시장보고서
상품코드
1867091

컴퓨터 지원 Drug Discovery 시장 : 분자 유형별, 도입 형태별, 가격 모델별, 최종사용자별, 유형별, 기술별, 용도별 - 세계 예측(2025-2032년)

Computer-aided Drug Discovery Market by Molecule Type, Deployment Model, Pricing Model, End User, Type, Technology, Application - Global Forecast 2025-2032

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 186 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

컴퓨터 지원 Drug Discovery 시장은 2032년까지 연평균 복합 성장률(CAGR) 10.05%로 88억 달러에 이를 것으로 예측됩니다.

주요 시장 통계
기준 연도 : 2024년 40억 8,000만 달러
추정 연도 : 2025년 44억 9,000만 달러
예측 연도 : 2032년 88억 달러
CAGR(%) 10.05%

통합된 AI 기반 워크플로우, 클라우드 규모의 데이터 플랫폼, 다학제간 파트너십을 통해 신약 후보물질 발굴을 가속화하고 중개적 의사결정을 혁신적으로 개선하는 방법

첨단 계산 기술, 대규모 생물학적 데이터 세트, 알고리즘의 혁신이 융합되어 신약 개발의 새로운 시대가 도래하고 있습니다. 계산 기법은 더 이상 고립된 작업에 국한되지 않고, 표적 선택, 적중률 확인, 리드 최적화, 전임상 안전성 평가에 영향을 미치는 필수적인 엔드투엔드 추진력이 되었습니다. 그 결과, 조직은 보다 빠른 가설 생성 및 예측 가능한 인실리코 평가를 활용하기 위해 신약개발 워크플로우 설계 방법, 팀 구성 방법, 외부 파트너십 구축 방법을 재검토하고 있습니다.

본 보고서는 컴퓨터 지원 신약개발의 현대적 관행과 신흥 역량을 통합하고, 연구 방법, 도입 선택 및 기업 행동이 종합적으로 번역 성과를 형성하는 메커니즘에 초점을 맞추었습니다. 분자 시뮬레이션의 정확도 향상, 생화학 접근법의 성숙, 반복 실험을 가능하게 하는 클라우드 스케일 컴퓨팅의 역할 확대 등 증거에 기반한 진전을 강조합니다. 기술 역량과 조직적 영향력을 결합하여 조사 리더와 경영진이 투자와 협업의 우선순위를 정할 수 있는 명확한 프레임워크를 제공하는 것을 목표로 합니다. 본 보고서는 기술 동향, 상업적 행동, 규제적 접점을 면밀히 분석하여 경쟁 우위를 확보할 수 있는 영역과 이를 확보하기 위해 필요한 업무상의 변화를 제시합니다.

물리 기반 모델링, 제너레이티브 디자인, 분자 시뮬레이션 정확도 확대 등의 전략적 등장으로 신약개발 초기 단계의 제약조건을 재정의하고 새로운 양식을 탐색할 수 있게 되었습니다.

컴퓨터 지원 신약 개발 환경은 기술 능력의 향상과 업계 관행의 진화로 인해 혁신적으로 변화하고 있습니다. 머신러닝 아키텍처와 물리 정보 모델링의 발전으로 인실리코 예측의 해석 가능성과 신뢰성이 향상되어 팀은 실험의 우선순위를 보다 확실하게 정할 수 있게 되었습니다. 동시에 상호 운용 가능한 데이터 표준과 페더레이티드 러닝 기법의 보급으로 데이터 프라이버시와 출처 정보를 유지하면서 여러 기관 간 협업의 마찰을 줄일 수 있습니다.

조직적으로는 사일로화된 알고리즘 실험에서 생물학, 화학, 안전성에 걸친 통합적 신약개발 플랫폼으로의 명확한 전환이 진행되고 있습니다. 이러한 변화는 새로운 파트너십 형태를 만들어냈습니다. 벤더의 툴을 내부 워크플로우에 통합하는 장기적인 플랫폼 제휴와 특정 프로그램을 가속화하기 위한 단기적인 전문가 영입이 그것입니다. 자금 조달 패턴과 내부 거버넌스도 적응하고 있으며, 각 조직은 모델의 거버넌스, 재현성, 데이터의 윤리적 사용을 관리하는 전문센터를 설립하고 있습니다. 이러한 변화는 의사결정까지의 시간을 단축하고, 계산적 가설이 실행 가능한 실험 프로그램으로 전환될 가능성을 높이고 있습니다.

