시장보고서
상품코드
1853564

LTCC 및 HTCC 시장 : 제품 유형, 제조 공정, 최종 이용 산업, 용도별 - 세계 예측(2025-2032년)

LTCC & HTCC Market by Product Type, Manufacturing Process, End Use Industry, Application - Global Forecast 2025-2032

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 198 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

LTCC 및 HTCC 시장은 2032년까지 CAGR 4.75%로 29억 5,000만 달러로 성장할 것으로 예측됩니다.

주요 시장 통계
기준 연도 2024년 20억 3,000만 달러
추정 연도 2025년 21억 2,000만 달러
예측 연도 2032 29억 5,000만 달러
CAGR(%) 4.75%

LTCC 및 HTCC의 기술 및 상업적 기반을 구축하고, 재료, 공정, 최종 용도 요구사항에 대한 전략적 의사결정을 안내합니다.

재료 과학, 첨단 세라믹 가공 및 소형화 된 전자 제품의 융합으로 동시 소성 세라믹 기술은 현대의 고신뢰성 시스템에서 중심적인 위치를 차지하게 되었습니다. 이 소개에서는 저온 동시 소성 세라믹(LTCC) 및 고온 동시 소성 세라믹(HTCC) 플랫폼의 기술적 및 상업적 배경을 정리하고, 재료 선택과 공정 엔지니어링이 열적, 전기적, 기계적 요구사항에 걸쳐 어떻게 성능 트레이드오프를 가져오는지 밝힐 것입니다.

고집적화, 열 관리 개선, 센서 기능 확장 등 새로운 요구사항이 설계 우선순위를 바꾸고 있습니다. 아키텍처 및 설계 엔지니어는 저온 동시 소성에 최적화된 유리-세라믹 또는 결정질 세라믹 배합의 LTCC 아키텍처가 RF/마이크로파 회로 및 MEMS 통합에 가장 적합한지, 아니면 고온 회로 및 밀폐형 패키징에 적합한 알루미나 또는 멀라이트 화학 구성에 기반한 HTCC 솔루션이 항공우주 및 열악한 환경 애플리케이션의 요구 사항을 더 잘 충족하는지 여부를 평가해야 합니다.

이 섹션에서는 라미네이션, 펀칭, 스크린 인쇄, 테이프 캐스팅과 같은 공정 경로를 비교하고, 자동차, 통신, 의료, 소비자 전자제품, 방위 산업에 걸친 최종 사용 산업과 이러한 제조 옵션을 일치시키기 위해 분석 전반에 걸쳐 사용되는 프레임워크를 설정합니다. 워크플로우를 수립합니다. 즉, 서론은 독자가 다운스트림 세분화, 지역 역학, 전략적 제안을 해석하는 데 필요한 개념적 어휘와 평가 기준을 갖추고 있습니다.

재료 기술 혁신, 제조 공정 자동화, 시스템 수준의 통합이 세라믹 혼합 소결 기술의 경쟁 우위를 재구축하는 방법

혼합 소결 세라믹을 둘러싼 환경은 재료, 공정 자동화, 시스템 수준의 통합 등 전방위적인 기술 혁신에 힘입어 혁신적인 변화를 맞이하고 있습니다. 첨가제 적합성 페이스트, 소결 프로파일 및 다층 정렬의 지속적인 개선으로 더 엄격한 공차와 더 높은 상호연결 밀도가 가능해져 LTCC 및 HTCC 플랫폼의 지원 가능한 애플리케이션 세트가 확대되고 있습니다.

동시에 첨단 조립 기술과 디지털 공정 제어를 통해 라미네이션, 펀칭, 스크린 인쇄, 테이프 캐스팅의 사이클 변동이 감소하고 복잡한 다층 구조의 제조 위험이 감소합니다. 이에 따라 고주파 RF 모듈 및 MEMS 지원 소형 의료용 전자기기에서 LTCC의 실용적인 역할이 확대되는 한편, HTCC는 고온 회로, 밀폐형 패키징, 열 관리 집약형 설계에서 입지를 굳히고 있습니다.

