시장보고서
상품코드
1853837

식물 표현형 시장 : 기술, 작물 유형, 애플리케이션, 배포 모드, 최종사용자별 - 세계 예측(2025-2032년)

Plant Phenotyping Market by Technology, Crop Type, Application, Deployment Mode, End User - Global Forecast 2025-2032

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 194 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

식물 표현형 시장은 2032년까지 CAGR 7.36%로 4억 8,612만 달러로 성장할 것으로 예측됩니다.

주요 시장 통계
기준연도 2024 2억 7,534만 달러
추정연도 2025 2억 9,547만 달러
예측연도 2032 4억 8,612만 달러
CAGR(%) 7.36%

식물 표현형 분석을 형질 발견을 가속화하고, 연구 처리량을 향상시키며, 농업 혁신 경로를 강화하는 경영 전략 역량으로 자리매김

식물 표현형 분석은 틈새 과학 활동에서 농업 밸류체인 전반의 작물 개량, 정밀농업, 회복 전략을 지원하는 운영상 중요한 분야로 발전했습니다. 이미징, 유전형질분석, 센서, 로봇공학, 분석의 급속한 발전으로 연구자와 실무자들은 전례 없는 규모, 해상도, 빈도로 표현형 발현을 관찰할 수 있게 되었습니다. 그 결과, 이전에는 수작업으로 점수를 매기거나 희소한 데이터 포인트에 의존하던 조사 프로그램이 이제는 자동화된 파이프라인을 활용하여 형질 발견을 가속화하고 유전적 변이를 농업적 성과로 연결시킬 수 있게 되었습니다.

육종 주기가 단축되고, 실험 처리량이 증가하며, 의사결정이 보다 데이터 중심적으로 이루어집니다. 결과적으로, 기술 투자를 명확한 연구 목적과 일치시키는 조직은 프로그램의 병목현상을 줄이고, 시험포장에서 상업적 품종으로 전환하는 경로를 개선할 수 있습니다. 또한 페노타이핑은 유전체, 환경, 관리 등 다양한 분야의 데이터세트와 점점 더 통합되어 식물의 성능을 보다 종합적으로 해석할 수 있게 되었습니다. 요약하면, 이 소개는 식물 표현형 분석을 단순한 실험실 역량이 아닌 현대 농업에서 제품 차별화, R&D 효율성 및 운영의 강인성을 실현하는 전략적 수단으로 자리매김하고 있습니다.

식물 표현형 분류 연구 및 운영 워크플로우 재구축, 혁신적 기술 수렴, 공동 실습, 배포의 다양화에 대해 설명

식물 표현형 분석을 둘러싼 환경은 기술의 수렴, 연구 방법의 변화, 최종사용자의 기대치 변화에 따라 변화의 시기를 맞이하고 있습니다. 현재 이미징 양식의 발전은 하이스루풋 유전형질 분석 및 AI 기반 분석과 공존하여 보다 풍부한 페노믹 데이터세트를 생성하고 식물의 반응을 실시간으로 해석할 수 있게 해주고 있습니다. 동시에 로봇공학과 자동화 플랫폼은 반복 측정의 한계 비용을 낮추고, 정적 스냅숏이 아닌 동적 형질 발현을 밝히는 종단면 연구를 가능하게 합니다.

공공 연구 기관, 민간 육종 프로그램 및 서비스 프로바이더는 데이터 공유 컨소시엄과 표준화된 프로토콜을 통해 점점 더 많이 협력하여 상호 운용성을 촉진하고 집단적 학습을 가속화하고 있습니다. 도입 형태도 다양화되어, 밭 기반 플랫폼이 이용 사례의 특수성에 따라 온실 및 실내 제어 환경 솔루션을 보완하고 있습니다. 마지막으로 데이터 관리 및 시각화를 위한 소프트웨어 스택이 성숙해짐에 따라 더 많은 실무자들이 원시 센서 출력을 실용적인 인사이트으로 변환할 수 있게 되었습니다. 이러한 변화로 인해 R&D 워크플로우가 재구성되고, 페노타이핑을 활용한 발견 및 의사결정 지원과 관련된 새로운 밸류체인이 생겨나고 있습니다.

