시장보고서
상품코드
1856582

희가스 시장 : 가스 유형, 용도, 순도, 형태, 유통 채널별 - 세계 예측(2025-2032년)

Noble Gas Market by Gas Type, Application, Purity, Form, Distribution Channel - Global Forecast 2025-2032

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 188 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

희가스 시장은 2032년까지 CAGR 7.66%로 51억 4,000만 달러로 성장할 것으로 예측됩니다.

주요 시장 통계
기준연도 2024 28억 4,000만 달러
추정연도 2025 30억 6,000만 달러
예측연도 2032 51억 4,000만 달러
CAGR(%) 7.66%

과학적 유용성, 공급망 역학, 규제 배경, 업계 이해관계자의 전략적 필수 사항 강조, 희가스 분야에 대한 종합적인 방향 제시

이 요약은 희가스 분야에 대한 간결하고 권위 있는 방향성을 제시하며, 현재 이 분야의 모멘텀을 정의하는 과학, 산업 및 공급의 역학을 명확하게 설명합니다. 희가스는 반도체 제조에서 의료용 이미징에 이르기까지 다양한 첨단 기술을 지원하고 있으며, 희가스의 역할을 이해하려면 원료 조달, 순도 보장 및 용도별 성능 요구 사항을 연결하는 통합적인 관점이 필요합니다.

이 개요의 목적은 상업적 리더와 기술 이해관계자 모두에게 명확성을 유지하면서 핵심 촉진요인, 드러나는 위험, 기술 주도 기회를 강조하는 것입니다. 이 산업은 특수한 물류, 엄격한 순도 규제, 장기 계약과 현물 시장 변동성의 상호 작용 등의 특징을 가지고 있습니다. 규제 변화, 무역 정책의 영향, 다운스트림 수요 신호를 통합함으로써, 서론은 이후 섹션에서 보다 심층적으로 분석할 수 있는 기본 맥락을 확립했습니다.

독자들은 투자 우선순위와 조달 전략을 형성하는 구조적 윤곽을 이해함으로써 공급망 강건성, 제품 혁신, 최종 용도 최적화에 가장 중요한 주제를 빠르게 파악할 수 있습니다. 기초적인 인사이트에서 벗어나 후반부에서는 구조적 변화, 관세 주도형 파괴, 세분화의 뉘앙스, 지역적 차별화 요소 등을 다루며 업계 종사자들을 위한 실용적인 가이드를 제시합니다.

기술, 지속가능성, 디지털화 촉진요인에 대한 검토는 희가스 밸류체인 전반에 걸쳐 공급 역학, 순도 기준, 협력 모델을 빠르게 재정의

기술 발전, 진화하는 규제 환경, 세계 교역 패턴의 변화로 인해 희소가스 환경은 변화하고 있습니다. 더 복잡한 노드 형태와 새로운 에칭 및 증착 화학을 포함한 반도체 공정의 혁신은 순도 및 특수 가스 블렌드 사양을 높이고 있으며, 그 결과 공급업체는 고정밀 정제, 오염 관리 및 추적 시스템에 대한 투자를 촉진하고 있습니다.

동시에 지속가능성과 순환성의 목표가 이해관계자들의 자원 관리에 대한 생각을 바꾸고 있습니다. 헬륨 및 기타 불활성 가스를 회수하여 재사용하는 프로그램은 운영 비용의 상승과 특정 공급 경로의 희소성 위험으로 인해 많은 지지를 받고 있습니다. 이러한 재사용으로의 전환은 회수 시스템을 재설계하고 폐쇄 루프 흐름을 장려하기 위해 장비 OEM, 가스 생산자, 최종사용자 간의 새로운 파트너십을 요구하고 있습니다.

또한 디지털화를 통해 전체 유통 네트워크의 운영 가시화가 가속화되고 있습니다. 극저온 자산의 원격 모니터링, 실린더 함대의 예지보전, 블록체인 기반 실증 솔루션이 통합되어 다운타임을 줄이고 컴플라이언스 보고를 강화할 수 있게 되었습니다. 그 결과, 디지털 툴을 물리적 유통 역량과 통합하는 기업은 납기 준수, 순도 보장, 총소유비용 절감을 강조하는 차별화된 서비스 모델을 제공할 수 있는 입장에 서게 됩니다.

