|
시장보고서
상품코드
1853992
암정보 시스템 시장 : 제공 서비스, 기능, 배포 형태, 용도, 최종사용자별 - 세계 예측(2025-2032년)Oncology Information Systems Market by Offering, Functionality, Deployment Mode, Application, End User - Global Forecast 2025-2032 |
||||||
암정보 시스템 시장은 2032년까지 CAGR 7.78%로 134억 2,000만 달러로 성장할 것으로 예측됩니다.
| 주요 시장 통계 | |
|---|---|
| 기준연도 2024 | 73억 7,000만 달러 |
| 추정연도 2025 | 79억 1,000만 달러 |
| 예측연도 2032 | 134억 2,000만 달러 |
| CAGR(%) | 7.78% |
암 치료의 연속성은 새로운 형태의 정보 관리를 요구하는 기술적, 임상적, 규제적 힘에 의해 재구성되고 있습니다. 치료 프로바이더들은 점점 더 복잡해지는 치료 요법과 다출처 임상 데이터 수집 및 조율의 필요성 사이에서 균형을 맞추고 있으며, 그 결과 종양 정보 시스템의 역할은 관리의 원동력에서 전략적 인프라로 변모하고 있습니다. 이러한 상황에서 리더는 제품의 기능뿐만 아니라 시스템이 치료 경로를 통합하고, 다학제 팀을 지원하고, 장기적인 상호 운용성을 유지하는 방법을 이해해야 합니다.
현재 임상의와 관리자들은 인지적 부담을 줄이고, 의사결정을 가속화하며, 종양학에 특화된 워크플로우와 기업 IT 자산 간의 원활한 데이터 교환을 가능하게 하는 플랫폼을 원하고 있습니다. 정밀 종양학이 확대됨에 따라 화학요법 관리, 방사선 계획, 영상 통합, 검사 데이터, 종단적 전자 의료기록을 일관된 사용자 여정에 통합하는 솔루션에 대한 요구가 증가하고 있습니다. 그 결과, 임상적 유효성, 통합 용이성, 환자 안전 및 운영 효율성의 측정 가능한 개선을 입증하는 시스템이 투자 결정에 있으며, 점점 더 높은 우선순위를 차지하고 있습니다.
이 소개에서는 벤더, 의료 시스템, 정책 입안자들에게 이러한 동향이 초래하는 전략적 결과를 강조함으로써 이후의 분석을 구성합니다. 주요 변곡점을 파악하고, 세분화 기반 제품 전략에 미치는 영향을 검토하고, 기술 도입을 환자 중심 치료 목표에 부합하도록 하기 위해 리더가 취할 수 있는 즉각적인 조치를 설명합니다.
암 정보 시스템의 상황은 제품 확장에 그치지 않고 새로운 제공 모델, 분석 패러다임, 임상 워크플로우를 아우르는 변혁적 변화를 경험하고 있습니다. 인공지능과 첨단 시각화가 임상에 도입되어 진단의 신뢰성을 높이고 사례의 우선순위를 정하는 데 도움을 주며, 임상적 판단 지원은 치료 계획과 스케줄링에 깊숙이 통합되어 편차를 줄이고 가이드라인을 준수하는 데 도움을 주고 있습니다. 이와 함께 클라우드 네이티브 도입이 가속화되고 있으며, 분산된 팀이 통합된 환자 기록에 접근할 수 있고, 임상 컨텐츠 및 규정 준수 모듈을 신속하게 업데이트할 수 있게 되었습니다.
상호운용성은 여전히 변화의 중심축입니다. 새로운 표준과 API는 검사 정보 시스템, 이미지 아카이브, 방사선 계획 소프트웨어 및 종양학 전자 기록을 일관된 임상 흐름로 연결하기 위한 장벽을 낮추고 있습니다. 이러한 변화로 인해 벤더들은 모듈화된 API 우선 아키텍처를 채택하고, 임상 통합업체 및 영상 진단 전문가와의 파트너십을 추구하게 될 것입니다. 임상의는 다직종 협업을 지원하는 직관적인 사용자 인터페이스를 기대하며, 의료 시스템은 확실한 도입과 예측 가능한 환자 안전 향상을 위해 교육 및 변경 관리에 투자하고 있습니다.
