시장보고서
상품코드
1867203

합성 천연가스 시장 : 원료별, 용도별 - 세계 예측(2025-2032년)

Synthetic Natural Gas Market by Feedstock, Application - Global Forecast 2025-2032

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 187 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

합성 천연가스 시장은 2032년까지 CAGR 23.92%로 1,227억 8,000만 달러 규모로 성장할 것으로 예측됩니다.

주요 시장 통계
기준 연도 2024년 220억 6,000만 달러
추정 연도 2025년 273억 6,000만 달러
예측 연도 2032 1,227억 8,000만 달러
CAGR(%) 23.92%

이해관계자의 의사결정에 영향을 미치는 기술적, 정책적, 상업적 요인을 명확히함으로써 합성 천연가스 개발의 전략적 프레임워크를 구축합니다.

합성 천연가스는 전통적인 탄화수소 처리 경로와 저탄소 혁신, 시스템 수준의 에너지 계획이 교차하는 수렴 기술 영역을 나타냅니다. 이 산업은 조정 가능한 저탄소 연료를 원하는 유틸리티, 고온 공정의 탈탄소를 목표로 하는 산업체, 에너지 안보를 우선시하는 국가 에너지 계획 담당자 등 다양한 이해관계자들의 관심이 가속화되고 있습니다. 열가스화 및 메탄화에서 전기화학 공정, 전력에서 가스로의 변환 기술에 이르기까지 다양한 기술 변형은 여러 가지 상업화 벡터를 생성하고 있으며, 지역 연료 공급 상황, 규제 지원, 수소 및 탄소 관리 솔루션과의 통합 가능성에 대한 평가가 진행되고 있습니다.

합성 천연가스 생태계의 생산 경로, 투자 우선순위, 정책 프레임워크를 재구성하는 파괴적 트렌드와 시스템 차원의 변화를 파악합니다.

탈탄소화 요구, 기반기술의 발전, 정책구조의 진화로 합성 천연가스 산업의 정세는 변혁적 전환기를 맞이하고 있습니다. 탈탄소화 목표는 화석연료의 점진적 최적화에서 전기화가 어려운 분야에서 상당한 배출량 감축을 실현할 수 있는 연료로 투자의 초점을 재조정하고 있습니다. 그 결과, 수소 생산, 전기분해, 탄소회수와의 통합을 가능하게 하는 기술은 단순한 옵션 기능이 아닌 차별화 요소로 부상하고 있습니다. 이러한 변화는 자본 배분 패턴을 바꾸고 있으며, 투자자들은 모듈성, 개조 가능성, 수명주기 배출량 성능을 우선시하고 있습니다.

합성 천연가스 프로젝트의 국제 공급망, 기술 흐름, 자본 배분에 대한 미국 관세 조치가 미치는 종합적인 영향 평가

미국의 새로운 무역 및 관세 조치의 도입은 세계 합성 천연가스 가치사슬에 중대한 영향을 미칠 것입니다. 자본설비, 촉매, 특수 멤브레인에 대한 관세는 프로젝트의 초기 비용을 증가시키고, 조달 전략을 국내 제조 또는 대체 국제 공급업체로 전환할 수 있습니다. 이로 인해 단기적인 비용 압박과 장기적으로 중요 부품의 현지 조달을 위한 인센티브가 동시에 발생하여 프로젝트 입지 선정 및 채용 기술 구성에 영향을 미치게 됩니다.

원료와 용도의 세분화를 기술 성숙도, 원료의 유연성, 전체 생태계에서 최종 용도의 가치 포착을 검증하여 운영 우선순위를 전환합니다.

