![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1503365
Àú¿Â µ¿½Ã ¼Ò¼º ¼¼¶ó¹Í(LTCC)¿Í °í¿Â µ¿½Ã ¼Ò¼º ¼¼¶ó¹Í(HTCC) ½ÃÀå ¿¹Ãø(-2030³â) : Á¦Ç° À¯Çü, °øÁ¤ À¯Çü, Àç·á À¯Çü, ¿ëµµ, ÃÖÁ¾ »ç¿ëÀÚ ¹× Áö¿ªº° ºÐ¼®LTCC And HTCC Market Forecasts to 2030 - Global Analysis By Product Type (Substrates, Packages and Modules), Process Type, Material Type, Application, End User and By Geography |
Stratistics MRC¿¡ µû¸£¸é LTCC ¹× HTCC ¼¼°è ½ÃÀåÀº 2024³â 31¾ï 4,000¸¸ ´Þ·¯¿¡ À̸£°í, ¿¹Ãø ±â°£ µ¿¾È 5.5%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 43¾ï 4,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
Àú¿Â µ¿½Ã ¼Ò¼º ¼¼¶ó¹Í(LTCC)¿Í °í¿Â µ¿½Ã ¼Ò¼º ¼¼¶ó¹Í(HTCC)´Â ÀüÀÚ ºÎǰ Á¦Á¶¿¡ »ç¿ëµÇ´Â ±â¼ú·Î, LTCC´Â 900¡É ÀÌÇÏÀÇ ¿Âµµ¿¡¼ µ¿½Ã ¼Ò¼ºÇÒ ¼ö ÀÖ´Â ¼¼¶ó¹Í Àç·á¸¦ »ç¿ëÇÕ´Ï´Ù. ÀÌ ¹æ¹ýÀº ¼¼¶ó¹Í ±âÆÇ ³»¿¡ ÀúÇ×, Ä¿ÆÐ½ÃÅÍ, ÀδöÅÍ µîÀÇ ¼öµ¿ºÎǰÀ» ÁýÀûÇÒ ¼ö ÀÖ¾î RF ¸ðµâ, ÀÇ·á±â±â µî °íÁÖÆÄ ¹× °í¹Ðµµ ¿ëµµ¿¡ ÀûÇÕÇÕ´Ï´Ù. ¹Ý¸é HTCC´Â 1600¡É ÀÌ»óÀÇ ¿Âµµ¿¡¼ ¼Ò¼ºÇØ¾ß ÇÏ´Â ¼¼¶ó¹Í ¼ÒÀ縦 »ç¿ëÇÕ´Ï´Ù. ÀÌ °øÁ¤Àº ÀϹÝÀûÀ¸·Î Ç×°ø¿ìÁÖ ¹× ±º¿ë ÀüÀÚ±â±â¿Í °°ÀÌ ´õ ³ôÀº ¿Àû, ±â°èÀû ¾ÈÁ¤¼ºÀÌ ¿ä±¸µÇ´Â ¿ëµµ¿¡ »ç¿ëµË´Ï´Ù.