중요한 것은 기술의 성숙으로 인해 탐색 영역이 확대되고 생물학적 제제와 저분자 화합물 모두 설계 도구의 개선으로 혜택을 받고 있다는 점입니다. 그 결과, 조직은 전통적인 의약화학 전문성과 계산과학자를 결합하여 복잡한 가설을 생성하고 검증하는 하이브리드 팀을 구축하는 경향이 증가하고 있습니다. 이러한 기술, 도구, 프로세스의 종합적인 재조정은 신약개발 프로그램을 구상하고 실행하는 방식에 근본적인 변화를 가져왔습니다.

2025년 미국 관세 정책의 누적 영향 검증: 의약품 창출공급망, 계산 도구 조달, 국제 협력의 동역학

2025년 미국이 도입한 무역 정책 조치는 컴퓨터 기반 신약 개발 생태계의 조달, 도입 및 세계 협력 패턴에 측정 가능한 영향을 미쳤습니다. 관세 및 관련 무역 조치로 인해 전문 하드웨어 및 소프트웨어 공급망에 대한 감시가 강화되어 조직은 공급업체와의 관계를 재검토하고 중요한 컴퓨팅 리소스의 현지화 전략을 검토하게 되었습니다. 이 검토는 총소유비용, 프로젝트 타임라인, 국경을 초월한 연구 이니셔티브의 기동성에 영향을 미치고 있습니다.

그 결과, 일부 조직은 컴퓨팅 파워의 전략적 비축을 우선시하고, 혼란의 위험을 줄이기 위한 다중 공급업체 계약을 모색했습니다. 반면, 관세로 인한 불확실성에도 불구하고 GPU 및 TPU 리소스에 대한 액세스를 유지하기 위해 분산형 인프라를 갖춘 클라우드 제공업체로의 전환을 가속화한 조직도 있었습니다. 이와 함께, 국제 공동연구는 계약 조건의 재검토, 하드웨어 제공 책임의 재정의, 표준화된 컨테이너화 채택을 통해 관할권 간 재현성을 용이하게 하는 적응적 조치를 취했습니다.

혁신 측면에서는 관세 관련 압력으로 인해 소프트웨어 이식성과 개방형 표준 채택에 대한 관심이 높아졌습니다. 이는 지정학적 무역 마찰로 인해 악화될 수 있는 벤더 종속을 피하기 위한 팀의 노력에 따른 것입니다. 규제 준수 및 수출 관리도 조달 결정에 있어 중요성이 높아지면서 법무 및 컴플라이언스 부서가 기술 평가에 적극적으로 참여하게 되었습니다. 이러한 누적된 영향은 발견 생태계 전반의 조달 전략과 협업 모델을 재구성하고, 기술 선택의 핵심 기준으로 회복탄력성을 강화하는 데에 기여하고 있습니다.

분자 유형, 도입 모델, 가격 체계, 최종 사용자, 솔루션 유형, 기반 기술, 용도 중심의 채택 패턴에 대한 부문 수준 조사 결과

정교한 세분화 프레임워크를 통해 제공과 채용의 다양한 차원이 역량 전개와 가치 창출에 미치는 영향을 파악할 수 있습니다. 분자 유형에 따른 차별화로, 바이오로직스와 저분자 화합물은 각각 다른 계산 요구사항이 있습니다. 바이오로직스 워크플로우에서는 서열 분석, 구조 모델링, 면역원성 예측에 중점을 두는 반면, 저분자 프로그램에서는 리간드-단백질 상호 작용, 물리화학적 특성 최적화, 합성 가능성 평가가 우선시됩니다. 이러한 서로 다른 니즈가 다양한 기술 구성과 팀 구조를 이끌고 있습니다.