2025년 무역 조치 및 관세 조정에 따라 연구 및 상업 환경 전반에 걸쳐 페노타이핑 프로그램의 조달 전략, 공급망 및 운영 탄력성이 어떻게 변화했는지 분석

2025년 장비, 부품, 서비스 흐름에 영향을 미치는 새로운 관세 및 무역 조치가 도입됨에 따라 연구 프로그램과 상업 관계자들 사이에 연쇄적으로 운영상의 조정이 이루어졌습니다. 실험 장비, 이미지 센서, 특수 로봇에 대한 수입 관세 인상으로 인해 신규 도입에 대한 선취 비용이 증가하여 일부 조직은 모듈식 업그레이드 및 개조 솔루션에 대한 투자를 가속화하는 한편, 중요하지 않은 자본 프로젝트를 연기하도록 유도했습니다. 이와 함께 조달 전략이 변화하면서 국경 간 운송 및 통관 지연에 따른 불안정성을 완화하기 위해 현지 공급업체, 장기 유지보수 계약, 지역 서비스 파트너십에 중점을 두게 되었습니다.

공급망 마찰은 고사양 장비의 부품 가용성에도 영향을 미쳐 리드 타임을 연장하고 모듈화 및 교환성을 중시하는 설계를 선택하도록 유도했습니다. 그 결과, 연구기관은 실험의 연속성을 유지하기 위해 견고한 서비스 계약과 이중화 계획을 우선순위에 두었습니다. 연구 공동체는 장비 사용 시간을 공유하고, 장비 사용 가능 기간에 맞추어 프로젝트 일정을 조정하여 적응했습니다. 또한 가격 압박으로 인해 총소유비용과 수명주기 지원에 대한 면밀한 조사가 이루어졌고, 그 결과 조달, 펌웨어 업데이트, 예비 부품에 대한 공급업체의 투명성에 대한 요구가 높아졌습니다. 이러한 역동성을 종합하면 페노타이핑 생태계는 탄력적인 조달 관행, 지역 파트너십, 유연한 배포 전략의 가치를 강화했습니다.

특정 기술 제품군, 작물 유형, 이용 사례, 배포 환경, 최종사용자 요구 사항을 운영상의 의사결정로 연결하는 상세한 세분화 분석을 제공

부문별 역학을 이해하기 위해서는 실험 설계와 운영상의 선택을 주도하는 기술과 용도에 주목해야 합니다. 기술을 기반으로 연구팀은 표적 마커 분석을 위한 PCR 기반 분석, 종합적인 유전체 인사이트를 위한 시퀀싱, 고밀도 변이 스크리닝을 위한 SNP 유전형 분석 플랫폼을 포함한 유전형 분석 접근법을 개발할 예정입니다. 이미징 시스템은 아키텍처 캡처를 위한 3D 재구성, 생리학 평가를 위한 형광 및 하이퍼스펙트럼 시스템, 스트레스 매핑을 위한 열화상, 일상적인 관찰을 위한 가시광선 카메라에 이르기까지 다양하며, 로봇 솔루션은 일관된 처리량을 가능하게 하는 자동화 플랫폼, 확장 가능한 현장 정찰을 위한 드론, 정밀한 제어 환경 워크플로우를 위한 갠트리 시스템 일관된 처리량을 가능하게 하는 자동화 플랫폼부터 확장 가능한 현장 정찰용 드론, 정밀한 제어 환경 워크플로우를 위한 갠트리 시스템까지 다양한 로봇 솔루션이 있습니다. 이 센서 제품군은 가스 교환, 수분 조절, pH 조건, 근접 또는 구조적 속성을 측정합니다. 소프트웨어 생태계는 패턴 검출을 위한 AI 플랫폼, 특징 추출을 위한 데이터 분석 파이프라인, 출처 및 저장을 위한 관리 시스템, 이해관계자 해석을 위한 시각화 툴을 포함합니다.