ÀüÀÚ±â±âÀÇ ¼ÒÇüÈ ¼ö¿ä
LTCC ¹× HTCC´Â ÀÛÀº ½ÇÀû ³»¿¡ ¿©·¯ ÆÐ½Ãºê ºÎǰÀ» ÅëÇÕÇÒ ¼ö Àֱ⠶§¹®¿¡ ÀÌ·¯ÇÑ Ãß¼¼ÀÇ ÇýÅÃÀ» ´©¸± ¼ö ÀÖÀ¸¸ç, ½º¸¶Æ®Æù, ÀÇ·á¿ë ÀÓÇöõÆ®, IoT ÀåÄ¡¿Í °°Àº ¼ÒÇü ÀåÄ¡¿¡ ÀûÇÕÇϸç, LTCCÀÇ ³·Àº À¯Àüü ¼Õ½Ç°ú ¿ì¼öÇÑ ¿Àû Ư¼ºÀº ÀÌ·¯ÇÑ ¿ëµµ¿¡¼ ¿ä±¸µÇ´Â ¼º´É°ú ½Å·Ú¼ºÀ» Áö¿øÇÕ´Ï´Ù. ½Å·Ú¼ºÀ» µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù. HTCCÀÇ ¿ì¼öÇÑ ¿Àû ¹× ±â°èÀû ¾ÈÁ¤¼ºÀÌ ÇʼöÀûÀÎ Ç×°ø¿ìÁÖ, ±º»ç ¹× »ê¾÷¿ë ÀüÀÚÁ¦Ç°µµ ¿©±â¿¡ Æ÷ÇԵ˴ϴÙ. Àü¹ÝÀûÀ¸·Î, ¼ÒÇüÈ ¹× È¿À²ÀûÀÎ ÀüÀÚ ÀåÄ¡ÀÇ ÃßÁøÀ¸·Î ÀÎÇØ LTCC ¹× HTCC ±â¼úÀÇ ¹ßÀü°ú äÅÃÀÌ °¡¼Óȵǰí ÀÖ½À´Ï´Ù.
³ôÀº Ãʱâ ÅõÀÚ
÷´Ü ¼¼¶ó¹Í ±â¼ú Á¦Á¶ ¼³ºñ¸¦ ±¸ÃàÇϱâ À§Çؼ´Â Ư¼ö Àåºñ, Àç·á, ¼÷·ÃµÈ Àη¿¡ ´ëÇÑ ¸·´ëÇÑ ÀÚº» ÁöÃâÀÌ ÇÊ¿äÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ÀçÁ¤Àû À庮Àº Áß¼Ò±â¾÷(SME) ½ÃÀå ÁøÀÔÀ» ¸·°í, ±â¼ú Çõ½Å°ú °æÀïÀ» Á¦ÇÑÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀÌ·¯ÇÑ ±â¼úÀ» °³¼±Çϱâ À§ÇÑ ¿¬±¸°³¹ß(R&D)¿¡ ¸¹Àº ºñ¿ëÀÌ ¼Ò¿äµÇ±â ¶§¹®¿¡ ÀáÀçÀû ÅõÀÚÀÚ¿Í Á¦Á¶¾÷ü¿¡ ´õ ¸¹Àº ºÎ´ãÀ» ÁÙ ¼ö ÀÖ½À´Ï´Ù. ±× °á°ú, ÃæºÐÇÑ °æ¿µ ÀÚ¿øÀ» °¡Áø ´ë±â¾÷ÀÌ ½ÃÀåÀ» µ¶Á¡ÇÏ°Ô µÇ¾î °¡°Ý °æÀï·ÂÀÌ ¶³¾îÁö°í ¹ßÀüÀÌ Áö¿¬µÉ ¼ö ÀÖ½À´Ï´Ù.
Åë½Å ÀÎÇÁ¶ó È®´ë
LTCC ±â¼úÀº °íÁÖÆÄ ½ÅÈ£¸¦ ó¸®ÇÒ ¼ö ÀÖ¾î 5G ³×Æ®¿öÅ© ¹× ±âŸ ÷´Ü Åë½Å ½Ã½ºÅÛÀÇ ¼ÒÇü, °íÈ¿À² ºÎǰ¿¡ ÀûÇÕÇϸç, °íÁÖÆÄ ½ÅÈ£ ó¸® ´É·ÂÀÇ ÀÌÁ¡À» °¡Áö°í ÀÖ½À´Ï´Ù. µû¶ó¼ LTCC ±â¹Ý ÇÊÅÍ, ¾ÈÅ׳ª ¹× ¸ðµâ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÇÑÆí, ¿Àû ¹× ±â°èÀû ¾ÈÁ¤¼ºÀÌ ¶Ù¾î³ HTCC ±â¼úÀº °íÃâ·Â Åë½Å ¿ëµµ¸¦ Áö¿øÇÏ°í ±î´Ù·Î¿î Á¶°Ç¿¡¼µµ ¾ÈÁ¤ÀûÀÎ ¼º´ÉÀ» º¸ÀåÇÔÀ¸·Î½á ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇϰí ÀÖ½À´Ï´Ù.