이러한 변화는 밸류체인 전반의 경쟁적 포지셔닝, 자본 배분, 협업 모델에 중대한 영향을 미치며, 경영진은 새로운 기술과 지속가능성의 요구에 따라 전략적 로드맵을 재평가해야 하는 상황에 직면해 있습니다.

2025년 관세 정책 전환에 따른 조달, 물류 최적화, 계약 관행의 변화, 조달 및 공급 탄력성 전략의 재검토로 이어진 조달 및 공급 탄력성 전략의 변화를 평가

2025년에 제정된 미국의 관세 조치의 누적 효과는 희소 가스의 세계 무역 흐름에 새로운 복잡성을 가져왔고, 조달 전략, 물류 계획, 공급업체 선정에 연쇄적인 영향을 미쳤습니다. 관세 조정으로 인해 특정 수입 가스 제품 및 다운스트림 장비의 비용 기반이 상승함에 따라 구매자는 조달 지역을 재평가하고 국내 생산자 및 지역 공급업체와의 대화를 가속화하여 노출을 줄일 필요가 있습니다.

이에 따라 일부 제조업체와 판매업체들은 계약 내용을 재검토하여 현물 시장의 편의성보다 공급 보장을 우선시하는 멀티 소싱 프레임워크와 장기 계약으로 전환했습니다. 이러한 변화는 또한 육상 생산 능력과 현지 충전 공장에 대한 투자를 가속화하여 중요한 순도 등급의 리드 타임을 단축하고 수요 급증에 신속하게 대응할 수 있도록 했습니다. 한편, 일부 다운스트림 사용자는 규제 및 품질 준수를 유지하면서 허용되는 경우 대체 가스 혼합 및 공급망 구성에 대응하기 위해 프로세스 창과 자격 확인 프로토콜을 조정했습니다.

물류 제공 업체는 제품 단위당 관세 발생을 최소화하기 위해 국경 간 라우팅을 최적화하고 배송을 통합하여 적응했습니다. 동시에 반도체 제조, 헬스케어 등 공급 중단에 민감한 다운스트림 부문은 가격 변동과 컴플라이언스 불확실성에 대비하기 위해 재고 관리 강화 및 비상 대응 계획을 수립했습니다. 업계 단체들이 중요 인프라 및 연구용으로 사용되는 가스에 대한 관세 분류 및 면제 가능성에 대한 명확성을 요구함에 따라 규제 당국의 개입이 강화되었습니다.

이러한 움직임을 종합하면 역동적인 조달 플레이북, 공급업체 리스크 모니터링 강화, 무역 정책의 진전에 따른 세계 공급망 재조정을 위한 협력적 접근이 필요하다는 것을 알 수 있습니다.

가스 유형, 용도별 요구사항, 순도 체계, 물리적 형태, 유통 채널 전략을 통합한 세분화 관점은 목표 상업적 및 업무적 선택에 도움이 됩니다.

뉘앙스가 풍부한 세분화 렌즈는 제품 유형, 용도, 순도 수준, 물리적 형태, 유통 방식에 걸쳐 차별화된 역학을 드러내고, 이를 통합하여 이해관계자의 전략적 우선순위를 형성합니다. 가스 유형에 따라 아르곤, 헬륨, 크립톤, 네온, 라돈, 크세논은 뚜렷한 수요 및 공급 벡터를 보이며, 각 가스는 고유한 조달 복잡성, 희소성 프로파일, 용도 중심의 순도 요구 사항을 가지고 있습니다.

목차

제1장 서문

제2장 조사 방법

제3장 개요

제4장 시장 개요

제5장 시장 인사이트

제6장 미국 관세의 누적 영향 2025

제7장 AI의 누적 영향 2025

제8장 희가스 시장 가스 유형별

  • 아르곤
  • 헬륨
  • 크립톤
  • 네온
  • 라돈
  • 크세논

제9장 희가스 시장 : 용도별

  • 항공우주와 연구
  • 헬스케어
  • 조명
  • 반도체 제조
    • 백엔드
    • 프론트엔드
  • 용접·금속 가공

제10장 희가스 시장 : 순도별

  • 고순도
  • 산업 등급
  • 초고순도

제11장 희가스 시장 : 형태별

  • 가스
  • 액체

제12장 희가스 시장 : 유통 채널별

  • 직접 판매
  • 판매업체

제13장 희가스 시장 : 지역별

  • 아메리카
    • 북미
    • 라틴아메리카
  • 유럽, 중동 및 아프리카
    • 유럽
    • 중동
    • 아프리카
  • 아시아태평양