시장 진입 기업들 역시 시스템 차원의 압력에 반응하고 있습니다. 운송의 전기화 발전, 탄력적인 통신 인프라 수요, 이식형 의료기기의 소형화 등입니다. 이러한 힘은 제품 로드맵과 공급업체와의 관계에서 전략적 전환을 촉진하고 있으며, 기업들은 밸류체인 전반에 걸쳐 보다 긴밀한 협력 관계를 구축하고, 기판 배합을 공동 개발하고, 제조 공정을 용도별 신뢰성 및 열 요구사항에 맞게 조정하는 등 다양한 노력을 기울이고 있습니다. 그 결과, 경쟁사와의 차별화는 재료에 대한 전문성, 공정의 성숙도, 전문 분야를 융합한 통합 솔루션을 제공할 수 있는지에 따라 점점 더 좌우되고 있습니다.

2025년에 시행된 미국의 누적 관세가 가치사슬 전반에 걸쳐 전략적 소싱, 니어쇼어링, 공급망 강건성 대책을 어떻게 촉진했는지 평가합니다.

2025년 미국의 누적 관세가 도입되면서 동시 소성 세라믹 기판에 의존하는 조직은 공급망과 조달의 복잡성이 한층 더 복잡해졌습니다. 이러한 정책 전환으로 인해 조달팀은 공급업체 발자국, 재고 전략, 총 도착 비용 계산을 재검토해야 하며, 부품 조달 및 비용 중심 설계 노력에도 영향을 미치고 있습니다.

이에 따라 관세 변동에 노출될 기회를 줄이기 위해 일부 제조업체는 지역 분산 및 공급업체 인증 프로그램을 가속화하고, 일부 제조업체는 니어쇼어링 및 주요 테이프, 페이스트, 세라믹 원료 분말의 전략적 비축을 우선시하고 있습니다. 이러한 움직임은 생산 라인의 전환이나 대체 재료 소스의 인증은 시장 출시 시간을 연장하는 엔지니어링 사이클과 검증 테스트가 필요하기 때문에 생산 일정과 자본 배분 결정에 영향을 미치고 있습니다.

또한, 관세청은 기업이 단가 하락과 잠재적 관세 부담 사이의 절충점을 평가하기 위해 다운스트림 조립 공장 및 최종 테스트 거점에 대한 조사를 강화했습니다. 이중 소싱 전략, 물류 제공업체와의 협력 강화 등 공급망 강화 조치가 더욱 보편화되고 있으며, 부서 간 팀이 제품 개발 로드맵에 관세 시나리오 계획을 통합하는 것이 일상화되고 있습니다. 그 순효과는 조달 경제성과 전략적 파트너십에 중대한 영향을 미치는 정책 환경을 극복하기 위해 조직이 운영의 유연성과 조달의 민첩성을 중시하게 되었다는 것입니다.

LTCC 및 HTCC의 변형, 제조 방법, 애플리케이션 생태계, 산업별 설계 제약 조건을 전략적 우선순위에 매핑, 심층 세분화 인사이트

제품, 프로세스, 용도, 최종 용도 차원에 따라 시장을 세분화하면 공급자가 처리해야 할 다양한 가치 풀과 역량 요구사항이 명확해집니다. 제품 유형에 따라 고온 동시 소성 세라믹과 저온 동시 소성 세라믹으로 나눌 수 있습니다. 고온 동시 소성 세라믹은 알루미나 기반 HTCC와 멀라이트 기반 HTCC로 나뉘며, 각각 높은 열 안정성과 기밀성에 최적화되어 있습니다.