Á¦ÇÑÀûÀÎ Àç·á¸¸ ±¸ÇÒ ¼ö ÀÖ½À´Ï´Ù.
°í¼øµµ ¼¼¶ó¹ÍÀ̳ª ƯÁ¤ ±Ý¼Ó ÆäÀ̽ºÆ®¿Í °°Àº Ư¼ö ¿øÀÚÀç ºÎÁ·Àº °ø±Þ¸Á È¥¶õ°ú °¡°Ý »ó½ÂÀ¸·Î À̾îÁ® Á¦Á¶¾÷ü ¼ö¿ä ´ëÀÀ ´É·Â¿¡ ¿µÇâÀ» ¹ÌÄ¥ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀÌ·¯ÇÑ Á¦¾àÀº ¿¬±¸°³¹ßÀ» ¹æÇØÇÏ°í ±â¼ú Çõ½Å°ú ½ÅÁ¦Ç° Ãâ½Ã¸¦ Áö¿¬½Ãų ¼ö ÀÖ½À´Ï´Ù. ±× °á°ú, ±â¾÷µéÀº »ç¾÷ ±Ô¸ð¸¦ È®ÀåÇÏ°í °æÀï·Â ÀÖ´Â °¡°ÝÀ» À¯ÁöÇØ¾ß ÇÏ´Â ¾î·Á¿ò¿¡ Á÷¸éÇÒ ¼ö ÀÖÀ¸¸ç, ÀÌ´Â ½ÃÀå ¼ºÀåÀ» ÀúÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.
COVID-19ÀÇ ¿µÇâ
ÀÌ Àü¿°º´À¸·Î ÀÎÇØ °øÀåÀº ÀϽÃÀûÀ¸·Î °øÀå °¡µ¿À» Áß´ÜÇϰí Á÷¿øÀ» º¸È£Çϱâ À§ÇØ ³ë·ÂÇØ¾ßÇ߱⠶§¹®¿¡ °ø±Þ¸Á¿¡ »ó´çÇÑ Áö¿¬ÀÌ ¹ß»ýÇß½À´Ï´Ù. ÀÌ Áß´ÜÀ¸·Î ÀÎÇØ LTCC ¹× HTCC Àç·á ¹× ºÎǰÀÇ Á¦Á¶ ¹× ³³Ç°ÀÌ Áö¿¬µÇ¾î ¼ö¿ä¸¦ ÃæÁ·Çϰí Àǹ«¸¦ ÀÌÇàÇÏ´Â µ¥ ¾î·Á¿òÀ» °Þ¾ú½À´Ï´Ù. ¶ÇÇÑ Àü¿°º´À¸·Î ÀÎÇÑ °æ±â ħü´Â ¼ÒºñÀÚÀÇ ¼Òºñ ½À°ü°ú ÅõÀÚ ¼±ÅÃÀ» º¯È½ÃÄÑ LTCC ¹× HTCC ºÎǰÀÇ Áß¿äÇÑ »ç¿ëÀÚ ÀÎ ÀÇ·á, Åë½Å, ÀÚµ¿Â÷, Ç×°ø¿ìÁÖ ¹× ÀÚµ¿Â÷ »ê¾÷°ú °°Àº ÀϺΠ»ê¾÷¿¡¼ »óǰ ¹× ¼ºñ½º¿¡ ´ëÇÑ ¼ö¿ä °¨¼Ò·Î À̾îÁ³½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¸ÖƼĨ ¸ðµâ ºÎ¹®ÀÌ °¡Àå Å« ºñÁßÀ» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
