reduce integration friction for customers and amplifies route-to-market efficiency. At the same time, smaller specialized firms are winning share in niche applications by offering highly optimized readers or dispensers tailored for specific assay types, demonstrating that innovation remains a viable route to market entry.

Corporate strategy increasingly balances direct sales with distributor networks to expand geographic reach while preserving technical support quality. Companies that can demonstrate consistent regulatory documentation, local service capacity, and transparent total-cost-of-ownership frameworks position themselves favorably when customers evaluate long-term operational resilience.

Actionable strategic initiatives for vendors to enhance modularity, service offerings, supply-chain resilience, and regionally adapted go-to-market execution

Industry leaders should prioritize a set of actionable initiatives to capture value and mitigate operational risk in an evolving market environment. First, invest in modular, upgradeable hardware architectures and open software interfaces to secure long-term customer loyalty and simplify lifecycle management. This approach reduces barriers to adoption for institutions with phased investment plans and supports incremental revenue from upgrades and retrofits.

Second, expand service offerings beyond reactive maintenance to include preventative care, remote monitoring, and outcome-based service agreements that align vendor incentives with customer uptime and performance. These service innovations can convert transactional relationships into strategic partnerships that deliver predictable revenue streams. Third, strengthen supply-chain resilience by diversifying component sourcing, qualifying alternate manufacturing sites, and maintaining strategic buffer inventories to mitigate tariff-induced and logistical disruptions.

Finally, tailor go-to-market strategies regionally by aligning distribution, training, and spare-parts strategies with local customer expectations. Investments in localized training, multilingual documentation, and flexible financing options will facilitate adoption in diverse geographies and institutional types. Together, these recommendations enable companies to combine technological leadership with commercial agility and operational reliability.

A mixed-methods research approach integrating primary stakeholder interviews, technical validation, and supply-chain analysis to ensure reproducible and actionable insights

The research methodology underpinning this analysis relies on a mixed-methods approach that synthesizes qualitative interviews, vendor documentation reviews, and a structured assessment of technological and operational trends. Primary interviews were conducted with laboratory directors, procurement leads, and instrument engineers to capture real-world priorities and pain points. These conversations were complemented by a systematic review of product specifications, regulatory filings, and published validation protocols to establish an evidence-based view of technical capabilities.

In addition, triangulation with publicly available technical literature and peer-reviewed studies was used to validate claims regarding detection sensitivity, throughput metrics, and assay compatibility. Supply-chain impacts and tariff considerations were evaluated through a combination of trade-policy materials, customs guidance, and vendor logistics disclosures to understand operational implications. The methodology emphasizes reproducibility and transparency by documenting sources, interview protocols, and the criteria used to assess vendor claims.

Where appropriate, cross-validation steps were applied to ensure consistency between claimed instrument performance and user-reported outcomes. Limitations of the approach are acknowledged, and readers are advised to consider local regulatory and operational nuances when applying the findings to specific procurement decisions.

A conclusive synthesis highlighting the interplay of technology, service differentiation, and supply-chain considerations that determine long-term instrument value

In conclusion, microplate systems occupy a pivotal role in modern laboratory ecosystems by enabling higher throughput, better data quality, and more reproducible science. The interplay of modular hardware, multi-modal detection, and enhanced software connectivity is reshaping vendor value propositions and elevating service capability as a primary differentiator. Regional dynamics and tariff considerations further complicate procurement decisions, making supply-chain transparency and localized support essential components of purchase evaluation.

Decision-makers should approach instrument selection with a holistic lens that balances upfront capabilities with lifecycle support, interoperability, and regulatory readiness. By focusing on modularity, preventative service, and clear total-ownership frameworks, laboratories and organizations can extract sustained operational value while preserving flexibility for future scientific needs. The combined effect of technological advances and strategic supply-chain planning positions organizations to improve experimental throughput and reliability without sacrificing long-term resilience.

Taken together, the findings emphasize that successful adoption is less about choosing a single feature and more about aligning instrument ecosystems with institutional workflows, validation demands, and regional operational realities.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Adoption of high-throughput automation platforms integrating AI-driven analysis to accelerate drug discovery pipelines
  • 5.2. Development of multiplex detection assays enabling simultaneous quantification of multiple biomarkers in a single well
  • 5.3. Expansion of microfluidic microplate formats to reduce reagent volume and increase laboratory throughput
  • 5.4. Integration of cloud-based data management systems for real-time collaboration and remote assay result access
  • 5.5. Rising demand for flexible assay formats compatible with high-throughput CRISPR screening and gene editing workflows
  • 5.6. Implementation of sustainable microplate manufacturing practices leveraging recyclable polymers to minimize laboratory waste

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Microplate Systems Market, by Product Type

  • 8.1. Plate Dispensers
  • 8.2. Plate Readers
  • 8.3. Plate Stackers
  • 8.4. Plate Washers

9. Microplate Systems Market, by Detection Technology

  • 9.1. Absorbance
  • 9.2. Fluorescence
  • 9.3. Luminescence

10. Microplate Systems Market, by End User

  • 10.1. Academic And Research Institutes
  • 10.2. Biotechnology Companies
  • 10.3. Contract Research Organizations
  • 10.4. Pharmaceutical Companies

11. Microplate Systems Market, by Well Format

  • 11.1. 1536 Well
  • 11.2. 384 Well
  • 11.3. 96 Well

12. Microplate Systems Market, by Automation Level

  • 12.1. Fully Automated Systems
  • 12.2. Manual Systems
  • 12.3. Semi Automated Systems

13. Microplate Systems Market, by Region

  • 13.1. Americas
    • 13.1.1. North America
    • 13.1.2. Latin America
  • 13.2. Europe, Middle East & Africa
    • 13.2.1. Europe
    • 13.2.2. Middle East
    • 13.2.3. Africa
  • 13.3. Asia-Pacific

14. Microplate Systems Market, by Group

  • 14.1. ASEAN
  • 14.2. GCC
  • 14.3. European Union
  • 14.4. BRICS
  • 14.5. G7
  • 14.6. NATO

15. Microplate Systems Market, by Country

  • 15.1. United States
  • 15.2. Canada
  • 15.3. Mexico
  • 15.4. Brazil
  • 15.5. United Kingdom
  • 15.6. Germany
  • 15.7. France
  • 15.8. Russia
  • 15.9. Italy
  • 15.10. Spain
  • 15.11. China
  • 15.12. India
  • 15.13. Japan
  • 15.14. Australia
  • 15.15. South Korea

16. Competitive Landscape

  • 16.1. Market Share Analysis, 2024
  • 16.2. FPNV Positioning Matrix, 2024
  • 16.3. Competitive Analysis
    • 16.3.1. Thermo Fisher Scientific Inc.
    • 16.3.2. Danaher Corporation
    • 16.3.3. Agilent Technologies, Inc.
    • 16.3.4. Becton, Dickinson and Company
    • 16.3.5. Bio-Rad Laboratories, Inc.
    • 16.3.6. PerkinElmer, Inc.
    • 16.3.7. Tecan Group Ltd.
    • 16.3.8. Corning Incorporated
    • 16.3.9. Molecular Devices, LLC
    • 16.3.10. Merck KGaA
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제