자주 묻는 질문

  • LTCC 및 HTCC 시장 규모는 어떻게 예측되나요?
  • LTCC 및 HTCC의 기술적 및 상업적 배경은 무엇인가요?
  • 2025년 미국의 누적 관세가 공급망에 미치는 영향은 무엇인가요?
  • LTCC 및 HTCC의 제조 공정에는 어떤 것들이 있나요?
  • LTCC 및 HTCC의 주요 최종 이용 산업은 무엇인가요?
  • LTCC 및 HTCC의 애플리케이션은 어떻게 구분되나요?

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 인사이트

제6장 미국 관세의 누적 영향 2025

제7장 AI의 누적 영향 2025

제8장 LTCC 및 HTCC 시장 : 제품 유형별

  • 고온 동시 소성 세라믹(HTCC)
    • 알루미나 기반 HTCC
    • 멀라이트 기반 HTCC
  • 저온 동시 소성 세라믹(LTCC)
    • 결정 세라믹 기반 LTCC
    • 유리 세라믹 기반 LTCC

제9장 LTCC 및 HTCC 시장 : 제조 공정별

  • 라미네이션
  • 펀치
  • 스크린 인쇄
  • 테이프 캐스팅

제10장 LTCC 및 HTCC 시장 : 최종 이용 산업별

  • 자동차
  • 가전
  • 의학
  • 군·항공우주
  • 통신

제11장 LTCC 및 HTCC 시장 : 용도별

  • HTCC 애플리케이션
    • 전자 패키징
    • 밀폐 포장
    • 고온 회로
    • 의료 임플란트
    • 센서 통합(고온)
    • 열 관리
  • LTCC 애플리케이션
    • MEMS 통합
    • 소형 의료용 전자기기
    • RF/마이크로파 회로
    • 센서 통합(저온)

제12장 LTCC 및 HTCC 시장 : 지역별

  • 아메리카
    • 북미
    • 라틴아메리카
  • 유럽, 중동 및 아프리카
    • 유럽
    • 중동
    • 아프리카
  • 아시아태평양

제13장 LTCC 및 HTCC 시장 : 그룹별

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

제14장 LTCC 및 HTCC 시장 : 국가별

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 중국
  • 인도
  • 일본
  • 호주
  • 한국

제15장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • Kyocera Corporation
    • Murata Manufacturing Co., Ltd.
    • TDK Corporation
    • Hitachi Ltd.
    • Yokowo Co., Ltd.
    • KOA Corporation
    • Maruwa Co. Ltd.
    • Taiyo Yuden Co., Ltd.
    • Nippon Chemi-Con Corporation
    • NGK Spark Plug Co., Ltd
    • Micro Systems Technologies
    • CeramTec GmbH
    • Orbray Co., Ltd
    • Egide SA
    • AdTech Ceramics
    • AMETEK, Inc.
    • Robert Bosch GmbH
    • Selmic by Mirion Technologies
    • NEO Tec
    • ACX Corp
    • GSC-Tech Corp
    • Beijing BDStar Navigation Co.,Ltd.
KSM 25.11.05

The LTCC & HTCC Market is projected to grow by USD 2.95 billion at a CAGR of 4.75% by 2032.

KEY MARKET STATISTICS
Base Year [2024] USD 2.03 billion
Estimated Year [2025] USD 2.12 billion
Forecast Year [2032] USD 2.95 billion
CAGR (%) 4.75%

Framing the technological and commercial foundations of LTCC and HTCC to guide strategic decisions across materials, processes, and end-use requirements

The convergence of materials science, advanced ceramic processing, and miniaturized electronics has elevated co-fired ceramic technologies to a central position in modern high-reliability systems. This introduction frames the technological and commercial context for Low Temperature Co-fired Ceramic (LTCC) and High Temperature Co-fired Ceramic (HTCC) platforms, clarifying how material selection and process engineering drive performance tradeoffs across thermal, electrical, and mechanical requirements.