¸ÖƼĨ ¸ðµâÀº ¿©·¯ °³ÀÇ ¹ÝµµÃ¼ ´ÙÀ̸¦ ÇϳªÀÇ ÆÐŰÁö¿¡ ÁýÀûÇÏ¿© ¼ÒÇüÈ ¹× °í¼º´ÉÀ» Áö¿øÇϴ ÷´Ü ÆÐŰ¡ ±âÆÇÀÌ ÇÊ¿äÇϱ⠶§¹®¿¡ LTCC ¹× HTCC ¼ÒÀç´Â ¿ ¾ÈÁ¤¼º, Àü±âÀû Ư¼º ¹× ¼ÒÇüÈµÈ ÀüÀÚ ºÎǰ°úÀÇ È£È¯¼ºÀÌ ¿ì¼öÇÏ¿© ÀÌ·¯ÇÑ ±âÆÇ¿¡ °¡Àå ÀûÇÕÇÑ ¼ÒÀçÀÔ´Ï´Ù. ¼ÒÇüÈµÈ ÀüÀÚ ºÎǰ°úÀÇ È£È¯¼ºÀÌ ¿ì¼öÇÏ¿© ÀÌ·¯ÇÑ ±âÆÇ¿¡ ÀûÇÕÇÕ´Ï´Ù. µû¶ó¼ MCM¿¡ LTCC ¹× HTCC¸¦ »ç¿ëÇÏ¸é °íÁÖÆÄ ¹× °íÀü·Â ¿ëµµ¿¡ ¸Å¿ì Áß¿äÇÑ ±â´É Çâ»ó, ½ÅÈ£ ¼Õ½Ç °¨¼Ò ¹× ¿ ¹æÃâÀ» °³¼±ÇÒ ¼ö ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È Åë½Å ºÐ¾ß°¡ °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
ºí·çÅõ½º ¸ðµâ, ÈÞ´ëÆù ÇÁ·ÐÆ®¿£µå ¸ðµâ, WLAN µî ¸¶ÀÌÅ©·ÎÆÄ ¹× ¹Ð¸®¹ÌÅÍÆÄ Á֯ļö ´ë¿ªÀÇ ¿ëµµ¿¡¼ LTCC ±â¼úÀÌ ºü¸£°Ô È®»êµÇ°í Àֱ⠶§¹®¿¡ Åë½Å ºÐ¾ß´Â ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¶ÇÇÑ, ´Ù¾çÇÑ ±â¾÷µéÀÌ Ã·´Ü LTCC Á¦Ç°À» °³¹ßÇϰí ÀÖ¾î »õ·Î¿î ºñÁî´Ï½º ±âȸ¸¦ âÃâÇÒ ¼ö ÀÖÀ» °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
ºÏ¹Ì´Â LTCC ±â¹Ý PCB¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿Í ÀÌ Áö¿ªÀÇ ¹«¼± Åë½Å »ê¾÷ÀÇ ¹ø¿µÀ¸·Î ÀÎÇØ ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. À¯·´¿¡¼´Â EV »ê¾÷ ½ÃÀå °³Ã´ÀÌ ½ÃÀå ¼ºÀåÀÇ ÁÖ¿ä ¿äÀÎÀ¸·Î, 2020³â À¯·´Àº Áß±¹À» Á¦Ä¡°í °¡Àå Å« EV ½ÃÀåÀÌ µÉ °ÍÀ̸ç, 2020³â EV ÆÇ¸Å·®Àº 1.4¹é¸¸´ë·Î 2020³â EV ÆÇ¸Å·®ÀÇ 45.0%¸¦ Â÷ÁöÇÒ °ÍÀ̸ç, EV »ê¾÷ÀÇ ¼ºÀåÀº ÀÚµ¿Â÷¿ë ÀÏ·ºÆ®·Î´Ð½º¿¡ ´ëÇÑ ¼ö¿ä¸¦ Áõ°¡½ÃÄÑ ¿¹Ãø ±â°£ µ¿¾È Á¦Ç° ¼ö¿ä¿¡ ±àÁ¤ÀûÀÎ ¿µÇâÀ» ¹ÌÄ¥ °ÍÀÔ´Ï´Ù. Á¦Ç° ¼ö¿ä¿¡ ±àÁ¤ÀûÀÎ ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.