제14장 희가스 시장 : 그룹별

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

제15장 희가스 시장 : 국가별

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 중국
  • 인도
  • 일본
  • 호주
  • 한국

제16장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁사 분석
    • Linde plc
    • Air Liquide S.A.
    • Air Products and Chemicals, Inc.
    • Messer Group GmbH
    • Taiyo Nippon Sanso Corporation
    • Matheson Tri-Gas, Inc.
    • Iwatani Corporation
    • SOL S.p.A.
    • Unigas International AG
    • Yingde Gases Group Company Limited
KSA 25.11.10

The Noble Gas Market is projected to grow by USD 5.14 billion at a CAGR of 7.66% by 2032.

KEY MARKET STATISTICS
Base Year [2024] USD 2.84 billion
Estimated Year [2025] USD 3.06 billion
Forecast Year [2032] USD 5.14 billion
CAGR (%) 7.66%

Comprehensive orientation to the noble gas domain highlighting scientific utility, supply chain dynamics, regulatory context, and strategic imperatives for industry stakeholders

This executive summary presents a concise, authoritative orientation to the noble gas domain, articulating the scientific, industrial, and supply dynamics that currently define sector momentum. Noble gases underpin a wide array of advanced technologies, from semiconductor fabrication to medical imaging, and understanding their role requires an integrated perspective that bridges raw material sourcing, purity assurance, and application-specific performance requirements.

In framing this overview, the aim is to highlight core drivers, emergent risks, and technology-led opportunities while maintaining clarity for commercial leaders and technical stakeholders alike. The industry is characterized by specialized logistics, stringent purity regimes, and an interplay between long-term contracts and spot market variability; consequently, strategic responses must be both operationally rigorous and commercially nimble. By synthesizing regulatory shifts, trade policy impacts, and downstream demand signals, the introduction establishes the baseline context for deeper analysis in subsequent sections.

Readers will gain an understanding of the structural contours that shape investment priorities and procurement strategies, enabling rapid orientation to the themes that matter most for supply chain resilience, product innovation, and end-use optimization. Transitioning from foundational observations, later sections unpack structural shifts, tariff-driven disruptions, segmentation nuances, and regional differentiators that together inform pragmatic guidance for industry participants.

Examination of technological, sustainability, and digitalization drivers that are rapidly redefining supply dynamics, purity standards, and collaboration models across the noble gas value chain

The noble gas landscape is undergoing transformative shifts driven by technological advancements, evolving regulatory environments, and changes in global trade patterns. Innovations in semiconductor processing, including more complex node geometries and novel etch and deposition chemistries, are elevating specifications for purity and specialty gas blends, which in turn prompt suppliers to invest in high-precision purification, contamination control, and traceability systems.

Concurrently, sustainability and circularity objectives are reshaping how stakeholders conceive of resource stewardship. Programs to capture and recycle helium and other inert gases are gaining traction, informed by both rising operational costs and scarcity risks in certain supply corridors. This pivot toward reuse demands new partnerships between equipment OEMs, gas producers, and end-users to redesign collection systems and incentivize closed-loop flows.

Moreover, digitalization is accelerating operational visibility across distribution networks. Remote monitoring of cryogenic assets, predictive maintenance of cylinder fleets, and blockchain-based provenance solutions are converging to reduce downtime and strengthen compliance reporting. As a result, companies that integrate digital tools with their physical distribution capabilities are positioned to offer differentiated service models that emphasize on-time delivery, purity guarantees, and lower total cost of ownership.

These transformative shifts have material implications for competitive positioning, capital allocation, and collaborative models across the value chain, prompting executives to reassess their strategic roadmaps in light of new technology and sustainability imperatives.

Assessment of how tariff policy shifts in 2025 have altered sourcing, logistics optimization, and contractual practices leading to revised procurement and supply resilience strategies

The cumulative effect of United States tariff actions enacted in 2025 has introduced renewed complexity into global trade flows for noble gases, with cascading implications for procurement strategies, logistics planning, and supplier selection. Tariff adjustments have increased the cost basis for certain imported gas products and downstream equipment, prompting buyers to reevaluate sourcing geographies and to accelerate dialogues with domestic producers and regional suppliers to mitigate exposure.