이러한 변화를 종합하면 벤더의 관련성과 구매자의 기대치가 재정의되고 있습니다. 강력한 임상적 검증, 유연한 도입 옵션, 명확한 도입 로드맵을 갖춘 조직은 진화하는 진료 모델을 지원하고 임상 및 운영 측면에서 측정 가능한 개선을 달성할 수 있는 가장 유리한 위치에 있습니다.
2025년 미국에서 도입된 관세 조치로 인해 종양 정보 시스템 프로바이더와 그 고객들은 조달 및 공급망 계획에 새로운 변수를 도입했습니다. 소프트웨어는 본질적으로 휴대가 가능하지만, 종양 IT의 광범위한 밸류체인에는 무역 정책의 영향을 받기 쉬운 하드웨어, 영상 장비, 특수 서버, 통합 서비스 등이 포함됩니다. 따라서 관세로 인한 비용 압박으로 인해 조달팀은 공급업체 조달, 총소유비용, 장비 및 서비스 제공의 돌발상황에 대한 전략을 재평가해야 합니다.
운영 측면에서 의료 시스템 및 기술 공급업체들은 공급업체를 다양화하고 물리적 인프라의 현지 조달을 최대한 가속화함으로써 대응하고 있습니다. 따라서 관세가 부과되는 구성 요소에 대한 의존도를 최소화하는 구성 검증, 가상화 및 클라우드 호스트 기능 최적화, 잠재적인 공급 지연을 고려한 서비스 수준 계약 재협상 등이 다시 한 번 강조되고 있습니다. 이와 병행하여 일부 공급업체는 번들 서비스 제공, 보증기간 연장, 현지 설치팀 구성 등을 통해 증가하는 부담의 일부를 흡수하기 위해 상업적 모델을 조정하고 있습니다.
관세는 당장의 조달 전술뿐만 아니라 제조 현지화, 계약의 유연성, 투자 우선순위를 둘러싼 전략적 논의에도 영향을 미치고 있습니다. 기업은 공급망 탄력성을 공급업체 선정 기준으로 삼고 있으며, 투명성 높은 조달, 탄탄한 물류 역량, 확립된 비상 대응 계획을 갖춘 파트너를 선호하고 있습니다. 이러한 적응은 정책 중심의 비용 역학이 배치 일정, 프로젝트 마진, 운영 리스크 프로파일에 중대한 영향을 미칠 수 있다는 업계의 폭넓은 인식을 반영하고 있습니다.
세분화에 대한 미묘한 이해는 제품 개발 및 시장 개발 전략을 임상 및 운영의 요구에 맞게 조정하는 데 필수적입니다. 서비스에는 컨설팅 및 교육, 설치 및 통합, 유지보수 및 지원이 포함되며, 솔루션에는 화학요법 정보 시스템, 임상 통합 솔루션, 검사 정보 시스템(LIS), 의료 영상 분석 및 고급 시각화, 종양 전자건강기록(EHR), 방사선 치료 계획 시스템(RIS), 영상 보관 및 통신 시스템(PACS), 방사선 정보 시스템(RIS)이 포함됩니다. 영상 아카이브 및 통신 시스템(PACS) & 벤더 뉴트럴 아카이브(VNA), 방사선 치료 계획 시스템, 방사선 정보 시스템(RIS)이 포함됩니다. 이러한 양면성은 구매자가 단품이 아닌 기능 번들 및 구현 전문 지식을 조달하고 있다는 점을 강조합니다.