Emerging demands for higher integration density, improved thermal management, and expanded sensor functionality are reshaping design priorities. Manufacturers and design engineers must evaluate whether LTCC architectures, with glass ceramic or crystal ceramic formulations optimized for low-temperature co-firing, best serve RF/microwave circuits and MEMS integration, or whether HTCC solutions, based on alumina or mullite chemistries suited to high-temperature circuits and hermetic packaging, better meet requirements for aerospace and harsh-environment applications.

This section establishes the framework used throughout the analysis to compare process routes such as lamination, punching, screen printing, and tape casting, and to align those manufacturing choices with end-use industries spanning automotive, telecommunications, medical, consumer electronics, and defense. In short, the introduction equips readers with the conceptual lexicon and evaluative criteria needed to interpret downstream segmentation, regional dynamics, and strategic recommendations.

How material innovations, automation in manufacturing processes, and system-level integration are reshaping competitive advantage for co-fired ceramic technologies

The landscape for co-fired ceramics is undergoing transformative shifts driven by cross-cutting innovation in materials, process automation, and system-level integration. Continuous improvements in additive-compatible pastes, sintering profiles, and multilayer alignment are enabling tighter tolerances and higher interconnect densities, which in turn expand the addressable application set for both LTCC and HTCC platforms.

Concurrently, advanced assembly techniques and digital process controls are reducing cycle variability for lamination, punching, screen printing, and tape casting, thereby lowering manufacturing risk for complex multilayer architectures. This has expanded the practical role of LTCC in high-frequency RF modules and MEMS-enabled miniaturized medical electronics, while HTCC is consolidating its position in high-temperature circuits, hermetic packaging, and thermal-management-intensive designs.

Market participants are also reacting to systems-level pressures: increased electrification in transport, demand for resilient telecommunications infrastructure, and the miniaturization of implantable medical devices. These forces are provoking strategic shifts in product roadmaps and supplier relationships, with firms seeking closer collaboration across the value chain to co-develop substrate formulations and tailor manufacturing processes to application-specific reliability and thermal demands. As a result, competitive differentiation now increasingly depends on the ability to deliver integrated solutions that combine materials expertise, process maturity, and domain specialization.

Assessing how the cumulative United States tariffs enacted in 2025 have prompted strategic sourcing, nearshoring, and supply-chain resilience measures across the value chain

The introduction of cumulative United States tariffs in 2025 has created a new layer of supply-chain and sourcing complexity for organizations that rely on co-fired ceramic substrates. These policy shifts have prompted procurement teams to reassess supplier footprints, inventory strategies, and total landed cost calculations, with ripple effects across component sourcing and design-for-cost initiatives.

In response, some manufacturers accelerated regional diversification and supplier qualification programs to reduce exposure to tariff volatility, while others prioritized nearshoring and strategic stockpiling of critical tapes, pastes, and raw ceramic powders. Such moves have influenced production scheduling and capital allocation decisions, because converting manufacturing lines or qualifying alternate material sources requires engineering cycles and validation testing that extend time-to-market.

Moreover, the tariffs intensified scrutiny of downstream assembly and final test locations as companies evaluate the tradeoffs between lower unit costs and potential tariff liabilities. Supply-chain resilience measures, including dual-sourcing strategies and deeper collaboration with logistics providers, have become more prevalent, and cross-functional teams now routinely incorporate tariff scenario planning into product development roadmaps. The net effect is a heightened emphasis on operational flexibility and procurement agility as organizations navigate a policy environment that materially impacts sourcing economics and strategic partnerships.

Deep segmentation insights that map LTCC and HTCC variants, manufacturing methods, application ecosystems, and industry-specific design constraints to strategic priorities

Disaggregating the market along product, process, application, and end-use dimensions reveals divergent value pools and capability requirements that providers must address. Based on Product Type, the landscape divides into High Temperature Co-fired Ceramic and Low Temperature Co-fired Ceramic offerings; High Temperature Co-fired Ceramic further differentiates between alumina-based HTCC and mullite-based HTCC, each optimized for elevated thermal stability and hermeticity, while Low Temperature Co-fired Ceramic further divides into crystal ceramic-based LTCC and glass ceramic-based LTCC variants that favor lower sintering temperatures and enhanced RF performance.