원료와 용도에 따른 세분화를 검토하면 합성 천연가스 분야 전반에 걸쳐 차별화된 가치 제안과 운영 요건을 파악할 수 있습니다. 바이오매스, 석탄, 천연가스, 석유, 셰일가스 등의 원료 옵션을 분석하면 각 경로마다 고유한 기술적 고려사항, 배출량, 공급망 제약이 존재한다는 것을 알 수 있습니다. 바이오매스 기반 경로는 일반적으로 수명주기 탄소 프로파일이 우수하지만, 원료의 물류 문제와 계절적 변동에 직면합니다. 석탄 유래 공정은 기존 인프라를 활용할 수 있지만, 탈탄소화 목표에 부합하기 위해서는 강력한 탄소 관리가 필요합니다. 천연가스 및 셰일가스 경로는 기존 가스 인프라를 활용할 수 있는 전환 전략의 기회를 제공하지만, 누출 메탄 및 수명주기 배출에 대한 대책이 필수적입니다. 석유 관련 합성 루트는 자본집약적인 경향이 강하고, 통합 정유-석유화학 복합시설에 의한 원료 시너지를 기대할 수 있는 곳에서 평가되는 경우가 많습니다.

아메리카, 유럽, 중동 및 아프리카, 아시아태평양의 지역적 동향을 분석하고, 인프라 제약, 정책적 차이, 상업적 기회의 회랑을 파악합니다.

지역별 동향은 합성 천연가스 프로젝트의 도입 경로, 규제 프레임워크, 인프라 요건을 크게 좌우합니다. 미국 대륙에서는 풍부한 천연가스 자원, 잘 구축된 미드스티림 인프라, 산업 및 운송 분야의 저탄소 연료에 대한 관심 증가가 프로젝트 개발에 영향을 미치고 있습니다. 정책적 인센티브와 지방정부의 노력이 초기 시범 프로젝트와 상업적 실증을 촉진하는 한편, 기존 석유화학 플랜트 및 유틸리티 자산과의 통합 기회는 스케일업의 명확한 경로를 제공하고 있습니다.

기술 혁신 기업, 유틸리티 기업, 종합 엔지니어링 기업 등 도입 및 상용화 경로를 형성하는 기업들 간의 경쟁적 포지셔닝과 전략적 움직임을 분석합니다.

합성 천연가스 분야에서 활동하는 기업 간 경쟁은 기술 혁신 기업, 기존 에너지 기업, 종합 엔지니어링 업체들이 혼재되어 있는 특징을 가지고 있습니다. 모듈성, 수명주기 배출량 감소, 기존 자산과의 통합 용이성을 입증할 수 있는 기술 제공업체는 업스트림 및 다운스트림 파트너로부터 전략적 관심을 받고 있습니다. 유틸리티 회사나 대규모 산업 오프테이커는 시장 접근과 사업 규모를 가져오고, 프로젝트 수익의 위험을 줄이고 허가 절차를 가속화하기 위해 파트너십이나 오프테이커 계약을 체결하는 경우가 많습니다. 엔지니어링, 조달 및 건설(EPC) 기업은 검증된 프로젝트 수행 모델을 제공하고 현장의 복잡성을 줄이는 모듈식 제조 방식을 적용함으로써 중요한 역할을 할 수 있습니다.

업계 리더들이 도입을 가속화하고, 투자 위험을 줄이며, 탈탄소화 및 에너지 안보 목표에 부합하는 파트너십을 구축하기 위한 실질적인 전략적 조치를 제공합니다.

업계 리더들은 실행 리스크를 관리하면서 도입을 가속화하기 위해 현실적이고 우선순위를 정한 일련의 행동을 취해야 합니다. 첫째, 공급 상황과 정책적 인센티브 변화에 따라 바이오매스, 천연가스, 대체 원료 간 원활한 전환이 가능하도록 프로젝트 설계에 있어 원료의 유연성을 우선적으로 고려해야 합니다. 이를 통해 단일 공급원의 혼란에 대한 노출을 줄이고 프로젝트의 장기적인 복원력을 강화할 수 있습니다. 다음으로, 탄소 관리와 수소 생산능력을 통합하는 파트너십에 대한 투자가 중요합니다. 이러한 영역의 시너지 효과는 수명주기 배출량 결과를 크게 개선하고 수익원을 확대할 수 있습니다.

전문가 인터뷰, 기술 검증, 정책 동향 조사, 공급망 분석을 통합한 강력한 조사 프레임워크를 구축하여 실행 가능한 조사 결과를 확보합니다.

