시장보고서
상품코드
1857566

이더넷 커넥터 및 변압기 시장 : 유형, 휴대성, 전송 속도, 용도별 - 세계 예측(2025-2032년)

Ethernet Connector & Transformer Market by Type, Portability, Transmission Speed, Application - Global Forecast 2025-2032

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 184 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

이더넷 커넥터 및 변압기 시장은 2032년까지 연평균 복합 성장률(CAGR) 6.47%로 17억 1,000만 달러에 이를 것으로 예측됩니다.

주요 시장 통계
기준 연도 : 2024년 10억 4,000만 달러
추정 연도 : 2025년 11억 달러
예측 연도 : 2032년 17억 1,000만 달러
CAGR(%) 6.47%

이더넷 커넥터 및 변압기 기술이 최신 네트워킹 성능 및 전략적 조달 결정을 지원하는 방법에 대한 기본 개요 제공

이더넷 커넥터 및 변압기 생태계는 최신 네트워킹 인프라의 안정성과 성능에 필수적인 요소입니다. 산업 전반에 걸쳐 디지털 전환이 가속화되는 가운데, 물리적 연결 구성 요소는 소비자용 기기부터 초대형 데이터센터까지 다양한 시스템의 기반이 되고 있습니다. 커넥터와 변압기를 둘러싼 엔지니어링 과제와 공급 결정은 지연 시간, 신호 무결성, 전자기 호환성, 필드 신뢰성에 직접적인 영향을 미칩니다.

최근 재료, 제조 정밀도, 소형화 분야의 발전은 설계 패러다임을 바꾸고 새로운 전개 시나리오를 열었습니다. 동시에 규제 환경의 변화와 상호 운용성 요구 사항의 진화로 인해 조달 기준도 변화하고 있습니다. 엔지니어링 리더, 조달 관리자 및 제품 전략가에게 커넥터 폼팩터와 변압기 토폴로지가 시스템 레벨 요구사항과 어떻게 상호 작용하는지를 이해하는 것은 성능 목표를 달성하고 경쟁 우위를 유지하는 데 필수적입니다.

이 소개에서는 본 보고서의 기술적, 상업적 배경을 정리하고 구매, 통합 및 로드맵 결정에 영향을 미치는 주요 요인을 파악합니다. 이 보고서는 탄력적이고 미래지향적인 네트워크 설계를 지원하기 위해 커넥터 유형, 변압기 아키텍처, 운반 가능 카테고리, 전송 속도 및 용도별 요구 사항을 자세히 파악해야 하는 이유를 밝힙니다.

기술적 수렴, 모듈식 설계 접근법, 공급 측면의 탄력성, 커넥터 및 변압기 제품 로드맵 및 조달 모델을 재정의하는 방법

이더넷 커넥터 및 변압기의 상황은 시스템 수준의 요구, 재료 및 공정 혁신, 공급망 재구성의 복합적인 영향으로 변화하고 있습니다. 고밀도 및 고속 용도는 더 작고 견고한 커넥터 형태와 신호 컨디셔닝을 개선하고 보드 공간을 줄이는 동시에 통합 변압기 솔루션으로 전환을 촉진하고 있습니다. 커넥터가 차폐, 자기, 진단 기능을 통합하는 것과 같은 기능적 수렴은 조립 간소화 및 수명주기 신뢰성 향상을 위한 추진을 반영합니다.

기술 변화와 함께 제품 개발 주기는 모듈성과 하위 호환성을 중시하는 방향으로 변화하고 있습니다. 벤더들은 다양한 전송 속도를 지원하고 다양한 환경 클래스에서 검증 가능한 컴포넌트를 설계하고 있으며, 시스템 통합사업자는 복잡한 변형을 줄일 수 있습니다. 제조 가능한 설계 방법도 성숙해졌고, 표준화된 인터페이스를 중시하여 시장 출시 시간을 단축하고 통합 리스크를 줄였습니다.