The Oncology Information Systems Market is projected to grow by USD 13.42 billion at a CAGR of 7.78% by 2032.
| KEY MARKET STATISTICS | |
|---|---|
| Base Year [2024] | USD 7.37 billion |
| Estimated Year [2025] | USD 7.91 billion |
| Forecast Year [2032] | USD 13.42 billion |
| CAGR (%) | 7.78% |
The oncology care continuum is being reshaped by converging technological, clinical, and regulatory forces that demand new forms of information management. Providers are balancing rising complexity in treatment regimens with an imperative to capture and harmonize multi-source clinical data, and as a result the role of oncology information systems has shifted from administrative enablers to strategic infrastructure. In this context, leaders must understand not only product capabilities but how systems integrate across care pathways, support multidisciplinary teams, and sustain long-term interoperability.
Clinicians and administrators are now asking for platforms that reduce cognitive load, accelerate decision making, and enable seamless data exchange across oncology-specific workflows and enterprise IT estates. As precision oncology expands, so too does the requirement for solutions that combine chemotherapy management, radiation planning, imaging integration, laboratory data, and longitudinal electronic health records into coherent user journeys. Consequently, investment decisions increasingly prioritize systems that demonstrate clinical efficacy, ease of integration, and measurable improvements in patient safety and operational efficiency.
This introduction frames the ensuing analysis by highlighting the strategic consequences of these trends for vendors, health systems, and policymakers. The focus that follows is practical and operational: identifying critical inflection points, examining segmentation-driven implications for product strategy, and outlining immediate actions that leaders can take to align technology adoption with patient-centered care objectives
The landscape of oncology information systems is experiencing transformative shifts that extend beyond incremental product enhancements to encompass new delivery models, analytic paradigms, and clinical workflows. Artificial intelligence and advanced visualization are moving into clinical practice, augmenting diagnostic confidence and helping prioritize cases, while clinical decision support is becoming more deeply embedded into treatment planning and scheduling to reduce variability and improve guideline adherence. Parallel to this, cloud-native deployments are accelerating, enabling distributed teams to access consolidated patient records and facilitating faster updates to clinical content and regulatory compliance modules.
Interoperability remains a central axis of change. New standards and APIs are lowering the barriers to connecting laboratory information systems, imaging archives, radiation planning software, and oncology electronic records into cohesive clinical flows. This shift encourages vendors to adopt modular, API-first architectures and to pursue partnerships with clinical integrators and imaging specialists. At the same time, workforce implications are profound: clinicians expect intuitive user interfaces that support multidisciplinary collaboration, and health systems are investing in training and change management to secure adoption and realize projected patient safety gains.
Taken together, these shifts are redefining vendor relevance and buyer expectations. Organizations that combine strong clinical validation, flexible deployment options, and clear implementation roadmaps will be best positioned to support evolving care models and to deliver measurable improvements in both clinical and operational outcomes
Tariff measures introduced in the United States in 2025 have introduced a new variable into procurement and supply chain planning for oncology information system providers and their customers. While software is inherently portable, the broader value chain for oncology IT encompasses hardware, imaging equipment, specialized servers, and integration services that are sensitive to trade policy. As such, tariff-driven cost pressures have required procurement teams to re-evaluate vendor sourcing, total cost of ownership, and contingency strategies for equipment and service delivery.
Operationally, health systems and technology vendors have responded by diversifying supplier footprints and accelerating local sourcing for physical infrastructure where feasible. This has led to renewed emphasis on validating configurations that minimize dependence on tariff-exposed components, optimizing virtualized and cloud-hosted functions, and renegotiating service-level agreements to account for potential supply delays. In parallel, some vendors have adjusted commercial models to absorb part of the incremental burden through bundled service offerings, extended warranties, or localized installation teams.