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 인사이트

제6장 미국 관세의 누적 영향 2025

제7장 AI의 누적 영향 2025

제8장 컴퓨터 지원 Drug Discovery 시장 : 분자 유형별

  • 생물제제
  • 저분자 화합물

제9장 컴퓨터 지원 Drug Discovery 시장 : 전개 모델별

  • 클라우드 기반
  • On-Premise

제10장 컴퓨터 지원 Drug Discovery 시장 : 가격 모델별

  • Pay Per Use
  • 영구 라이선스
  • 구독

제11장 컴퓨터 지원 Drug Discovery 시장 : 최종사용자별

  • 학술기관 및 정부기관
  • 바이오테크놀러지 기업
  • CRO(수탁연구기관)
  • 제약 기업

제12장 컴퓨터 지원 Drug Discovery 시장 : 유형별

  • 서비스
    • 컨설팅
    • 도입
    • 조사 아웃소싱
    • 지원 및 유지보수
  • 소프트웨어
    • 데이터 분석
    • 데·노보 설계
    • 분자 모델링
      • 리간드베이스데자인
      • 구조 기반 설계
    • QSAR 모델링
    • 버추얼 스크리닝

제13장 컴퓨터 지원 Drug Discovery 시장 : 기술별

  • ADMET 예측
  • 바이오인포매틱스
    • 기능 유전체학
    • 배열 분석
  • 화학정보학
    • 라이브러리 설계
    • QSAR 모델링
    • 스캐폴드 스카이콩콩
  • 데·노보 설계
  • 분자 모델링

제14장 컴퓨터 지원 Drug Discovery 시장 : 용도별

  • 임상시험 지원
  • 리드 창출
  • 리드 최적화
  • 전임상 개발
  • 표적 식별

제15장 컴퓨터 지원 Drug Discovery 시장 : 지역별

  • 아메리카
    • 북미
    • 라틴아메리카
  • 유럽, 중동 및 아프리카
    • 유럽
    • 중동
    • 아프리카
  • 아시아태평양

제16장 컴퓨터 지원 Drug Discovery 시장 : 그룹별

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

제17장 컴퓨터 지원 Drug Discovery 시장 : 국가별

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 중국
  • 인도
  • 일본
  • 호주
  • 한국

제18장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • Schrodinger, Inc.
    • Dassault Systemes SE
    • Certara, L.P.
    • Exscientia Limited
    • Atomwise, Inc.
    • Cresset, Ltd.
    • OpenEye Scientific Software, Inc.
    • Nimbus Therapeutics, LLC
    • Insilico Medicine, Inc.
    • BenevolentAI Limited
LSH 25.11.24

The Computer-aided Drug Discovery Market is projected to grow by USD 8.80 billion at a CAGR of 10.05% by 2032.

KEY MARKET STATISTICS
Base Year [2024] USD 4.08 billion
Estimated Year [2025] USD 4.49 billion
Forecast Year [2032] USD 8.80 billion
CAGR (%) 10.05%

How integrated AI-driven workflows, cloud-scale data platforms, and cross-disciplinary partnerships are accelerating candidate identification and transforming translational decision-making in drug discovery

The convergence of advanced computation, large-scale biological datasets, and algorithmic innovation is ushering in a new era for drug discovery. Computational methods are no longer confined to isolated tasks; they have become integral, end-to-end enablers that influence target selection, hit identification, lead optimization, and preclinical safety evaluation. As a result, organizations are rethinking how discovery workflows are designed, how teams are arranged, and how external partnerships are structured to take advantage of faster hypothesis generation and more predictive in silico evaluations.

This report synthesizes contemporary practice and emergent capabilities in computer-aided drug discovery, focusing on how methodologies, deployment choices, and enterprise behaviors collectively shape translational outcomes. The narrative emphasizes evidence-based developments such as greater fidelity in molecular simulations, the maturation of generative chemistry approaches, and the expanding role of cloud-scale compute in enabling iterative experimentation. By connecting technological capabilities to organizational implications, the intent is to equip research leaders and business executives with a clear framework for prioritizing investments and collaborations. Through careful analysis of technology trends, commercial behaviors, and regulatory touchpoints, the report frames where competitive advantage is likely to arise and what operational changes will be required to capture it.