공급 측면의 조정도 혁신적입니다. 제조업체들은 혼란의 위험을 줄이고 더 엄격한 규제와 조달 요건에 대응하기 위해 현지화 능력, 높은 수준의 품질 보증, 디지털 추적성에 투자하고 있습니다. 이러한 구조적 변화는 조달 전략을 재구성하고, 부품 공급업체와 시스템 통합사업자 간의 파트너십을 가속화하며, 궁극적으로 업계 전반의 제품 로드맵과 자본 배분 결정에 영향을 미치고 있습니다.

전략적 공급업체 다변화와 TCO에 초점을 맞춘 조달 조정으로 이어지다,미국 관세 개정 조치의 운영과 조달에 미치는 영향

2025년 관세 정책 변경으로 네트워크 장비에 사용되는 하드웨어 부품의 조달 결정이 더욱 복잡해졌습니다. 수입 관세 및 분류 관행의 헤드 라인 조정은 상륙 비용에 영향을 미치고 조달 팀은 공급업체 발자국, 재고 정책 및 다중 소싱 전략을 재평가하도록 촉구했습니다. 많은 경우, 관세 전환에 따른 비용 차이는 특히 부품 비용에 민감한 수익률이 낮은 제품 라인의 경우 공급업체 선택 기준을 바꿀 정도로 큽니다.

이러한 무역정책의 현실은 단가뿐만 아니라 총소유비용(Total Cost of Ownership)을 폭넓게 평가하는 계기가 되고 있습니다. 조달 부서는 다양한 제조 거점을 보유한 공급업체, 지역적 유통 거점, 현지 조립, 관세를 고려한 부품표 등 관세 완화 전략을 입증할 수 있는 공급업체를 우선적으로 고려하고 있습니다. 이와 함께, 엔지니어링 팀은 관세의 영향을 받기 쉬운 하위 구성 요소에 대한 의존도를 줄이고, 동등한 커넥터 형식과 변압기 유형 간에 쉽게 대체할 수 있도록 설계 조정을 고려하고 있습니다.

그 영향은 재고 계획과 계약 조건에도 영향을 미치고 있습니다. 기업들은 더 긴 리드 계약, 관세 우발적 조항 포함, 공급업체의 조달 패턴에 대한 투명성 강화를 요구하고 있습니다. 이러한 업무적 대응은 공급을 안정화하고, 갑작스러운 정책 변화에 노출될 가능성을 줄이고, 규정 준수 및 품질 목표를 훼손하지 않고 제품 로드맵을 유지하는 데 목적이 있습니다.

커넥터 및 변압기 하위 유형을 휴대성, 전송 속도, 용도 중심의 엔지니어링 요구 사항과 연관시키는 종합적인 세분화 분석

세분화된 세분화 프레임워크를 통해 설계, 용도, 사용 시나리오가 제품 요구사항과 공급업체 선택에 어떤 영향을 미치는지 명확히 합니다. 유형에 따른 분석은 커넥터와 변압기를 구분하고, 커넥터에는 광섬유 커넥터, M12 커넥터, M8 커넥터, RJ45 커넥터, 변압기에는 일체형 이더넷 변압기와 자기 이더넷 변압기가 포함됩니다. 각 하위 유형은 신호 무결성 및 수명주기 기대치에 영향을 미치는 명확한 기계적 공차, 접점 재료 및 차폐의 필요성을 가지고 있습니다.