이 조사 접근법은 정성적 분석과 정량적 분석을 엄격하게 결합하여 경영진과 기술팀이 실행 가능한 결과를 도출할 수 있도록 합니다. 1차 조사에서는 기술 제공업체, 장비 제조업체, 산업 오프테이커, 정책 전문가를 대상으로 구조화된 인터뷰를 실시하여 기술 성숙도 검증, 상업적 장벽 파악, 규제 동향 평가 등을 진행했습니다. 2차 분석은 동료 검토를 거친 문헌, 기술 표준, 공개 정책 문서를 활용하여 지식의 삼각 측량 및 합성 천연가스 생산과 관련된 기술 스택 및 프로세스 아키텍처를 상세히 분석했습니다.

이해관계자들의 핵심 요구사항을 추출하고, 장기적 지속가능성의 핵심으로 회복탄력성, 혁신, 정책 연계를 강조하는 종합 분석

기술 동향, 정책적 요인, 상업적 역학에 대한 통합 분석은 합성 천연가스 분야의 이해관계자들에게 명확한 전략적 요구를 제시합니다. 탄력성과 유연성이 최우선 과제이며, 원료 변동에 적응하고, 탄소 관리를 통합하고, 진화하는 규제 프레임워크에 적응할 수 있는 프로젝트는 경직된 단일 경로의 노력보다 더 큰 성과를 거둘 수 있습니다. 입증 가능한 저탄소 경로에 대한 투자와 투명한 수명주기 회계는 판매 계약을 확보하고 공공 지원을 확보하는 데 결정적인 역할을 합니다.

자주 묻는 질문

  • 합성 천연가스 시장 규모는 어떻게 예측되나요?
  • 합성 천연가스 산업의 주요 기술적 요인은 무엇인가요?
  • 합성 천연가스 프로젝트에 대한 미국의 관세 조치가 미치는 영향은 무엇인가요?
  • 합성 천연가스의 원료와 용도는 어떻게 세분화되나요?
  • 합성 천연가스 시장의 지역별 동향은 어떻게 되나요?
  • 합성 천연가스 분야의 주요 기업은 어디인가요?

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 인사이트

제6장 미국 관세의 누적 영향 2025

제7장 AI의 누적 영향 2025

제8장 합성 천연가스 시장 : 원료별

  • 바이오매스
  • 석탄
  • 천연가스
  • 석유
  • 셰일가스

제9장 합성 천연가스 시장 : 용도별

  • 화학 중간체
  • 산업용 가열
  • 발전
  • 주택·상업용 난방
  • 운송용 연료

제10장 합성 천연가스 시장 : 지역별

  • 아메리카
    • 북미
    • 라틴아메리카
  • 유럽, 중동 및 아프리카
    • 유럽
    • 중동
    • 아프리카
  • 아시아태평양

제11장 합성 천연가스 시장 : 그룹별

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

제12장 합성 천연가스 시장 : 국가별

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 중국
  • 인도
  • 일본
  • 호주
  • 한국

제13장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • Air Products and Chemicals, Inc.
    • Air Liquide S.A.
    • Linde plc
    • Siemens Energy AG
    • Haldor Topsoe A/S
    • Shell plc
    • Sasol Limited
    • BASF SE
    • Exxon Mobil Corporation
    • KBR, Inc.
KSM 25.11.28

The Synthetic Natural Gas Market is projected to grow by USD 122.78 billion at a CAGR of 23.92% by 2032.

KEY MARKET STATISTICS
Base Year [2024] USD 22.06 billion
Estimated Year [2025] USD 27.36 billion
Forecast Year [2032] USD 122.78 billion
CAGR (%) 23.92%

Framing the strategic context for synthetic natural gas development by articulating technological, policy, and commercial levers that influence stakeholder decisions

Synthetic natural gas represents a convergent technology space where traditional hydrocarbon processing pathways intersect with low-carbon innovation and systems-level energy planning. The industry is experiencing accelerated interest from diversified stakeholders that include utilities seeking dispatchable low-carbon fuels, industrial operators aiming to decarbonize high-temperature processes, and national energy planners prioritizing energy security. Technological variations-from thermal gasification and methanation to electrochemical and power-to-gas pathways-create multiple commercialization vectors that are being evaluated against local fuel availability, regulatory support, and integration potential with hydrogen and carbon management solutions.