Strategic emergence of physics-based modeling, generative design, and expanded molecular simulation fidelity that are redefining early discovery constraints and enabling novel modality exploration

The landscape of computational drug discovery is undergoing transformative shifts driven by both capability enhancements and evolving industry practices. Advances in machine learning architectures and physics-informed modeling have improved the interpretability and reliability of in silico predictions, enabling teams to prioritize experiments with greater confidence. Concurrently, the proliferation of interoperable data standards and federated learning approaches is reducing the friction of multi-institutional collaboration while preserving data privacy and provenance.

Organizationally, there is a clear pivot from siloed algorithmic experiments toward integrated discovery platforms that span biology, chemistry, and safety. This shift has prompted new partnership archetypes: long-term platform partnerships that embed vendor tools into internal workflows, and short-term specialist engagements that accelerate specific programs. Funding patterns and internal governance have also adapted, with entities establishing centres of excellence to manage model governance, reproducibility, and ethical use of data. These shifts collectively reduce time-to-decision and increase the likelihood that computational hypotheses translate into viable experimental programs.

Importantly, the technology maturation has broadened modality exploration; biologics and small molecules alike benefit from improved design tools. As a result, organizations are increasingly blending traditional medicinal chemistry expertise with computational scientists, creating hybrid teams that can both generate and validate complex hypotheses. This holistic realignment of skills, tools, and processes marks a fundamental change in how discovery programs are conceived and executed.

Examining cumulative effects of United States tariff policies in 2025 on supply chains, computational tool sourcing, and international collaboration dynamics within drug discovery

In 2025, trade policy actions introduced by the United States have had measurable implications for the procurement, deployment, and global collaboration patterns within computational drug discovery ecosystems. Tariffs and related trade measures have increased scrutiny over supply chains for specialized hardware and software, prompting organizations to reassess vendor relationships and consider localization strategies for critical computational assets. This reassessment has implications for total cost of ownership, project timelines, and the agility of cross-border research initiatives.

As a consequence, some organizations prioritized strategic stockpiling of compute capacity and sought multi-sourcing agreements to mitigate disruption risk. Others accelerated migration to cloud providers with distributed footprints to preserve access to GPU and TPU resources despite tariff-driven uncertainty. In parallel, international collaborations adapted by shifting contractual terms, redefining responsibilities for hardware provision, and embracing standardized containerization to ease replication across jurisdictions.

On the innovation front, tariff-related pressures encouraged tighter attention to software portability and open standard adoption, as teams aimed to avoid vendor lock-in that could be exacerbated by geopolitical trade frictions. Regulatory compliance and export controls also gained prominence in procurement decisions, with legal and compliance functions becoming active participants in technology evaluation. These cumulative effects have reshaped procurement strategies and collaborative models across the discovery ecosystem, reinforcing resilience as a central criterion for technology selection.

Segment-level intelligence into molecule types, deployment models, pricing structures, end users, solution types, enabling technologies, and application-driven adoption patterns

A nuanced segmentation framework reveals how different dimensions of offering and adoption influence capability deployment and value capture. Based on molecule type, differentiation emerges between biologics and small molecules with distinct computational requirements: biologics workflows emphasize sequence analysis, structural modeling, and immunogenicity prediction, whereas small molecule programs prioritize ligand-protein interactions, physicochemical property optimization, and synthetic accessibility assessments. These divergent needs drive varied technology mixes and team structures.

Based on deployment model, choices between cloud-based and on-premises delivery shape scalability and data governance trade-offs. Cloud-based approaches facilitate burst compute and collaborative federated learning, while on-premises deployments remain attractive for organizations with strict data residency or security constraints. Based on pricing model, organizations select between pay-per-use, perpetual license, and subscription arrangements to align financial exposure with project tempo and budget predictability.