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 인사이트

제6장 미국 관세의 누적 영향 2025

제7장 AI의 누적 영향 2025

제8장 이더넷 커넥터 및 변압기 시장 : 유형별

  • 커넥터
    • 광섬유 커넥터
    • M12 커넥터
    • M8 커넥터
    • RJ45 커넥터
  • 변압기
    • 통합형 이더넷 변압기
    • 자기 이더넷 변압기

제9장 이더넷 커넥터 및 변압기 시장 휴대성별

  • 휴대 기기
  • 고정형 디바이스

제10장 이더넷 커넥터 및 변압기 시장 전송 속도별

  • 1 Gigabit Ethernet
  • 10 Gigabit Ethernet
  • 10/100 Mbps

제11장 이더넷 커넥터 및 변압기 시장 : 용도별

  • 소비자 일렉트로닉스
    • 스마트홈 디바이스
    • 웨어러블
  • 데이터센터
  • 산업 자동화
    • 프로세스 제어
    • 로봇 제어
  • 통신 기기
    • 스위칭 기기
    • 무선 인프라

제12장 이더넷 커넥터 및 변압기 시장 : 지역별

  • 아메리카
    • 북미
    • 라틴아메리카
  • 유럽, 중동 및 아프리카
    • 유럽
    • 중동
    • 아프리카
  • 아시아태평양

제13장 이더넷 커넥터 및 변압기 시장 : 그룹별

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

제14장 이더넷 커넥터 및 변압기 시장 : 국가별

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 중국
  • 인도
  • 일본
  • 호주
  • 한국

제15장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • "
    • "PHOENIX CONTACT Deutschland GmbH
    • ABB Ltd.
    • Abracon LLC
    • Alcom Electronics B.V.
    • Amphenol Corporation
    • Bel Fuse Inc.
    • Bourns, Inc.
    • Broadcom, Inc.
    • Delta Electronics, Inc.
    • Eaton Corporation
    • Foxconn Interconnect Technology Limited
    • Fritz Kubler GmbH
    • HALO Electronics, Inc.
    • HARTING Technology Group
    • Hirose Electric Co., Ltd.
    • Hubbell Incorporated
    • Ifm Electronic GmbH
    • Keystone Electronics Corp.
    • KYOCERA AVX Components Corporation.
    • Lapp Holding SE
    • LINK-PP Int'l Technology Co.,Limited
    • Marvell Technology, Inc.
    • Mencom Corporation
    • METZ CONNECT GmbH
    • Murata Manufacturing Co., Ltd.
    • Neutrik AG
    • Omron Corporation
    • Pulse Electronics Corporation
    • Renhotec Group Ltd.
    • Samtec, Inc.
    • Schneider Electric SE
    • Schurter Holding AG
    • Siemens AG
    • Sumitomo Electric Industries, Ltd.
    • Taimag Corporation
    • TDK Electronics AG
    • TE Connectivity Ltd.
    • Wurth Elektronik GmbH & Co. KG
    • Yazaki Corporation
LSH

The Ethernet Connector & Transformer Market is projected to grow by USD 1.71 billion at a CAGR of 6.47% by 2032.

KEY MARKET STATISTICS
Base Year [2024] USD 1.04 billion
Estimated Year [2025] USD 1.10 billion
Forecast Year [2032] USD 1.71 billion
CAGR (%) 6.47%

Foundational overview of how Ethernet connector and transformer technologies underpin modern networking performance and strategic procurement decisions

The Ethernet connector and transformer ecosystem is critical to the stability and performance of modern networking infrastructure. As digital transformation accelerates across industries, physical connectivity components remain foundational to systems ranging from consumer devices to hyperscale data centers. The engineering challenges and supply decisions surrounding connectors and transformers directly influence latency, signal integrity, electromagnetic compatibility, and field reliability.

Recent advances in materials, manufacturing precision, and miniaturization have changed design paradigms and opened new deployment scenarios. Simultaneously, evolving regulatory landscapes and evolving interoperability requirements are reshaping procurement criteria. For engineering leaders, procurement managers, and product strategists, understanding how connector form factors and transformer topologies interact with system-level requirements has become essential to achieving performance targets and sustaining competitive advantage.

This introduction frames the technical and commercial context of the report, identifying the primary drivers that inform purchasing, integration, and roadmap decisions. It clarifies why a granular view of connector types, transformer architectures, portability categories, transmission speeds, and application-specific demands is necessary to support resilient and future-ready network design.