In response, several manufacturers and distributors have recalibrated contractual arrangements, moving toward multi-sourcing frameworks and longer-duration agreements that prioritize supply assurance over spot-market convenience. These shifts also accelerated investment in onshore capacity and local fill plants, reducing lead times for critical purity grades and enabling faster response to demand spikes. Meanwhile, some downstream users adjusted process windows and qualification protocols to accommodate alternate gas blends or supply chain configurations where permissible, all while maintaining regulatory and quality compliance.

Logistics providers adapted by optimizing cross-border routing and consolidating shipments to minimize tariff incidence per unit of product. At the same time, downstream sectors with high sensitivity to supply disruptions, such as semiconductor manufacturing and healthcare, implemented stronger inventory governance and contingency planning to buffer against price volatility and compliance uncertainty. Regulatory engagement intensified as industry associations sought clarity on tariff classifications and potential exemptions for gases used in critical infrastructure or research applications.

Taken together, these developments underscore the need for dynamic procurement playbooks, enhanced supplier risk monitoring, and a collaborative approach to rebalancing global supply chains in light of trade policy developments.

Integrated segmentation perspective connecting gas types, application-specific requirements, purity regimes, physical forms, and distribution channel strategies to inform targeted commercial and operational choices

A nuanced segmentation lens reveals differentiated dynamics across product types, applications, purity levels, physical form, and distribution approaches that together shape strategic priorities for stakeholders. Based on Gas Type, distinct supply and demand vectors are evident among Argon, Helium, Krypton, Neon, Radon, and Xenon, with each gas exhibiting unique sourcing complexities, rarity profiles, and application-driven purity requirements.

Based on Application, end-use imperatives vary from Aerospace And Research and Healthcare to Lighting, Semiconductor Manufacturing, and Welding And Metal Fabrication, with the semiconductor sector further differentiated between Back End and Front End processes that impose divergent purity, flow control, and delivery cadence expectations. Based on Purity, operational planning must accommodate High Purity, Industrial Grade, and Ultra High Purity specifications, since contamination thresholds and validation protocols differ markedly and drive distinct asset and certification investments.

Based on Form, supply chain designs must manage the logistics of both Gas and Liquid modalities, each requiring specialized handling, storage, and cryogenic expertise. Based on Distribution Channel, strategic choices between Direct Sales and Distributors influence customer intimacy, pricing transparency, and the ability to deliver customized service packages. By mapping these segmentation dimensions together, leaders can identify where commercial leverage lies, where technical differentiation is necessary, and how investments in infrastructure, certification, and customer service should be prioritized to capture value.

Regional differentiation and strategic imperatives across the Americas, Europe Middle East & Africa, and Asia-Pacific shaping supply architecture, compliance approaches, and capacity planning

Regional nuances materially influence supply chain architecture, regulatory exposure, and demand trajectories across the noble gas landscape, requiring an adaptive approach to regional strategy. The Americas exhibit a blend of mature industrial demand and advanced research activity, with concentrated pockets of semiconductor fabrication and healthcare infrastructure that demand high service levels, localized fill capacity, and rigorous quality assurance protocols.

In Europe, Middle East & Africa, regulatory heterogeneity and diverse end-user demand patterns necessitate flexible distribution networks and regionally tailored compliance frameworks. This geography also presents opportunities for centralized recycling initiatives and collaborative infrastructure projects that can mitigate reliance on long-haul shipments. The Asia-Pacific region continues to be a focal point for capacity expansion and technological adoption, driven by rapid growth in semiconductor manufacturing, lighting production, and advanced research institutes, which translates into heightened demand for ultra high purity gases and sophisticated logistics solutions.

Cross-regional linkages, such as supply chain interdependencies and shared technology partnerships, mean that developments in one region can quickly influence procurement and investment decisions elsewhere. As a result, a globally informed, regionally executed strategy is essential to balance cost efficiency, service responsiveness, and regulatory alignment, while enabling companies to capture growth opportunities and manage localized disruption effectively.