¾Æ½Ã¾ÆÅÂÆò¾çÀº Àεµ, Áß±¹, Çѱ¹, ÀϺ» µîÀÇ ±¹°¡¿¡¼ ÀÚµ¿Â÷, ¼ÒºñÀÚ ¹× »ê¾÷¿ë ÀüÀÚÁ¦Ç° ºÐ¾ß°¡ ºü¸£°Ô ¹ßÀüÇϰí ÀÖ¾î ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» À¯ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. °¢±¹ Á¤ºÎÀÇ Àü±âÂ÷¿¡ ´ëÇÑ Àμ¾Æ¼ºê Á¦µµ°¡ ÁøÇàµÊ¿¡ µû¶ó ÀÚµ¿Â÷ ÀüÀå Á¦Ç° Á¦Á¶¾÷üµéÀÌ ÀÌ Áö¿ª¿¡ À¯Ä¡µÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¶ÇÇÑ, 5G ±â¼úÀÇ µîÀåÀ¸·Î Áß±¹Àº Àü·Â ÀüÀÚ »ê¾÷¿¡ ´ëÇÑ ÅõÀÚ¸¦ ¸ñ°ÝÇϰí ÀÖÀ¸¸ç, ÀÌ´Â ½ÃÀå ¼ºÀå¿¡ ±â¿©ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
According to Stratistics MRC, the Global LTCC And HTCC Market is accounted for $3.14 billion in 2024 and is expected to reach $4.34 billion by 2030 growing at a CAGR of 5.5% during the forecast period. Low-Temperature Co-fired Ceramics (LTCC) and High-Temperature Co-fired Ceramics (HTCC) are technologies used in the manufacturing of electronic components. LTCC involves the use of ceramic materials that can be co-fired at temperatures below 900°C. This method allows for the integration of passive components like resistors, capacitors, and inductors within the ceramic substrate, making it suitable for high-frequency and high-density applications, such as RF modules and medical devices. HTCC, on the other hand, uses ceramic materials that require firing at temperatures above 1600°C. This process is typically used for applications that demand higher thermal and mechanical stability, such as aerospace and military electronics.
Demand for miniaturized electronics
LTCC and HTCC benefits from this trend due to its capability to integrate multiple passive components within a small footprint, making it ideal for compact devices such as smartphones, medical implants, and IoT devices. The low dielectric loss and excellent thermal properties of LTCC also support the performance and reliability required in these applications. This includes aerospace, military, and industrial electronics, where HTCC's superior thermal and mechanical stability is essential. Overall, the push for smaller, more efficient electronic devices accelerates advancements and adoption in both LTCC and HTCC technologies
High Initial Investment
Setting up manufacturing facilities for these advanced ceramic technologies involves substantial capital expenditure on specialized equipment, materials, and skilled labor. This financial barrier can deter small and medium-sized enterprises (SMEs) from entering the market, limiting innovation and competition. Additionally, the significant costs associated with research and development (R&D) for improving these technologies further strain potential investors and manufacturers. As a result, the market can become dominated by larger companies with sufficient resources, potentially leading to less competitive pricing and slower advancements.
Telecom infrastructure expansion
LTCC technology benefits due to its capability to handle high-frequency signals, making it ideal for compact, efficient components in 5G networks and other advanced telecom systems. This drives demand for LTCC-based filters, antennas, and modules. On the other hand HTCC technology, with its superior thermal and mechanical stability, supports high-power telecom applications, ensuring reliable performance under demanding conditions propel the growth of the market.