How technological convergence, modular design approaches, and supply-side resilience are redefining connector and transformer product roadmaps and procurement models

The landscape for Ethernet connectors and transformers is shifting under the combined influence of systems-level demands, materials and processes innovation, and supply chain realignment. Higher-density and higher-speed applications have prompted a move toward smaller, more robust connector formats and integrated transformer solutions that reduce board space while improving signal conditioning. Convergence in functionality-where connectors incorporate shielding, magnetics, and diagnostic features-reflects a push for simplified assembly and enhanced lifecycle reliability.

Parallel to technological shifts, product development cycles now emphasize modularity and backward compatibility. Vendors increasingly design components that support multiple transmission speeds and that can be validated across diverse environmental classes, allowing system integrators to reduce variant complexity. Design-for-manufacturability practices have matured, emphasizing standardized interfaces to accelerate time-to-market and to lower integration risk.

Supply-side adjustments are also transformative. Manufacturers are investing in localized capabilities, advanced quality assurance, and digital traceability to mitigate disruption risk and to comply with more stringent regulatory and procurement requirements. These structural changes are reshaping sourcing strategies and accelerating partnerships between component suppliers and system integrators, ultimately influencing product roadmaps and capital allocation decisions across the industry.

Operational and sourcing consequences of revised U.S. tariff measures leading to strategic supplier diversification and TCO-focused procurement adjustments

Tariff policy changes in 2025 have introduced additional complexity into sourcing decisions for hardware components used in networking equipment. Headline adjustments to import duties and classification practices have affected landed costs, prompting procurement teams to re-evaluate supplier footprints, inventory policies, and multi-sourcing strategies. In many cases, cost differentials resulting from tariff shifts are large enough to alter supplier selection criteria, especially for lower-margin product lines where component cost sensitivity is high.

These trade policy realities have catalyzed a wider assessment of total cost of ownership rather than unit price alone. Procurement organizations are prioritizing suppliers with diversified manufacturing locations or those able to demonstrate tariff mitigation strategies such as regional distribution hubs, localized assembly, or tariff-engineered bill of materials. In parallel, engineering teams are considering design adjustments that reduce reliance on tariff-sensitive subcomponents or that enable easier substitution between equivalent connector formats and transformer types.

The combined impact extends to inventory planning and contractual terms. Firms are negotiating longer lead agreements, incorporating tariff contingency clauses, and seeking more transparency around supplier sourcing patterns. These operational responses are intended to stabilize supply, reduce exposure to sudden policy shifts, and preserve product roadmaps without compromising compliance and quality objectives.

Comprehensive segmentation analysis connecting connector and transformer subtypes with portability, transmission speeds, and application-driven engineering requirements

A granular segmentation framework clarifies how design, application, and usage scenarios influence product requirements and supplier choices. Based on type, analysis distinguishes between Connectors and Transformers where connectors encompass fiber optic connectors, M12 connectors, M8 connectors, and RJ45 connectors, while transformers encompass integrated Ethernet transformers and magnetic Ethernet transformers. Each subtype carries distinct mechanical tolerances, contact materials, and shielding needs that affect signal integrity and lifecycle expectations.

Based on portability, market dynamics differentiate portable devices and stationary devices, with portable use cases emphasizing ruggedized, compact form factors and stationary applications prioritizing sustained throughput and serviceability. Based on transmission speed, product design accommodates a range of link rates including 1 Gigabit Ethernet, 10 Gigabit Ethernet, and legacy 10/100 Mbps links, creating distinct electrical and thermal design constraints as well as test and validation pathways.

Based on application, the requirements diverge across consumer electronics, data centers, industrial automation, and telecommunications. Within consumer electronics, product profiles split further into smart home devices and wearables, which demand miniaturization and low power. Industrial automation splits into process control and robotics control, where environmental sealing and deterministic performance are crucial. Telecommunications breaks down into switching equipment and wireless infrastructure, where high port density, thermal management, and electromagnetic compliance drive component selection. This segmentation-driven view supports tailored design, sourcing, and validation approaches for each use case.