Corporate strategies and competitive differentiators anchored in purification technology, vertical integration, logistics excellence, and sustainability oriented service innovation

Competitive dynamics are shaped by a combination of scale advantages, technical specialization, strategic partnerships, and capabilities in purification and logistics. Leading companies are investing in advanced purification technologies, cryogenic logistics, and controlled-atmosphere handling to maintain stringent purity standards that underlie key end uses. These investments are often paired with expanded service portfolios, including equipment leasing, on-site blending, and just-in-time delivery models that deepen customer relationships and reduce switching friction.

Firms with integrated upstream sourcing and downstream distribution capability are consolidating value through vertical integration, improving margin stability and supply assurance. At the same time, niche players are differentiating through specialized offerings, such as custom gas blends for semiconductor front end processes or bespoke high-purity gas solutions for research institutions. Strategic alliances between producers, logistics specialists, and equipment OEMs are becoming more common, enabling rapid deployment of recycling solutions and closed-loop supply chains.

Intellectual property around purification processes, analytic verification, and contamination control constitutes a meaningful competitive moat, while operational excellence in cylinder management and cold-chain logistics remains a critical differentiator. Furthermore, companies that proactively address environmental obligations and embed circularity into their service propositions are strengthening their commercial positioning with customers that prioritize sustainability and regulatory compliance.

Overall, competitive advantage accrues to firms that combine technical excellence with flexible commercial models and resilient distribution networks, enabling them to meet increasingly stringent end-user requirements while managing cost and regulatory pressures.

Practical strategic actions for industry leaders focusing on supplier diversification, recycling investments, digital enablement, application aligned offerings, and proactive regulatory engagement

Leaders in the sector should prioritize a set of actionable strategies to enhance resilience, capture value, and align operations with evolving technical demands. First, diversifying supplier portfolios while nurturing deeper partnerships with regional fill facilities reduces exposure to single-source disruptions and shortens replenishment lead times. Simultaneously, establishing contractual frameworks that balance flexibility with supply assurance-such as priority allocation clauses and shared risk arrangements-can prevent critical interruptions to downstream operations.

Second, invest in purification and recycling initiatives to optimize resource utilization and reduce dependence on constrained supply corridors. Deploying on-site capture systems and partnering with technology providers to integrate recycling loops will both mitigate scarcity risks and support sustainability commitments. In parallel, upgrading digital capabilities for telemetry, predictive maintenance, and inventory analytics enhances operational visibility and enables more precise demand forecasting and logistics orchestration.

Third, align commercial offerings with application-specific needs by developing differentiated purity tiers, tailored packaging solutions for gas versus liquid delivery, and service-level agreements that reflect the cadence of semiconductor front end versus back end processes. Training and certification programs for customers and channel partners will reduce quality incidents and strengthen trust. Finally, engage proactively with policymakers and standards bodies to advocate for pragmatic regulatory approaches, advance clarity on tariff classifications, and promote incentives for circularity and infrastructure investment that support long-term sector stability.

Methodological overview detailing primary expert engagement, secondary documentation review, segmentation mapping, regional analysis, and rigorous triangulation protocols to ensure robust insights

The research underpinning this analysis combined qualitative expert engagement with rigorous secondary sourcing and systematic data triangulation to ensure robust, defensible insights. Primary inputs included structured interviews with senior executives across production, distribution, and end-user organizations, complemented by consultations with technical specialists in purification, cryogenics, and process engineering to validate application-specific requirements and emerging technology trajectories.

Secondary research encompassed a comprehensive review of publicly available technical literature, regulatory documents, trade data, and company disclosures to map supply chain linkages and identify initiatives in recycling, capacity expansion, and logistics optimization. These inputs were cross-checked through comparative analysis and scenario testing to assess resilience under different policy and demand stressors. Wherever possible, assertions were corroborated through multiple independent sources to reduce reliance on single data points.

Analytical methods included segmentation mapping across gas type, application, purity, form, and channel to surface structural drivers and strategic inflection points. Regional analysis accounted for regulatory regimes, infrastructure density, and end-user concentration to highlight differential risk profiles. Limitations of the research are acknowledged, including latency in public disclosures and variability in proprietary contract terms that are not always transparent; consequently, where definitive data was unavailable, conclusions were framed conservatively and contextualized with expert judgment.

Ethical considerations and data governance protocols guided the research process, ensuring confidentiality for interview participants and adherence to appropriate data protection standards throughout the analysis.