자주 묻는 질문

  • 식물 표현형 시장의 규모는 어떻게 예측되나요?
  • 식물 표현형 분석의 주요 기능은 무엇인가요?
  • 2025년의 무역 조치와 관세 조정이 페노타이핑 프로그램에 미친 영향은 무엇인가요?
  • 식물 표현형 분석을 위한 기술의 발전은 어떤 방향으로 진행되고 있나요?
  • 식물 표현형 시장의 주요 기업은 어디인가요?

목차

제1장 서문

제2장 조사 방법

제3장 개요

제4장 시장 개요

제5장 시장 인사이트

제6장 미국 관세의 누적 영향 2025

제7장 AI의 누적 영향 2025

제8장 식물 표현형 시장 : 기술별

  • 지노타이핑
    • PCR 기반
    • 시퀀싱
    • SNP 지노타이핑
  • 이미징
    • 3D
    • 형광
    • 초분광
    • 서멀
    • 가시광선
  • 로봇 공학
    • 자동화 플랫폼
    • 드론
    • 갠트리 시스템
  • 센서
    • 가스
    • 수분
    • PH
    • 근접성
  • 소프트웨어
    • AI 플랫폼
    • 데이터 분석
    • 관리
    • 시각화

제9장 식물 표현형 시장 : 작물 유형별

  • 시리얼
  • 임업
  • 과일과 채소
  • 지방 종자와 두류
  • 잔디와 관상용 식물

제10장 식물 표현형 시장 : 용도별

  • 성장 모니터링
  • 표현형 스크리닝
  • 스트레스 탐지
  • 특성 발견
  • 수량 예측

제11장 식물 표현형 시장 : 배포 모드별

  • 분야
    • 자동화
    • 매뉴얼
  • 온실
    • 자동화
    • 매뉴얼
  • 실내
    • 제어된 환경
    • 수직농법

제12장 식물 표현형 시장 : 최종사용자별

  • 농업 바이오테크놀러지 기업
  • 계약 조사기관
  • 정부기관
  • 조사기관
  • 종자 회사

제13장 식물 표현형 시장 : 지역별

  • 아메리카
    • 북미
    • 라틴아메리카
  • 유럽, 중동 및 아프리카
    • 유럽
    • 중동
    • 아프리카
  • 아시아태평양

제14장 식물 표현형 시장 : 그룹별

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

제15장 식물 표현형 시장 : 국가별

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 중국
  • 인도
  • 일본
  • 호주
  • 한국

제16장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁사 분석
    • LemnaTec GmbH
    • Thermo Fisher Scientific Inc.
    • PerkinElmer, Inc.
    • Controlled Environments Limited
    • CropDesign N.V.
    • Photon Systems Instruments a.s.
    • CID Bio-Science, Inc.
    • Qubit Systems, Inc.
    • Phenospex B.V.
    • Heliconia Limited
KSA 25.11.05

The Plant Phenotyping Market is projected to grow by USD 486.12 million at a CAGR of 7.36% by 2032.

KEY MARKET STATISTICS
Base Year [2024] USD 275.34 million
Estimated Year [2025] USD 295.47 million
Forecast Year [2032] USD 486.12 million
CAGR (%) 7.36%

Framing plant phenotyping as an operationally strategic capability that accelerates trait discovery, enhances research throughput, and strengthens agricultural innovation pathways

Plant phenotyping has moved from a niche scientific activity to an operationally critical discipline that underpins crop improvement, precision agriculture, and resilience strategies across the agricultural value chain. Rapid advances in imaging, genotyping, sensors, robotics, and analytics have enabled researchers and practitioners to observe phenotype expression at unprecedented scale, resolution, and frequency. Consequently, research programs that previously relied on manual scoring or sparse data points now leverage automated pipelines to accelerate trait discovery and link genetic variation to agronomic outcomes.