Based on end user, adoption patterns differ across academic and government institutes, biotechnology companies, contract research organizations, and pharmaceutical companies, each prioritizing different combinations of flexibility, depth of customization, and regulatory alignment. Based on type, offerings split into services and software. Services encompass consulting, implementation, research outsourcing, and support and maintenance, providing hands-on expertise and operational integration. Software splits into data analytics, de novo design, molecular modeling, QSAR modeling, and virtual screening, with molecular modeling further divided into ligand-based design and structure-based design, reflecting the need for both top-down and bottom-up computational strategies.

Based on technology, capabilities include ADMET prediction, bioinformatics, chemoinformatics, de novo design, and molecular modeling. Within bioinformatics there is emphasis on functional genomics and sequence analysis, while chemoinformatics covers library design, QSAR modeling, and scaffold hopping. Based on application, use cases such as clinical trials support, lead discovery, lead optimization, preclinical development, and target identification illustrate how technology stacks are mapped to specific translational objectives. These segmentation lenses together inform where investments will yield the highest strategic return and how vendors can tailor their value propositions to distinct customer archetypes.

Regional intelligence highlighting Americas, Europe Middle East and Africa, and Asia-Pacific dynamics influencing talent flows, regulatory alignment, and infrastructure investment priorities

Regional dynamics critically influence the evolution of computational drug discovery capabilities, with each geography presenting distinct strengths and constraints that shape strategic planning. In the Americas, concentration of biopharma research centers, access to venture capital, and a dense ecosystem of technology vendors promote rapid adoption of advanced computational platforms. This environment supports accelerated commercialization pathways and close ties between discovery teams and translational development partners.

In Europe, Middle East & Africa, regulatory harmonization efforts and strong academic-industrial collaborations foster rigorous validation practices and a focus on reproducibility. Investment patterns in this region often emphasize public-private partnerships and infrastructure that supports precompetitive data sharing. These features contribute to robust methodological standards and collaborative networks that underpin long-term capability building.

In Asia-Pacific, rapid expansion of research infrastructure, significant public sector investment in biotechnology, and a growing pool of computational talent create an environment conducive to large-scale data initiatives and high-throughput screening programs. This region increasingly becomes a hub for both contract research activity and end-to-end discovery programs, leveraging cost efficiencies and scaling advantages. Across regions, differences in regulatory regimes, talent availability, and infrastructure maturity inform where organizations choose to centralize or decentralize capabilities, and those choices in turn shape partnership strategies and operational models.

Competitive and collaborative company insights focusing on platform differentiation, service portfolios, partnerships, and intellectual property strategies shaping the industry landscape

Company behavior in the computational discovery space is characterized by a mix of product differentiation, platform bundling, and strategic partnerships. Leading firms emphasize integrated platforms that combine data management, modeling engines, and visualization tools to lower the barrier for multidisciplinary teams to adopt computational approaches. Others focus on niche capabilities-such as generative chemistry, high-fidelity molecular dynamics, or specialized ADMET prediction modules-to serve domain-specific needs and develop defensible expertise.

Partnerships between software vendors and contract research organizations or laboratory automation providers are increasingly common, enabling end-to-end workflows that connect in silico hypothesis generation with rapid experimental validation. Intellectual property strategies often center on proprietary model architectures and curated datasets that provide predictive advantage, while open-source contributions and community benchmarks play a role in driving adoption and improving model transparency.

Service providers differentiate through consulting capabilities that translate algorithmic outputs into experimental plans, and through implementation teams that embed tools into existing discovery pipelines. Across the competitive landscape, companies that demonstrate interoperability, strong evidence of predictive performance, and a commitment to rigorous validation tend to secure longer-term engagements. Strategic alliances with academic institutions, clinical networks, and data custodians further expand access to curated datasets that enhance model training and validation, reinforcing a virtuous cycle of capability improvement for those organizations able to navigate complex partnership ecosystems.

Actionable recommendations for industry leaders to prioritize capability investments, partnership models, governance frameworks, and talent strategies for sustainable competitive advantage

Industry leaders should adopt a pragmatic, phased approach to integrating computational discovery into core R&D. First, prioritize capability investments that address immediate translational bottlenecks, such as improving prediction of ADMET properties or strengthening target validation pipelines. Align these investments with a governance framework that mandates reproducibility, model documentation, and routine back-testing against experimental outcomes to ensure sustained confidence in computational outputs.