Regional connectivity and supply dynamics shaping procurement, compliance, and manufacturing strategies across the Americas, EMEA, and Asia-Pacific markets

Regional dynamics shape supplier strategies, regulatory compliance, and deployment priorities across the Americas, Europe Middle East & Africa, and Asia-Pacific. In the Americas, procurement teams prioritize supply chain transparency, localized production capabilities, and rapid fulfillment to support development cycles and enterprise rollout schedules. The region also exhibits demand for solutions that comply with stringent industry certifications and interoperability standards used across commercial and industrial deployments.

In Europe Middle East & Africa, regulatory frameworks and sustainability mandates influence component selection and lifecycle management. Manufacturers and integrators in this region place emphasis on environmental compliance, material disclosures, and energy-efficiency validation, which affects both design choices and vendor evaluations. Cross-border logistics complexities in the region also favor vendors with robust distribution networks and multi-country certification portfolios.

Asia-Pacific continues to be a major center for manufacturing scale and innovation, with dense ecosystems that accelerate component iteration and cost optimization. The region's advanced fabrication capabilities and proximity to large electronics OEMs make it a strategic hub for both established suppliers and emerging specialized manufacturers. However, geopolitical and trade considerations are prompting stakeholders to balance concentration benefits with resilience-focused investments in manufacturing diversity and regionalized supply chains.

How engineering capability, integrated solution offerings, and end-to-end supplier support determine competitive advantage among connector and transformer manufacturers

Competitive positioning in the connector and transformer space is driven by engineering depth, manufacturing scale, and the ability to provide integrated solutions that reduce assembly complexity. Key suppliers differentiate through investments in advanced materials, precision molding, and integrated magnetics that improve signal performance while minimizing footprint. The leaders also provide robust validation resources, design-in support, and global quality systems that enable predictable qualification in regulated and high-reliability environments.

Partnerships with system integrators and OEMs are increasingly important; suppliers that co-develop reference designs and provide application-specific validation shorten time-to-market and reduce integration risk. Companies that can offer configurable product platforms with predictable delivery schedules and traceability across multi-tier supply chains are positioned to capture long-term engagements. At the same time, a cohort of specialized manufacturers focuses on niche segments-such as high-density data center connectors or ruggedized industrial magnetics-where deep product expertise and certification portfolios create strong barriers to entry.

Service differentiation now extends beyond physical products to encompass testing services, extended warranty programs, and logistics solutions that smooth procurement cycles. For buyers, evaluating suppliers on the basis of end-to-end support, documented reliability performance, and transparency around sourcing proves increasingly decisive when balancing cost, risk, and innovation objectives.

Actionable cross-functional strategies for product design, procurement, and operations to accelerate time-to-market while enhancing supply resilience and regulatory compliance

Leaders should align product roadmaps with systems-level performance targets while strengthening supply resilience and commercial flexibility. Design teams ought to prioritize modularity and common interfaces that allow substitution across multiple transmission speeds and environments, reducing SKU proliferation and enabling faster qualification cycles. Invest in integrated designs that consolidate functions such as shielding and magnetics to reduce assembly complexity and improve electrical performance without increasing board area.

Procurement should broaden supplier evaluation criteria to include manufacturing footprint diversity, tariff-aware sourcing strategies, and contractual protections for sudden policy or logistics shifts. Where feasible, negotiate flexible agreements that include capacity commitments, price adjustment mechanisms tied to objective inputs, and access to engineering support for rapid change orders. Concurrently, operations teams should implement robust inventory segmentation and configurable safety stock policies to protect critical product lines while avoiding unnecessary capital lock-up.