Recent policy momentum and corporate net-zero commitments have elevated synthetic natural gas from a niche research topic to a strategic asset class under consideration for mid-century decarbonization roadmaps. In parallel, supply chain dynamics and capital allocation decisions are shifting as equipment vendors, engineering firms, and feedstock suppliers reposition to capture early-mover advantages. For industry participants, this environment demands a clear-eyed understanding of technology readiness, value chain interdependencies, and policy signals that will determine which projects move from pilot stage to scalable deployment.

As stakeholders refine their strategic priorities, they must weigh trade-offs between feedstock flexibility, operational complexity, and integration with other low-carbon infrastructure. The most competitive propositions will demonstrate credible pathways to reduce lifecycle greenhouse gas intensity while remaining adaptable to evolving regulatory frameworks and commodity price swings. In this context, synthetic natural gas is not a single technology but a portfolio of pathways that require coordinated commercial strategies, public-private collaboration, and pragmatic technology validation.

Identifying disruptive trends and system-level shifts that are reshaping production pathways, investment priorities, and policy frameworks within the synthetic natural gas ecosystem

The synthetic natural gas landscape is undergoing transformative shifts driven by decarbonization imperatives, advances in enabling technologies, and evolving policy architectures. Decarbonization targets are refocusing investment from incremental fossil fuel optimization toward fuels that can deliver deep emissions reductions in hard-to-electrify sectors. Consequently, technologies that enable integration with hydrogen production, electrolysis, and carbon capture are emerging as differentiators rather than optional enhancements. This shift is altering capital allocation patterns, with investors prioritizing modularity, retrofit potential, and lifecycle emissions performance.

Concurrently, digitalization and process optimization are compressing development cycles. Advanced modeling, predictive maintenance, and plant-level optimization enable lower operational risk and improved uptime, thereby making complex pathways more commercially viable. Meanwhile, supply chain resiliency has ascended as a core strategic concern; the sourcing of catalysts, specialized membranes, and gasification equipment now factors heavily into project feasibility assessments. Geopolitical considerations and trade policy are also reshaping where projects are developed, with an increased focus on domestic manufacturing content and critical import substitution.

Taken together, these shifts are reconfiguring the competitive landscape. New entrants are leveraging niche capabilities in electrified methanation and waste-to-gas conversion, while incumbents are seeking alliances to broaden technological portfolios. As a result, the market is moving toward an ecosystem model where technology providers, utilities, feedstock suppliers, and policy makers co-design deployment pathways that reduce execution risk and accelerate scale-up under emerging regulatory regimes.

Assessing the aggregated effects of recent United States tariff actions on international supply chains, technology flows, and capital allocation within synthetic natural gas projects

The imposition of new trade measures and tariff actions in the United States has material implications for global synthetic natural gas value chains. Tariffs on capital equipment, catalysts, and specialized membranes can increase up-front project costs and shift procurement strategies toward domestic manufacturing or alternative international suppliers. This creates both near-term cost pressure and longer-term incentives for localization of critical components, which in turn affects where projects are sited and which technology configurations are favored.

Beyond equipment, tariffs can alter the competitiveness of imported feedstock derivatives and processed intermediates, prompting buyers to reassess supply contracts and contractual hedges. For cross-border projects, increased trade friction introduces additional complexity into joint ventures and consortium arrangements where the distribution of procurement responsibilities was previously optimized for cost rather than resilience. As a result, project sponsors may extend due diligence timelines, renegotiate supplier agreements, or accelerate engagement with domestic fabricators to avoid tariff exposure.