Second, cultivate hybrid talent models that embed computational scientists alongside medicinal chemists and biologists to ensure hypotheses are both computationally sound and experimentally tractable. Invest in internal training programs and cross-functional rotations to accelerate knowledge transfer and reduce dependency on external consultants. Third, pursue partnership models that balance strategic platform commitments with the flexibility of specialist engagements, thereby preserving the ability to pilot new approaches while securing long-term integration where it delivers clear operational benefits.

Fourth, adopt procurement and architecture choices that mitigate geopolitical and supply chain risks, including multi-cloud strategies, software portability, and contractual clauses for continuity of service. Fifth, implement metrics and dashboards that translate computational performance into experimental productivity measures, thereby enabling continuous improvement and clearer ROI conversations with stakeholders. Together, these recommendations form an actionable roadmap for organizations aiming to derive consistent, reproducible value from computational drug discovery investments.

Transparent multidisciplinary research methodology describing data sources, expert validation, modeling approaches, and steps taken to ensure reproducibility and analytical rigor

This study employs a multidisciplinary research methodology combining primary expert interviews, secondary literature synthesis, and technical evaluation of representative tools and workflows. Primary inputs include structured conversations with discovery scientists, platform engineers, and procurement specialists, which informed judgment on adoption barriers, governance practices, and organizational readiness. Secondary sources encompassed peer-reviewed literature, preprints, and industry white papers to triangulate technological capabilities and evidence of predictive performance.

Technical evaluations involved reproducibility checks on benchmark datasets, assessment of model explainability features, and review of integration capabilities with laboratory information management systems and automation platforms. Wherever possible, findings were validated with case examples that illustrate how specific computational approaches impacted experimental throughput or decision-making processes. Ethical considerations and data governance practices were explicitly examined to ensure recommendations are implementable within prevailing regulatory regimes.

Analytical rigor was maintained through documented methodologies for data collection, transparent criteria for inclusion of tools and vendors in the study, and cross-validation of qualitative inputs. Limitations and assumptions are clearly articulated to support appropriate interpretation of conclusions and to enable organizations to adapt the approach to their unique contexts. This structured methodology ensures that the report's insights are both evidence-based and operationally relevant.

Concluding synthesis summarizing strategic takeaways, risk factors, and forward-looking considerations for organizations navigating a rapidly evolving computational drug discovery ecosystem

In summary, computational drug discovery has transitioned from a set of supporting tools to a strategic pillar that reshapes how hypotheses are generated, prioritized, and validated. Technological advances in machine learning, molecular simulation, and data engineering have enhanced predictive fidelity and reduced translational risk when paired with robust experimental validation. Organizations that align governance, talent, and procurement strategies with these capabilities are positioned to accelerate discovery cycles and increase the efficiency of resource allocation.

Key risk factors include geopolitical and trade-related perturbations to hardware and software supply chains, the potential for model overfitting without rigorous validation, and the need for clear governance around data provenance and ethical use. Nevertheless, institutions that invest in interoperable architectures, hybrid talent models, and strategic partnerships can convert these challenges into sources of resilience and competitive differentiation. The path forward requires disciplined experimentation, transparent measurement of computational performance against experimental outcomes, and a willingness to adapt organizational structures to sustain cross-disciplinary collaboration.

Ultimately, success in this evolving ecosystem will be defined by the ability to integrate computational insights seamlessly into laboratory decision-making, maintain reproducibility and model governance, and scale capabilities in a way that aligns with translational imperatives and regulatory expectations. This synthesis provides a foundation for executives to make informed decisions about where to focus resources and how to structure partnerships for long-term impact.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Application of generative deep learning frameworks for de novo small molecule design and optimization
  • 5.2. Integration of multi-omics data and AI-driven models for precision drug target identification and validation
  • 5.3. Deployment of cloud-native high-performance computing platforms for accelerated virtual screening workflows
  • 5.4. Adoption of quantum computing algorithms to enhance accuracy of molecular docking and binding affinity predictions
  • 5.5. Implementation of explainable artificial intelligence techniques for transparent drug candidate selection and prioritization
  • 5.6. Utilization of autonomous robotic labs integrated with AI for high-throughput synthesis and real-time assay optimization
  • 5.7. Development of digital twin models for in silico pharmacokinetics and toxicity prediction in early drug discovery