Commercial and product leaders will benefit from closer collaboration with test laboratories and certification bodies to accelerate compliance timelines. Investing in in-house or partner-enabled validation capabilities reduces dependency on external cycles and enables faster iteration. Finally, prioritize partnerships that enable co-development and transparent supply chain traceability, as these relationships will be essential for both innovation velocity and risk mitigation in a dynamic policy and technology environment.

Rigorous mixed-methods research approach combining primary technical interviews, secondary technical synthesis, and multi-source validation to ensure actionable insights

The research methodology combines structured primary interviews, targeted technical assessments, and rigorous secondary synthesis to create a validated view of the connector and transformer landscape. Primary research includes in-depth, confidential interviews with design engineers, procurement leaders, and operations managers across end-user industries to capture real-world constraints, selection criteria, and sourcing responses. These qualitative inputs anchor technical assumptions and contextualize supplier capabilities.

Secondary research encompasses technical standards, manufacturer datasheets, regulatory documentation, and published white papers to map product architectures, materials choices, and performance metrics. Wherever possible, technical specifications and design guides were cross-referenced against vendor validation reports and independent laboratory findings to ensure accuracy. Data triangulation techniques were used to reconcile differing accounts and to identify consensus on reliability drivers and integration trade-offs.

Analytical steps included segmentation mapping to align component attributes with application requirements, supplier capability scoring based on engineering and operational criteria, and scenario-based sensitivity checks focused on tariff and supply disruption impacts. The methodology emphasizes traceability, reproducibility, and the use of multiple evidence streams to support conclusions and recommendations.

Synthesis of technical trends, policy impacts, and supply-side dynamics that shape strategic decision making for connectivity components

The cumulative picture for Ethernet connectors and transformers points to a maturing market where technical differentiation and supply resilience are increasingly intertwined. Miniaturization, integrated magnetics, and configurable connector platforms are reducing integration complexity while raising expectations for supplier validation capabilities. Buyers and vendors who treat connectivity components as strategic enablers-rather than commoditized parts-gain clearer pathways to system-level optimization and operational continuity.

Policy shifts and tariff adjustments have sharpened the focus on total cost of ownership and sourcing diversity, accelerating vendor consolidation in some segments while creating opportunities for specialized manufacturers that can meet demanding application requirements. Regional manufacturing dynamics and regulatory expectations further influence procurement strategies, making localized capabilities and compliance transparency central to long-term partnerships.

In this environment, cross-functional alignment between design, procurement, and operations is the most reliable lever for balancing innovation and risk. Organizations that invest in modular designs, robust validation capabilities, and transparent supplier relationships will be best positioned to capitalize on technological advances and to mitigate systemic supply challenges.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Adoption of high-frequency 400GE Ethernet transformers for next-generation hyperscale data centers
  • 5.2. Integration of chip-scale magnetic-free Ethernet connectors to enhance automotive network reliability
  • 5.3. Development of PoE-enabled RJ45 connectors supporting 90W power delivery for IoT endpoints
  • 5.4. Emerging demand for industrial M12 Ethernet connectors with integrated surge and EMI protection
  • 5.5. Standardization of low-profile RJ45 magnetic modules for enterprise switches with reduced PCB footprint
  • 5.6. Shift towards eco-friendly manufacturing of Ethernet transformers using recycled core materials
  • 5.7. Miniaturization of Ethernet transformer magnetics for space-constrained 5G fronthaul radio units

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Ethernet Connector & Transformer Market, by Type

  • 8.1. Connectors
    • 8.1.1. Fiber Optic Connectors
    • 8.1.2. M12 Connectors
    • 8.1.3. M8 Connectors
    • 8.1.4. RJ45 Connectors
  • 8.2. Transformers
    • 8.2.1. Integrated Ethernet Transformers
    • 8.2.2. Magnetic Ethernet Transformers