This shift matters because the consequences are practical and immediate: breeding cycles can compress, experimental throughput increases, and decision-making becomes more data driven. As a result, organizations that align technology investments with defined research objectives can reduce program bottlenecks and improve translational pathways from trial plots to commercial cultivars. Moreover, phenotyping is increasingly integrated with cross-disciplinary datasets-genomic, environmental, and management-facilitating more holistic interpretations of plant performance. In sum, this introduction frames plant phenotyping not merely as a laboratory capability but as a strategic enabler for product differentiation, R&D efficiency, and operational resilience in contemporary agriculture.

Describing transformative technological convergence, collaborative practices, and deployment diversification that are reshaping plant phenotyping research and operational workflows

The landscape of plant phenotyping is undergoing transformative shifts driven by technology convergence, changes in research practice, and evolving end-user expectations. Advances in imaging modalities now coexist with high-throughput genotyping and AI-driven analytics, producing richer phenomic datasets and enabling real-time interpretation of plant responses. At the same time, robotics and automated platforms have lowered the marginal cost of repeated measurements, permitting longitudinal studies that reveal dynamic trait expression rather than static snapshots.

Institutional behavior is also changing: public research institutions, private breeding programs, and service providers increasingly collaborate via data-sharing consortia and standardized protocols, which fosters interoperability and accelerates collective learning. Deployment modes have diversified, with field-based platforms complementing greenhouse and indoor controlled-environment solutions to match use-case specificity. Finally, software stacks for data management and visualization are maturing, enabling more practitioners to transform raw sensor outputs into actionable insights. Together, these shifts are reconfiguring R&D workflows and creating new value chains around phenotyping-enabled discovery and decision support.

Analyzing how 2025 trade measures and tariff adjustments have altered procurement strategies, supply chains, and operational resilience for phenotyping programs across research and commercial settings

The introduction of new tariffs and trade measures affecting equipment, components, and service flows in 2025 has produced a cascade of operational adjustments across research programs and commercial actors. Higher import levies on lab equipment, imaging sensors, and specialized robotics increased upfront acquisition costs for new deployments, prompting some organizations to postpone noncritical capital projects while accelerating investment in modular upgrades or retrofit solutions. In parallel, shifts in applied procurement strategies moved emphasis toward local suppliers, longer-term maintenance contracts, and regional service partnerships to mitigate the volatility associated with cross-border shipping and customs delays.

Supply chain friction also affected component availability for high-spec instruments, lengthening lead times and incentivizing design choices that favor modularity and replaceability. As a result, organizations prioritized robust service contracts and redundancy planning to preserve experimental continuity. Research collaborations adapted by sharing instrumentation time and coordinating project timelines to align with periods of equipment availability. Furthermore, pricing pressures encouraged greater scrutiny of total cost of ownership and lifecycle support, which in turn elevated demand for supplier transparency around sourcing, firmware updates, and spare parts. Collectively, these dynamics have reinforced the value of resilient procurement practices, regional partnerships, and flexible deployment strategies within the phenotyping ecosystem.

Delivering in-depth segmentation analysis that links specific technology families, crop classes, application use cases, deployment environments, and end-user requirements to operational decision-making

Understanding segment-specific dynamics requires attention to the technologies and applications that drive experimental design and operational choices. Based on technology, researchers deploy genotyping approaches that include PCR-based assays for targeted marker analysis, sequencing for comprehensive genomic insight, and SNP genotyping platforms for high-density variant screening; imaging systems span 3D reconstruction to capture architecture, fluorescence and hyperspectral systems to assess physiology, thermal imaging for stress mapping, and visible light cameras for routine observation; robotics solutions range from automated platforms that enable consistent throughput to drones for scalable field reconnaissance and gantry systems for precise controlled-environment workflows; sensor suites measure gas exchange, moisture regimes, pH conditions, and proximity or structural attributes; and software ecosystems encompass AI platforms for pattern detection, data analysis pipelines for feature extraction, management systems for provenance and storage, and visualization tools for stakeholder interpretation.