Based on Manufacturing Process, production workflows emphasize lamination, punching, screen printing, and tape casting, with each process step imposing distinct tolerances, throughput tradeoffs, and qualification demands. Based on End Use Industry, design drivers vary substantially across automotive, consumer electronics, medical, military & aerospace, and telecommunications markets, necessitating tailored reliability and regulatory approaches. Based on Application, product roadmaps bifurcate into HTCC applications and LTCC applications; the HTCC application set includes electronic packaging, hermetic packaging, high temperature circuits, medical implants, sensor integration for high-temperature environments, and thermal management, whereas the LTCC application set focuses on MEMS integration, miniaturized medical electronics, RF/microwave circuits, and sensor integration for low-temperature environments.

Taken together, these segmentation lenses illuminate where material chemistries, process investments, and application engineering efforts should concentrate to unlock performance differentiation and support tighter time-to-market constraints.

How differing regional priorities and industrial ecosystems across the Americas, Europe Middle East & Africa, and Asia-Pacific are steering strategic investment and supply chain choices

Regional dynamics continue to shape investment patterns, supply networks, and product priorities for co-fired ceramic technologies, and a nuanced geographic perspective reveals differentiated strengths and constraints. In the Americas, investment decisions are influenced by a strong emphasis on automotive electrification and defense-related procurement, creating demand for high-reliability HTCC platforms and localized manufacturing capabilities that can meet stringent qualification cycles. Europe, Middle East & Africa presents a fragmented but high-regulation environment where telecommunications infrastructure upgrades and medical device innovation drive demand for both LTCC and HTCC, and where compliance and certification timelines significantly affect adoption curves. Asia-Pacific remains a critical hub for component manufacturing and materials sourcing, with dense supplier ecosystems supporting rapid iteration on tape casting, screen printing, and multilayer integration; this region also benefits from a deep talent pool for ceramic formulations and high-volume assembly.

Cross-region supply relationships often overlay these regional attributes, with companies balancing near-term cost advantages against geopolitical considerations and regulatory requirements. As a result, regional strategy is no longer solely a matter of production footprint but has become a central element of risk management, product differentiation, and customer engagement tactics across the value chain.

Corporate strategies emphasizing vertical integration, process automation, and cross-industry partnerships to convert materials and manufacturing prowess into solution-led differentiation

Leading firms in the co-fired ceramics arena are pursuing a spectrum of strategic moves to secure differentiated capabilities and to broaden addressable applications. Many companies are prioritizing vertical integration of materials and pastes to ensure consistent quality and to reduce dependency on third-party suppliers, while others are investing in process automation and inline inspection to compress qualification cycles and raise yield. Strategic partnerships between substrate manufacturers, foundries, and systems integrators are becoming more common as firms aim to deliver turnkey modules that combine substrate engineering with specialized assembly and testing.

Additionally, capability-building through targeted R&D is focusing on improving thermal conductivity, reducing dielectric losses, and refining multilayer alignment techniques-all developments that directly impact HTCC suitability for high-temperature circuits and LTCC performance in RF and MEMS roles. In parallel, companies are strengthening aftermarket support and qualification services to assist customers in regulated sectors such as medical and aerospace, thereby translating technical leadership into commercial stickiness. Collectively, these corporate initiatives reflect a shift from component commoditization toward solution-based offerings that align materials science, manufacturing excellence, and domain-specific certification know-how.

Actionable strategic steps for manufacturers and suppliers to enhance process reliability, materials alignment, and supply-chain resilience while accelerating customer adoption

Industry leaders should take decisive actions to capture value from accelerating technological and market transitions, and a focused set of operational and commercial recommendations will enhance competitive positioning. First, prioritize investment in process robustness for lamination, punching, screen printing, and tape casting to reduce variability and to support rapid qualification across multiple end-use industries. Second, align materials R&D with specific application demands by developing targeted formulations for alumina-based and mullite-based HTCC, and for crystal ceramic and glass ceramic LTCC, thereby enabling tighter performance guarantees for thermal, electrical, and hermetic requirements.