9. Ethernet Connector & Transformer Market, by Portability

  • 9.1. Portable Devices
  • 9.2. Stationary Devices

10. Ethernet Connector & Transformer Market, by Transmission Speed

  • 10.1. 1 Gigabit Ethernet
  • 10.2. 10 Gigabit Ethernet
  • 10.3. 10/100 Mbps

11. Ethernet Connector & Transformer Market, by Application

  • 11.1. Consumer Electronics
    • 11.1.1. Smart Home Devices
    • 11.1.2. Wearables
  • 11.2. Data Centers
  • 11.3. Industrial Automation
    • 11.3.1. Process Control
    • 11.3.2. Robotics Control
  • 11.4. Telecommunications
    • 11.4.1. Switching Equipment
    • 11.4.2. Wireless Infrastructure

12. Ethernet Connector & Transformer Market, by Region

  • 12.1. Americas
    • 12.1.1. North America
    • 12.1.2. Latin America
  • 12.2. Europe, Middle East & Africa
    • 12.2.1. Europe
    • 12.2.2. Middle East
    • 12.2.3. Africa
  • 12.3. Asia-Pacific

13. Ethernet Connector & Transformer Market, by Group

  • 13.1. ASEAN
  • 13.2. GCC
  • 13.3. European Union
  • 13.4. BRICS
  • 13.5. G7
  • 13.6. NATO

14. Ethernet Connector & Transformer Market, by Country

  • 14.1. United States
  • 14.2. Canada
  • 14.3. Mexico
  • 14.4. Brazil
  • 14.5. United Kingdom
  • 14.6. Germany
  • 14.7. France
  • 14.8. Russia
  • 14.9. Italy
  • 14.10. Spain
  • 14.11. China
  • 14.12. India
  • 14.13. Japan
  • 14.14. Australia
  • 14.15. South Korea

15. Competitive Landscape

  • 15.1. Market Share Analysis, 2024
  • 15.2. FPNV Positioning Matrix, 2024
  • 15.3. Competitive Analysis
    • 15.3.1. "
    • 15.3.2. "PHOENIX CONTACT Deutschland GmbH
    • 15.3.3. ABB Ltd.
    • 15.3.4. Abracon LLC
    • 15.3.5. Alcom Electronics B.V.
    • 15.3.6. Amphenol Corporation
    • 15.3.7. Bel Fuse Inc.
    • 15.3.8. Bourns, Inc.
    • 15.3.9. Broadcom, Inc.
    • 15.3.10. Delta Electronics, Inc.
    • 15.3.11. Eaton Corporation
    • 15.3.12. Foxconn Interconnect Technology Limited
    • 15.3.13. Fritz Kubler GmbH
    • 15.3.14. HALO Electronics, Inc.
    • 15.3.15. HARTING Technology Group
    • 15.3.16. Hirose Electric Co., Ltd.
    • 15.3.17. Hubbell Incorporated
    • 15.3.18. Ifm Electronic GmbH
    • 15.3.19. Keystone Electronics Corp.
    • 15.3.20. KYOCERA AVX Components Corporation.
    • 15.3.21. Lapp Holding SE
    • 15.3.22. LINK-PP Int'l Technology Co.,Limited
    • 15.3.23. Marvell Technology, Inc.
    • 15.3.24. Mencom Corporation
    • 15.3.25. METZ CONNECT GmbH
    • 15.3.26. Murata Manufacturing Co., Ltd.
    • 15.3.27. Neutrik AG
    • 15.3.28. Omron Corporation
    • 15.3.29. Pulse Electronics Corporation
    • 15.3.30. Renhotec Group Ltd.
    • 15.3.31. Samtec, Inc.
    • 15.3.32. Schneider Electric SE
    • 15.3.33. Schurter Holding AG
    • 15.3.34. Siemens AG
    • 15.3.35. Sumitomo Electric Industries, Ltd.
    • 15.3.36. Taimag Corporation
    • 15.3.37. TDK Electronics AG
    • 15.3.38. TE Connectivity Ltd.
    • 15.3.39. Wurth Elektronik GmbH & Co. KG
    • 15.3.40. Yazaki Corporation
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제