Moreover, tariffs interact with regulatory and incentive structures, influencing commercial decisions around retrofit versus greenfield developments. In scenarios where tariff-related cost increases are significant, developers may prioritize process configurations that minimize reliance on imported modules, or they may favor feedstock options that reduce system complexity. For technology licensors and engineering firms, tariffs can accelerate efforts to establish local manufacturing partnerships or transfer modular manufacturing capabilities to mitigate cross-border cost escalation. In sum, trade measures reshape both the economics and the strategic calculus of deployment, and stakeholders must adopt flexible procurement strategies and contingency plans to preserve project viability.

Translating feedstock and application segmentation into operational priorities by examining technical readiness, feedstock flexibility, and end-use value capture across the ecosystem

Examining segmentation by feedstock and by application reveals differentiated value propositions and operational requirements across the synthetic natural gas landscape. When analyzing feedstock options such as Biomass, Coal, Natural Gas, Oil, and Shale Gas, it becomes apparent that each pathway carries distinct technical considerations, emissions footprints, and supply chain constraints. Biomass-based routes typically offer favorable lifecycle carbon profiles but face feedstock logistics challenges and seasonal variability. Coal-derived processes can leverage existing infrastructure yet require robust carbon management to align with decarbonization goals. Natural Gas and Shale Gas pathways present opportunities for transitional strategies that leverage existing gas infrastructure while necessitating measures to address fugitive methane and lifecycle emissions. Oil-associated synthesis routes tend to be capital-intensive and are often evaluated where integrated refining and petrochemical complexes can provide feedstock synergies.

Across the spectrum of end-use applications, the technical and commercial drivers diverge significantly. For Chemical Intermediate applications, high product purity and integration with downstream processing dominate design choices, while Industrial Heating demands reliability and cost-competitiveness in high-temperature processes. Power Generation prioritizes reliability and dispatch flexibility, with an emphasis on combustion characteristics and grid integration. Residential & Commercial Heating places a premium on distribution compatibility and regulatory acceptance, whereas Transportation Fuel applications require additional feedstock upgrading and fuel specification compliance. These application-level distinctions influence the preferred technology pathways, scaling timelines, and partnerships required for commercialization. Consequently, strategic planning must align feedstock selection with application-specific performance criteria and regulatory expectations to optimize value capture across the value chain.

Interpreting regional dynamics across the Americas, Europe Middle East & Africa, and Asia-Pacific to reveal infrastructure constraints, policy divergence, and commercial opportunity corridors

Regional dynamics materially shape the deployment pathways, regulatory frameworks, and infrastructure requirements for synthetic natural gas projects. In the Americas, project development is influenced by abundant natural gas resources, an established midstream infrastructure, and a growing emphasis on low-carbon fuels for industry and transport. Policy incentives and subnational initiatives often drive early pilot projects and commercial demonstrations, while integration opportunities with existing petrochemical and utility assets provide clear pathways for scale-up.

In Europe, Middle East & Africa, the policy landscape and resource mix create a mosaic of opportunities and constraints. European markets emphasize stringent lifecycle emissions criteria and robust carbon management, encouraging coupling of synthetic natural gas production with renewables and carbon capture. In parts of the Middle East and Africa, abundant feedstocks and industrial clusters present opportunities for export-oriented projects and for leveraging existing fuel value chains, although regulatory frameworks and financing conditions vary significantly across jurisdictions.

Across the Asia-Pacific region, rapid industrial growth and strong policy signals for energy security drive interest in synthetic natural gas as both a domestic resilience measure and an exportable technology. Infrastructure constraints, urban energy demands, and varying grid decarbonization trajectories create a diverse set of commercialization pathways. In all regions, successful deployment hinges on aligning project design with local regulatory expectations, feedstock availability, and the maturity of adjacent energy infrastructures, such as hydrogen networks and CO2 transport systems.