Third, strengthen supply-chain resilience by diversifying supplier bases, assessing nearshoring opportunities where tariff exposure and lead-times materially affect program timelines, and by instituting rigorous incoming materials inspection protocols. Fourth, deepen integration with systems customers through co-development arrangements that accelerate adoption in automotive electrification, telecommunications infrastructure, medical implants, and defense applications. Finally, refine go-to-market approaches by packaging substrate capabilities with certification and aftermarket support services, enabling faster adoption in highly regulated markets and establishing longer-term revenue streams linked to qualification and lifecycle support.

A transparent blend of expert interviews, technical literature, and supply-chain mapping underpinned by reproducible analytical methods and scenario testing

This research combines qualitative expert interviews, technical literature synthesis, and supply-chain mapping to construct a rigorous analytical foundation. Primary inputs included structured interviews with materials scientists, process engineers, and procurement leaders involved in lamination, punching, screen printing, and tape casting operations, alongside discussions with application engineers across automotive, telecommunications, medical, consumer electronics, and defense segments. Secondary research encompassed peer-reviewed materials science publications, industry technical standards, and regulatory guidance to validate material properties and qualification criteria relevant to HTCC and LTCC platforms.

Analytical methods integrated process-level capability assessments, supplier concentration mapping, and scenario analysis to evaluate the implications of policy changes such as tariff adjustments. Where appropriate, cross-validation routines compared primary insights with documented reliability test methods and application-specific qualification protocols. The resulting methodology emphasizes transparency, reproducibility, and practical relevance, enabling readers to trace how conclusions about product segmentation, manufacturing constraints, and regional dynamics were derived and to replicate the approach for company- or program-specific inquiries.

Synthesis of how materials choices, process investments, regional strategy, and policy interplay will define winners in the evolving LTCC and HTCC ecosystem

The collective analysis underscores that LTCC and HTCC technologies will continue to play indispensable roles in high-reliability and miniaturized electronic systems, but that competitive advantage will increasingly favor players who tightly integrate materials innovation with process maturity and customer-focused certification services. Material chemistry choices between alumina and mullite for HTCC and between crystal ceramic and glass ceramic for LTCC drive distinct application fit and qualification pathways, and process investments in lamination, punching, screen printing, and tape casting materially affect yield, time-to-market, and cost structures.

Regional strategies likewise determine access to talent, regulatory compliance pathways, and supply-chain robustness across the Americas, Europe, Middle East & Africa, and Asia-Pacific, while policy shifts such as tariff changes compel companies to reassess sourcing footprints and inventory strategies. Ultimately, the organizations best positioned to capitalize will be those that translate technical capability into integrated, validated solutions aligned with the needs of automotive electrification, telecommunications expansion, medical miniaturization, and defense-grade reliability.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Growing demand for multi-layered LTCC modules in wearable medical devices
  • 5.2. Advanced printing technologies enable three-dimensional HTCC structures for high-frequency modules
  • 5.3. Rising adoption of embedded passive and active components in LTCC architectures for advanced IoT sensors
  • 5.4. Increasing use of laser micromachining techniques refining HTCC three-dimensional microwave filter geometries
  • 5.5. Adoption of eco-friendly ceramic formulations in LTCC fabrication meeting strict environmental standards
  • 5.6. Advanced 3D printing techniques enabling compact high-frequency HTCC module geometries
  • 5.7. Development of bioinert LTCC materials enhancing reliability in implantable neurostimulation devices
  • 5.8. Growing use of nano-scale filler materials in HTCC ceramics fueling thermal management
  • 5.9. Integration of wireless communication modules into LTCC substrates for vehicle telematics systems
  • 5.10. Partnerships among GaN power device manufacturers and HTCC fabricators accelerating amplifier solutions