Based on crop type, phenotyping protocols and instrumentation are tailored to cereals with high-throughput needs, forestry where long-term structural measurements predominate, fruits and vegetables that require fine-grained trait discrimination, oilseeds and pulses with seed trait emphasis, and turf and ornamentals focusing on aesthetic and stress resilience parameters. Based on application, priorities vary from continuous growth monitoring to high-throughput phenotypic screening, early stress detection, trait discovery for breeding targets, and yield prediction for production planning. Based on deployment mode, solutions adapt to field conditions, greenhouse automation, and indoor controlled environments including vertical farming, with each deployment further subdivided by levels of automation or manual intervention. Based on end user, demand and procurement patterns differ among ag-biotech companies seeking integrated discovery platforms, contract research organizations providing services at scale, government agencies responsible for public research infrastructure, academic and private research institutions focused on hypothesis-driven work, and seed companies prioritizing trait validation and commercial pipeline support.

Unpacking regional dynamics that influence adoption pathways, collaboration models, and technology deployment across the Americas, Europe Middle East & Africa, and Asia-Pacific regions

Regional dynamics shape capability deployment, collaborative networks, and talent availability in ways that influence adoption pathways and operational design. In the Americas, mature agricultural research ecosystems, strong private sector investment, and proximity to advanced manufacturing hubs support rapid uptake of integrated phenotyping platforms, while commodity-driven breeding programs prioritize high-throughput solutions and field-based scalability. In Europe, Middle East & Africa, diverse agroecological zones and strong public research programs lead to a mix of controlled-environment innovation and targeted field deployments, with regulatory frameworks and funding mechanisms shaping collaborative consortia and public-private partnerships. In the Asia-Pacific region, rapid expansion of controlled-environment agriculture, rising investment in precision agriculture technologies, and growing local manufacturing of sensors and robotics create fertile conditions for deployment across greenhouse, indoor vertical farming, and field contexts.

Across all regions, talent concentration and institutional capabilities influence the balance between in-house development and outsourced services. Regional logistics and trade considerations also affect supplier selection and maintenance strategies, which in turn determine procurement timelines and design choices. Finally, local cropping systems, climate variability, and policy priorities dictate which applications-whether stress detection for climate resilience, yield prediction for food security, or trait discovery for value crops-receive the greatest emphasis in research and commercial programs.

Examining strategic product differentiation, partnership approaches, and after-sales support models that define competitive positioning among phenotyping technology and service providers

Company-level activity reveals several consistent themes that inform competitive positioning and partnership strategies. Technology providers are differentiating through modular product architectures and service bundles that reduce integration risk for end users. Hardware manufacturers that combine imaging, sensing, and robotic mobility into interoperable platforms are gaining traction with customers seeking turnkey capability, while software firms specializing in AI-driven analytics and visualization are establishing strategic integrations to extend the utility of raw sensor outputs. Meanwhile, service providers and contract research organizations are expanding capacity by offering managed phenotyping services, assay pipelines, and data interpretation as bundled deliverables to support clients without extensive in-house infrastructure.

Strategic partnerships, co-development agreements, and selective acquisitions are common tactics to accelerate capability assembly and enter new application spaces. Companies that invest in open standards and data interoperability tend to foster broader ecosystems, enabling third-party tools and faster adoption. Additionally, strong after-sales support, clear warranties, and predictable spare parts supply increasingly differentiate suppliers in an environment where equipment uptime is critical for research continuity. Ultimately, firms that align product roadmaps with end-user workflows, prioritize scalable software architectures, and provide transparent lifecycle support are best positioned to convert technical capability into sustained operational value.

Actionable recommendations for technology investment, procurement resilience, data governance, talent development, and collaboration sequencing to maximize phenotyping program outcomes

Industry leaders should pursue a blend of strategic investments and operational practices that accelerate value realization while mitigating programmatic risk. First, align technology acquisition with specific research objectives and experimental designs, favoring modular systems that allow phased upgrades and cross-compatibility with existing workflows. Second, prioritize software and data management architectures that ensure provenance, interoperability, and secure access, thereby enabling multi-year longitudinal studies and cross-institutional collaboration. Third, diversify procurement channels and establish regional service partnerships to reduce exposure to supply chain disruptions and tariff-driven cost volatility, incorporating lifecycle support clauses into vendor agreements to protect experimental continuity.