Concise synthesis of strategic priorities emphasizing supply resilience, purification excellence, regional agility, and sustainability as the foundation for competitive advantage

In conclusion, the noble gas sector is at an inflection point where technical demand drivers, trade dynamics, and sustainability imperatives converge to reshape strategic priorities. Supply chain resilience, purification capability, and regional agility are the principal levers that determine organizational performance, while digitalization and recycling initiatives provide avenues for differentiation and long-term cost mitigation.

Stakeholders who invest in diversified sourcing, build deeper partnerships with regional fill and logistics providers, and align commercial models to the nuanced needs of applications such as semiconductor front end and back end processing will be better positioned to navigate policy shifts and demand volatility. At the same time, companies that commit to environmental stewardship through capture and reuse programs will not only reduce exposure to constrained feedstocks but also meet growing customer expectations around circularity and compliance.

Taken together, these strategic priorities form a coherent playbook for executives aiming to secure supply, ensure product integrity, and capture value across a technically sophisticated and commercially demanding landscape. The path forward requires integrated planning, targeted capital allocation, and sustained collaboration across the ecosystem to translate capability into competitive advantage.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Rising global helium shortages driving investment in alternative extraction methods and recycling infrastructure
  • 5.2. Escalating neon supply constraints influencing semiconductor lithography costs and production capacities
  • 5.3. Growing demand for xenon in medical imaging and deep space propulsion applications
  • 5.4. Increased regulatory scrutiny on radon emissions prompting advanced mitigation technologies in construction
  • 5.5. Surge in argon usage for high-precision welding and additive manufacturing in automotive and aerospace sectors
  • 5.6. Integration of noble gases in quantum computing systems fueling research in ultra-pure gas synthesis techniques

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Noble Gas Market, by Gas Type

  • 8.1. Argon
  • 8.2. Helium
  • 8.3. Krypton
  • 8.4. Neon
  • 8.5. Radon
  • 8.6. Xenon

9. Noble Gas Market, by Application

  • 9.1. Aerospace And Research
  • 9.2. Healthcare
  • 9.3. Lighting
  • 9.4. Semiconductor Manufacturing
    • 9.4.1. Back End
    • 9.4.2. Front End
  • 9.5. Welding And Metal Fabrication

10. Noble Gas Market, by Purity

  • 10.1. High Purity
  • 10.2. Industrial Grade
  • 10.3. Ultra High Purity

11. Noble Gas Market, by Form

  • 11.1. Gas
  • 11.2. Liquid

12. Noble Gas Market, by Distribution Channel

  • 12.1. Direct Sales
  • 12.2. Distributors

13. Noble Gas Market, by Region

  • 13.1. Americas
    • 13.1.1. North America
    • 13.1.2. Latin America
  • 13.2. Europe, Middle East & Africa
    • 13.2.1. Europe
    • 13.2.2. Middle East
    • 13.2.3. Africa
  • 13.3. Asia-Pacific

14. Noble Gas Market, by Group

  • 14.1. ASEAN
  • 14.2. GCC
  • 14.3. European Union
  • 14.4. BRICS
  • 14.5. G7
  • 14.6. NATO

15. Noble Gas Market, by Country

  • 15.1. United States
  • 15.2. Canada
  • 15.3. Mexico
  • 15.4. Brazil
  • 15.5. United Kingdom
  • 15.6. Germany
  • 15.7. France
  • 15.8. Russia
  • 15.9. Italy
  • 15.10. Spain
  • 15.11. China
  • 15.12. India
  • 15.13. Japan
  • 15.14. Australia
  • 15.15. South Korea

16. Competitive Landscape

  • 16.1. Market Share Analysis, 2024
  • 16.2. FPNV Positioning Matrix, 2024
  • 16.3. Competitive Analysis
    • 16.3.1. Linde plc
    • 16.3.2. Air Liquide S.A.
    • 16.3.3. Air Products and Chemicals, Inc.
    • 16.3.4. Messer Group GmbH
    • 16.3.5. Taiyo Nippon Sanso Corporation
    • 16.3.6. Matheson Tri-Gas, Inc.
    • 16.3.7. Iwatani Corporation
    • 16.3.8. SOL S.p.A.
    • 16.3.9. Unigas International AG
    • 16.3.10. Yingde Gases Group Company Limited
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제