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Computer-aided Drug Discovery Market, by Molecule Type

  • 8.1. Biologics
  • 8.2. Small Molecules

9. Computer-aided Drug Discovery Market, by Deployment Model

  • 9.1. Cloud-Based
  • 9.2. On-Premises

10. Computer-aided Drug Discovery Market, by Pricing Model

  • 10.1. Pay Per Use
  • 10.2. Perpetual License
  • 10.3. Subscription

11. Computer-aided Drug Discovery Market, by End User

  • 11.1. Academic And Government Institutes
  • 11.2. Biotechnology Companies
  • 11.3. Contract Research Organizations
  • 11.4. Pharmaceutical Companies

12. Computer-aided Drug Discovery Market, by Type

  • 12.1. Services
    • 12.1.1. Consulting
    • 12.1.2. Implementation
    • 12.1.3. Research Outsourcing
    • 12.1.4. Support And Maintenance
  • 12.2. Software
    • 12.2.1. Data Analytics
    • 12.2.2. De Novo Design
    • 12.2.3. Molecular Modeling
      • 12.2.3.1. Ligand Based Design
      • 12.2.3.2. Structure Based Design
    • 12.2.4. QSAR Modeling
    • 12.2.5. Virtual Screening

13. Computer-aided Drug Discovery Market, by Technology

  • 13.1. ADMET Prediction
  • 13.2. Bioinformatics
    • 13.2.1. Functional Genomics
    • 13.2.2. Sequence Analysis
  • 13.3. Chemoinformatics
    • 13.3.1. Library Design
    • 13.3.2. QSAR Modeling
    • 13.3.3. Scaffold Hopping
  • 13.4. De Novo Design
  • 13.5. Molecular Modeling

14. Computer-aided Drug Discovery Market, by Application

  • 14.1. Clinical Trials Support
  • 14.2. Lead Discovery
  • 14.3. Lead Optimization
  • 14.4. Preclinical Development
  • 14.5. Target Identification

15. Computer-aided Drug Discovery Market, by Region

  • 15.1. Americas
    • 15.1.1. North America
    • 15.1.2. Latin America
  • 15.2. Europe, Middle East & Africa
    • 15.2.1. Europe
    • 15.2.2. Middle East
    • 15.2.3. Africa
  • 15.3. Asia-Pacific

16. Computer-aided Drug Discovery Market, by Group

  • 16.1. ASEAN
  • 16.2. GCC
  • 16.3. European Union
  • 16.4. BRICS
  • 16.5. G7
  • 16.6. NATO

17. Computer-aided Drug Discovery Market, by Country

  • 17.1. United States
  • 17.2. Canada
  • 17.3. Mexico
  • 17.4. Brazil
  • 17.5. United Kingdom
  • 17.6. Germany
  • 17.7. France
  • 17.8. Russia
  • 17.9. Italy
  • 17.10. Spain
  • 17.11. China
  • 17.12. India
  • 17.13. Japan
  • 17.14. Australia
  • 17.15. South Korea

18. Competitive Landscape

  • 18.1. Market Share Analysis, 2024
  • 18.2. FPNV Positioning Matrix, 2024
  • 18.3. Competitive Analysis
    • 18.3.1. Schrodinger, Inc.
    • 18.3.2. Dassault Systemes SE
    • 18.3.3. Certara, L.P.
    • 18.3.4. Exscientia Limited
    • 18.3.5. Atomwise, Inc.
    • 18.3.6. Cresset, Ltd.
    • 18.3.7. OpenEye Scientific Software, Inc.
    • 18.3.8. Nimbus Therapeutics, LLC
    • 18.3.9. Insilico Medicine, Inc.
    • 18.3.10. BenevolentAI Limited
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제