Fourth, invest in talent development and interdisciplinary teams that combine plant science expertise with data science and systems engineering, ensuring that advanced datasets translate into actionable insights. Fifth, where appropriate, leverage contract research organizations and managed service providers to scale throughput quickly while building internal capabilities incrementally. Sixth, adopt standardized phenotyping protocols and open data formats to accelerate reproducibility and enable collaborative benchmarking. In executing these recommendations, leaders should sequence actions to preserve core research continuity, validate new tools through pilot studies, and measure performance against operational objectives rather than technology adoption alone.

Describing a rigorous mixed-methods research approach that combines primary interviews, systematic secondary review, and triangulation to validate technology capabilities and deployment behaviors

The research methodology combines primary qualitative inquiry, targeted secondary research, and structured triangulation to ensure robust, evidence-based findings. Primary inputs include in-depth interviews with R&D leads, procurement managers, instrumentation engineers, and service providers involved in phenotyping deployments, supplemented by technical briefings and demonstrations to validate product capabilities. Secondary sources comprise scientific literature, technology white papers, regulatory filings, and supplier technical documentation; these materials were systematically reviewed to contextualize primary insights and confirm technical claims. Data triangulation involved cross-referencing interview findings with product specifications, published case studies, and observed deployment patterns to minimize bias and strengthen internal validity.

Analytical approaches included thematic synthesis of qualitative inputs, cross-segmentation mapping to identify use-case alignments, and scenario-based stress testing of procurement and deployment responses to external shocks such as tariff changes. Throughout, methodological rigor was maintained via interviewer calibration, standardized question frameworks, and iterative validation with domain experts. Limitations include potential variability in rapidly evolving product feature sets and regional supply chain conditions; where appropriate, findings emphasize observed behaviors and technology capabilities rather than predictive economic measures, and recommended next steps include targeted deep dives for specialized crop programs or deployment environments.

Concluding assessment that synthesizes technological maturity, procurement resilience, and organizational priorities to capture how phenotyping delivers practical value across research and commercial contexts

Plant phenotyping stands at an inflection point where technological maturity, interdisciplinary practice, and pragmatic procurement strategies converge to enable faster, more reliable pathways from discovery to impact. The field's progression is characterized by richer datasets produced through integrated imaging, genotyping, sensing, and robotics, combined with maturing software ecosystems that transform raw measurements into operational decisions. Regional dynamics and trade considerations influence how and when organizations deploy capabilities, and recent tariff-related disruptions have underscored the importance of procurement resilience and regional partnerships.

For decision-makers, the priority is to match investment pace with clear experimental objectives, emphasize interoperable and modular systems, and build the talent and governance structures necessary to extract value from complex phenomic datasets. By doing so, organizations can convert technical capability into reproducible science, accelerated product pipelines, and operational advantage in a competitive and climate-impacted agricultural landscape. The conclusion is pragmatic: phenotyping is not a one-size-fits-all proposition, but when tailored thoughtfully to research needs and execution contexts, it becomes a differentiating asset for innovation-driven organizations.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Integration of AI-driven image analysis in high-throughput phenotyping workflows for precision trait measurement
  • 5.2. Development of non-invasive fluorescence and hyperspectral sensor arrays for real-time root architecture monitoring
  • 5.3. Adoption of UAV-based multispectral imaging platforms for field-scale drought and nutrient stress assessment
  • 5.4. Emergence of CRISPR-guided phenotypic screening pipelines for accelerated trait discovery in staple crops
  • 5.5. Expansion of cloud-native data management and analytics solutions for collaborative multi-site phenotyping experiments
  • 5.6. Synergy between 3D laser scanning and machine learning algorithms for automated canopy structure quantification
  • 5.7. Growth of portable NIR and thermal imaging devices enabling on-demand plant health diagnostics in remote fields
  • 5.8. Deployment of conveyor-based robotic systems with multispectral cameras for high-throughput seed quality evaluation