Beyond immediate procurement tactics, tariffs have also influenced strategic conversations around manufacturing localization, contractual flexibility, and investment prioritization. Organizations are increasingly factoring supply chain resilience into vendor selection criteria, preferring partners that demonstrate transparent sourcing, robust logistics capabilities, and established contingency plans. These adaptations reflect a broader industry recognition that policy-driven cost dynamics can materially affect deployment timelines, project margins, and operational risk profiles
A nuanced understanding of segmentation is essential for aligning product development and go-to-market strategies with clinical and operational needs. Based on Offering, the landscape divides into Services and Solution, where Services include Consulting & Training, Installation & Integration, and Maintenance & Support, and Solution encompasses Chemotherapy Information System, Clinical Integration Solutions, Laboratory Information Systems (LIS), Medical Image Analysis & Advanced Visualization, Oncology Electronic Health Record (EHR), Picture Archiving & Communication System (PACS) & Vendor-Neutral Archive (VNA), Radiation Treatment Planning System, and Radiology Information Systems (RIS). This duality underscores that buyers are procuring bundles of functionality plus implementation expertise rather than standalone products.
Based on Functionality, offerings range from Billing & Revenue Cycle Management to Clinical Decision Support, Patient Information & Care Management, Regulatory Compliance & Reporting, and Treatment Planning & Scheduling, indicating that commercial success depends on addressing both administrative and high-acuity clinical workflows. Based on Deployment Mode, choices between Cloud-Based and On-Premise continuums influence procurement cadence, security posture, and integration complexity, and these options must be reflected in commercial and technical roadmaps.
Based on Application, differentiation across Medical Oncology, Radiation Oncology, and Surgical Oncology requires product teams to prioritize domain-specific workflows and decision support. Finally, Based on End User, solutions must account for the distinct needs of Ablation & Cancer Care Centers, Hospitals & Diagnostic Imaging Centers, and Research Facilities. In practice, successful strategies translate this segmentation into modular product architectures, configurable workflows, and services that reduce integration burden while delivering measurable clinician and operational value
Regional dynamics will increasingly dictate where and how oncology information systems are adopted, integrated, and scaled. In the Americas, health systems tend to prioritize interoperability with enterprise electronic health records, value-based care reporting, and advanced chemotherapy and radiation planning features, which drives demand for tightly integrated platforms and sophisticated clinical decision support. Procurement cycles in this region often emphasize contractual clarity, clinical validation, and demonstrable improvements in safety and throughput.
In Europe, Middle East & Africa, regulatory heterogeneity and diverse infrastructure maturity create opportunities for flexible deployment modes; cloud-based solutions can accelerate adoption in well-connected urban centers, while on-premise configurations remain important where data residency or bandwidth constraints persist. Regional priorities include harmonizing standards across health networks, supporting multilingual interfaces, and addressing local reimbursement and compliance frameworks.
In Asia-Pacific, rapid modernization of oncology services combined with significant private sector investment has spawned demand for scalable, cloud-enabled platforms and advanced imaging analytics. Markets in this region frequently value cost-effective, modular solutions that can be deployed quickly across multiple sites, alongside strong local implementation capabilities. Across all regions, successful vendors tailor propositions to local clinical practices, regulatory requirements, and procurement norms while supporting interoperability and clinician adoption through localized training and robust support models
Company strategies in the oncology information systems space are converging on a few consistent themes: clinical validation, strategic partnerships, and platform extensibility. Leading vendors are investing in clinical studies and real-world evidence programs to demonstrate safety and workflow impact, while also seeking alliances with imaging specialists, laboratory providers, and systems integrators to deliver end-to-end solutions. At the same time, smaller, more agile companies are leveraging niche expertise in areas such as medical image analysis or radiation planning to gain footholds and to become attractive partners for larger platform vendors.