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. LTCC & HTCC Market, by Product Type

  • 8.1. High Temperature Co-fired Ceramic (HTCC)
    • 8.1.1. Alumina Based HTCC
    • 8.1.2. Mullite Based HTCC
  • 8.2. Low Temperature Co-fired Ceramic (LTCC)
    • 8.2.1. Crystal Ceramic Based LTCC
    • 8.2.2. Glass Ceramic Based LTCC

9. LTCC & HTCC Market, by Manufacturing Process

  • 9.1. Lamination
  • 9.2. Punching
  • 9.3. Screen Printing
  • 9.4. Tape Casting

10. LTCC & HTCC Market, by End Use Industry

  • 10.1. Automotive
  • 10.2. Consumer Electronics
  • 10.3. Medical
  • 10.4. Military & Aerospace
  • 10.5. Telecommunications

11. LTCC & HTCC Market, by Application

  • 11.1. HTCC Applications
    • 11.1.1. Electronic Packaging
    • 11.1.2. Hermetic packaging
    • 11.1.3. High Temperature Circuits
    • 11.1.4. Medical Implants
    • 11.1.5. Sensor Integration (High Temp)
    • 11.1.6. Thermal Management
  • 11.2. LTCC Applications
    • 11.2.1. MEMS Integration
    • 11.2.2. Miniaturized Medical Electronics
    • 11.2.3. RF/Microwave Circuits
    • 11.2.4. Sensor Integration (Low Temp)

12. LTCC & HTCC Market, by Region

  • 12.1. Americas
    • 12.1.1. North America
    • 12.1.2. Latin America
  • 12.2. Europe, Middle East & Africa
    • 12.2.1. Europe
    • 12.2.2. Middle East
    • 12.2.3. Africa
  • 12.3. Asia-Pacific

13. LTCC & HTCC Market, by Group

  • 13.1. ASEAN
  • 13.2. GCC
  • 13.3. European Union
  • 13.4. BRICS
  • 13.5. G7
  • 13.6. NATO

14. LTCC & HTCC Market, by Country

  • 14.1. United States
  • 14.2. Canada
  • 14.3. Mexico
  • 14.4. Brazil
  • 14.5. United Kingdom
  • 14.6. Germany
  • 14.7. France
  • 14.8. Russia
  • 14.9. Italy
  • 14.10. Spain
  • 14.11. China
  • 14.12. India
  • 14.13. Japan
  • 14.14. Australia
  • 14.15. South Korea

15. Competitive Landscape

  • 15.1. Market Share Analysis, 2024
  • 15.2. FPNV Positioning Matrix, 2024
  • 15.3. Competitive Analysis
    • 15.3.1. Kyocera Corporation
    • 15.3.2. Murata Manufacturing Co., Ltd.
    • 15.3.3. TDK Corporation
    • 15.3.4. Hitachi Ltd.
    • 15.3.5. Yokowo Co., Ltd.
    • 15.3.6. KOA Corporation
    • 15.3.7. Maruwa Co. Ltd.
    • 15.3.8. Taiyo Yuden Co., Ltd.
    • 15.3.9. Nippon Chemi-Con Corporation
    • 15.3.10. NGK Spark Plug Co., Ltd
    • 15.3.11. Micro Systems Technologies
    • 15.3.12. CeramTec GmbH
    • 15.3.13. Orbray Co., Ltd
    • 15.3.14. Egide SA
    • 15.3.15. AdTech Ceramics
    • 15.3.16. AMETEK, Inc.
    • 15.3.17. Robert Bosch GmbH
    • 15.3.18. Selmic by Mirion Technologies
    • 15.3.19. NEO Tec
    • 15.3.20. ACX Corp
    • 15.3.21. GSC-Tech Corp
    • 15.3.22. Beijing BDStar Navigation Co.,Ltd.
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제