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Plant Phenotyping Market, by Technology

  • 8.1. Genotyping
    • 8.1.1. PCR Based
    • 8.1.2. Sequencing
    • 8.1.3. SNP Genotyping
  • 8.2. Imaging
    • 8.2.1. 3D
    • 8.2.2. Fluorescence
    • 8.2.3. Hyperspectral
    • 8.2.4. Thermal
    • 8.2.5. Visible Light
  • 8.3. Robotics
    • 8.3.1. Automated Platforms
    • 8.3.2. Drones
    • 8.3.3. Gantry Systems
  • 8.4. Sensors
    • 8.4.1. Gas
    • 8.4.2. Moisture
    • 8.4.3. PH
    • 8.4.4. Proximity
  • 8.5. Software
    • 8.5.1. AI Platforms
    • 8.5.2. Data Analysis
    • 8.5.3. Management
    • 8.5.4. Visualization

9. Plant Phenotyping Market, by Crop Type

  • 9.1. Cereals
  • 9.2. Forestry
  • 9.3. Fruits & Vegetables
  • 9.4. Oilseeds & Pulses
  • 9.5. Turf & Ornamentals

10. Plant Phenotyping Market, by Application

  • 10.1. Growth Monitoring
  • 10.2. Phenotypic Screening
  • 10.3. Stress Detection
  • 10.4. Trait Discovery
  • 10.5. Yield Prediction

11. Plant Phenotyping Market, by Deployment Mode

  • 11.1. Field
    • 11.1.1. Automated
    • 11.1.2. Manual
  • 11.2. Greenhouse
    • 11.2.1. Automated
    • 11.2.2. Manual
  • 11.3. Indoor
    • 11.3.1. Controlled Environment
    • 11.3.2. Vertical Farming

12. Plant Phenotyping Market, by End User

  • 12.1. Ag Biotech Companies
  • 12.2. Contract Research Organizations
  • 12.3. Government Agencies
  • 12.4. Research Institutions
  • 12.5. Seed Companies

13. Plant Phenotyping Market, by Region

  • 13.1. Americas
    • 13.1.1. North America
    • 13.1.2. Latin America
  • 13.2. Europe, Middle East & Africa
    • 13.2.1. Europe
    • 13.2.2. Middle East
    • 13.2.3. Africa
  • 13.3. Asia-Pacific

14. Plant Phenotyping Market, by Group

  • 14.1. ASEAN
  • 14.2. GCC
  • 14.3. European Union
  • 14.4. BRICS
  • 14.5. G7
  • 14.6. NATO

15. Plant Phenotyping Market, by Country

  • 15.1. United States
  • 15.2. Canada
  • 15.3. Mexico
  • 15.4. Brazil
  • 15.5. United Kingdom
  • 15.6. Germany
  • 15.7. France
  • 15.8. Russia
  • 15.9. Italy
  • 15.10. Spain
  • 15.11. China
  • 15.12. India
  • 15.13. Japan
  • 15.14. Australia
  • 15.15. South Korea

16. Competitive Landscape

  • 16.1. Market Share Analysis, 2024
  • 16.2. FPNV Positioning Matrix, 2024
  • 16.3. Competitive Analysis
    • 16.3.1. LemnaTec GmbH
    • 16.3.2. Thermo Fisher Scientific Inc.
    • 16.3.3. PerkinElmer, Inc.
    • 16.3.4. Controlled Environments Limited
    • 16.3.5. CropDesign N.V.
    • 16.3.6. Photon Systems Instruments a.s.
    • 16.3.7. CID Bio-Science, Inc.
    • 16.3.8. Qubit Systems, Inc.
    • 16.3.9. Phenospex B.V.
    • 16.3.10. Heliconia Limited
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제