Commercial differentiation increasingly depends on the ability to provide certified interfaces and to support both cloud-based and on-premise deployments with clear security and compliance controls. Additionally, companies are refining pricing and service models to address the dual demands of capital-constrained providers and enterprise buyers seeking predictable operating costs. Talent acquisition and retention remain critical challenges; firms that can combine clinical informatics expertise with strong engineering teams will be better positioned to accelerate feature development and reduce time-to-deploy.
Mergers and partnerships continue to reshape competitive dynamics, but strategic success hinges on the ability to integrate disparate systems seamlessly, to back claims with clinical evidence, and to present a compelling value proposition to diverse end users including specialized cancer centers, hospital networks, and research institutions
Industry leaders should adopt a prioritized, pragmatic set of actions that bridge clinical requirements and commercial viability. First, embed clinicians into product development cycles early and continuously, using structured clinical advisory boards and iterative usability testing to ensure that features align with real-world workflows and reduce cognitive burden. Second, adopt an API-first architecture and publish well-documented integration patterns to lower implementation friction and to enable faster interoperability with EHRs, LIS, PACS, and radiation planning tools.
Next, establish clear deployment playbooks that support both cloud-based and on-premise scenarios, including tested deployment templates, security baselines, and transition pathways for hybrid configurations. Invest in change management services-training, role-based learning pathways, and on-site support-to accelerate adoption and to secure measurable safety and efficiency outcomes. From a commercial perspective, consider offering outcome-linked service bundles or performance guarantees that align incentives with provider goals.
Finally, strengthen supply chain resilience by diversifying component sourcing, formalizing contingency plans, and offering transparent disclosure of sourcing and logistics. Governance and regulatory readiness should be continuous programs rather than discrete activities, and vendors should proactively engage with clinical and regulatory stakeholders to ease certification and compliance pathways. Taken together, these measures will materially reduce deployment risk and increase the likelihood of achieving sustained clinical and operational benefits
The research underpinning this analysis combined mixed methods to ensure robustness and practical relevance. Primary research included structured interviews with clinicians, health system executives, IT leaders, and vendor product managers to capture firsthand perspectives on clinical workflow needs, procurement priorities, and implementation challenges. These conversations were supplemented by technical audits of representative solutions to evaluate integration architectures, security postures, and functional coverage across chemotherapy management, radiation planning, imaging, and laboratory interfaces.
Secondary research involved a systematic review of peer-reviewed clinical literature, regulatory guidance, standards documentation, and publicly available product specifications to contextualize vendor claims and to identify domain-specific best practices. Data triangulation was applied to reconcile differing viewpoints and to validate thematic findings across sources. Analytical methods included capability mapping against the defined segmentation framework, scenario analysis to stress-test supply chain and deployment assumptions, and gap analysis to highlight unmet clinical and operational needs.
Limitations are acknowledged: stakeholder perspectives reflect current adoption patterns and organizational priorities at the time of inquiry, and implementations can vary widely by institution. Nonetheless, the methodology prioritizes transparency, reproducibility, and practitioner validation to produce insights that are directly actionable for product, clinical, and commercial leaders
The synthesis of clinical priorities, technological capabilities, and policy drivers leads to a clear strategic imperative: oncology information systems must be both clinically intelligent and operationally adaptable. Stakeholders should prioritize solutions that demonstrate seamless interoperability across chemotherapy systems, radiation planning, imaging archives, laboratory data, and electronic records while also supporting advanced decision support, scheduling, and compliance workflows. Equally important is the need for flexible deployment models and service constructs that reduce implementation friction and support incremental rollouts.
Organizations that succeed will combine robust clinical validation, modular architectures, and strong local implementation capabilities to deliver measurable improvements in patient safety and care coordination. Supply chain resilience and procurement agility have emerged as additional differentiators, particularly in environments affected by policy-driven cost pressures. Finally, the pursuit of clinician-centric design and continuous performance monitoring will determine adoption and long-term value realization. This conclusion underscores an actionable focus: align investments with demonstrable clinical outcomes, prioritize interoperability, and institutionalize governance to sustain performance over time