Limited material availability
Scarcity of specialized raw materials, such as high-purity ceramics and specific metal pastes, can lead to supply chain disruptions and higher prices, affecting manufacturers' ability to meet demand. This limitation can also hinder research and development efforts, slowing innovation and the introduction of new products. Consequently, companies may face challenges in scaling their operations and maintaining competitive pricing, which can deter market growth
Covid-19 Impact
The epidemic caused extensive supply chain delays since industrial plants had to close temporarily to comply with lockdown procedures and protect employees. The manufacture and delivery of LTCC and HTCC materials and components were delayed as a result of this interruption, making it difficult to satisfy demand and complete obligations. In addition, the economic recession brought on by the pandemic changed consumer spending habits and investment choices, which resulted in a decline in demand for goods and services in some industries, including healthcare, telecommunications, automotive, aerospace and the automotive industry all of which are important users of LTCC and HTCC components.
The multi-chip modules segment is expected to be the largest during the forecast period
The multi-chip modules is expected to be the largest during the forecast period as which integrate multiple semiconductor dies into a single package, demand advanced substrates to support their compact and high-performance nature. LTCC and HTCC materials are ideal for these substrates due to their excellent thermal stability, electrical properties, and compatibility with miniaturized electronic components. Thus the use of LTCC and HTCC in MCMs enables enhanced functionality, reduced signal loss, and improved heat dissipation, which are crucial for high-frequency and high-power applications.
The telecommunications segment is expected to have the highest CAGR during the forecast period
The telecommunications segment is expected to have the highest CAGR during the forecast period due to the penetration of LTCC technology is rapidly increasing for applications in microwave and millimeter-wave frequency band in areas including Bluetooth module, front end module of mobile phones, and WLAN. Moreover, new opportunities lie ahead as various companies are developing advanced LTCC products, which are projected to benefit these companies to expand their footprint in 5G communication.
North America is projected to hold the largest market share during the forecast period attributed to the rising demand for LTCC based PCBs and the flourishing wireless communication industry in the region. In Europe, market growth is attributed to the development of the EV industry. In 2020, Europe exceeded China and became the largest EV market. With 1.4 million EVs sold, the region held a revenue share of 45.0% of EV sales in 2020. Growth in the EV industry will augment demand for auto electronics and positively influence product demand over the forecast period.
Asia Pacific is projected to hold the highest CAGR over the forecast period owing to the rapidly flourishing automotive, consumer, and industrial electronics sectors in countries such as India, China, South Korea, and Japan. The ongoing incentive schemes for EVs by governments of different countries are anticipated to attract auto-electronic product manufacturers to the region. Furthermore, with the advent of 5G technology, China is witnessing investments in its power electronics industry, which is anticipated to benefit market growth.
Key players in the market
Some of the key players in LTCC And HTCC market include ACX Corp., API Technologies, ECRI Microelectronics, Hitachi Metals Ltd, KOA Corporation, Kyocera Corporation, Maruwa Co. Ltd., Micro Systems Technologies, Murata Manufacturing Co., Ltd., NGK Spark Plug Ltd., NIKKO Company, Selmic Oy, Soar Technology Co., Ltd., TDK Corporation and Yokowo co., ltd
In June 2024, Kyocera launches new cut-off solution "KGZ" for small parts machining. In addition, there are some challenges regarding the workability of the machine, such as the need for a skilled operator to quickly and accurately replace and install inserts in a narrow space.
In June 2024, Kyocera Installs World's First*1 Fine Cordierite Ceramic Mirror for International Space Station's Experimental Optical Communications. This demonstration was conducted jointly by the National Institute of Information and Communications Technology
In June 2024, Hitachi Energy launches innovative oil-free and plug-and-play traction transformer. This plug-and-play solution is a breakthrough technology for dry-type on-board traction transformer.