Profiling competitive positioning and strategic moves among technology innovators, utilities, and integrated engineering firms that are shaping adoption and commercialization pathways

Competitive dynamics among companies active in the synthetic natural gas domain are characterized by a mix of technology innovators, incumbent energy firms, and integrated engineering contractors. Technology providers that can demonstrate modularity, low lifecycle emissions, and ease of integration with existing assets command strategic interest from upstream and downstream partners. Utilities and large industrial offtakers bring market access and operational scale, often entering partnerships or offtake agreements that de-risk project revenue streams and accelerate permitting processes. Engineering, procurement, and construction firms play a crucial role by offering proven project delivery models and by adapting modular manufacturing practices to reduce on-site complexity.

At the corporate level, successful players are those that combine technological differentiation with strong stakeholder engagement capabilities. This includes the ability to secure long-term feedstock contracts, establish transparent environmental performance metrics, and navigate evolving regulatory incentives. Strategic partnerships and consortiums are common, enabling companies to pool expertise across feedstock supply, conversion technology, and commercial offtake. Additionally, firms that invest in pilot demonstrations and rigorous lifecycle assessments gain a competitive edge by converting technical credibility into commercial traction. Overall, the sector favors collaborative business models that align technical innovation with market access and regulatory compliance.

Delivering pragmatic strategic actions for industry leaders to accelerate deployment, de-risk investments, and align partnerships with decarbonization and energy security objectives

Industry leaders should adopt a set of pragmatic, prioritized actions to accelerate deployment while managing execution risk. First, prioritize feedstock flexibility in project design to enable seamless switching between biomass, natural gas, or alternative feedstocks as supply conditions and policy incentives evolve. This reduces exposure to single-source disruptions and enhances long-term project resilience. Next, invest in partnerships that integrate carbon management and hydrogen production capabilities, as synergies between these domains materially improve lifecycle emissions outcomes and broaden revenue streams.

Leaders should also focus on supply chain resilience by qualifying multiple equipment suppliers and exploring local manufacturing partnerships to mitigate trade and tariff risks. In parallel, engaging proactively with regulators to clarify lifecycle emissions accounting and to shape incentive structures can shorten permitting timelines and improve bankability. Deploy rigorous pilot programs that validate operational performance and create replicable modules for scaling. Finally, adopt a flexible commercial model that includes staged investment, offtake flexibility, and options for third-party operations to align capital deployment with measured technology performance and market uptake. These combined actions will position organizations to capture early mover advantages while preserving flexibility amid evolving policy and market conditions.

Outlining a robust research framework that integrates expert interviews, technology validation, policy horizon scanning, and supply chain triangulation to ensure actionable insights

The underlying research approach combines qualitative and quantitative rigor to produce insights that are actionable for executives and technical teams. Primary research included structured interviews with technology providers, equipment manufacturers, industrial offtakers, and policy specialists to validate technology readiness, identify commercial barriers, and assess regulatory trajectories. Secondary analysis incorporated peer-reviewed literature, technical standards, and publicly available policy documents to triangulate findings and to detail the technology stack and process architectures relevant to synthetic natural gas production.

Analytical methods involved technology maturity assessments, supply chain mapping, and scenario planning to explore alternative deployment pathways under varying policy and trade conditions. Lifecycle assessment techniques were applied to compare emissions profiles across feedstock and process options, while sensitivity analysis illuminated key cost and performance drivers. Quality control measures included cross-validation of interview insights with multiple independent sources, iterative expert reviews, and robustness checks on scenario assumptions. This methodology ensures that recommendations are grounded in operational realities and reflect prevailing policy and commercial signals.

Concluding synthesis that distills core imperatives for stakeholders while highlighting resilience, innovation, and policy engagement as keys to long-term viability

The synthesis of technology trends, policy drivers, and commercial dynamics points to a clear set of strategic imperatives for stakeholders in the synthetic natural gas domain. Resilience and flexibility are paramount; projects that can adapt to feedstock variability, integrate carbon management, and align with evolving regulatory frameworks will outperform rigid, single-pathway initiatives. Investment in demonstrable low-carbon pathways and transparent lifecycle accounting will be decisive in securing offtake partnerships and public support.

At the same time, collaboration across the value chain is essential. No single firm can internalize all the capabilities required for large-scale deployment, and consortium-based approaches that align technology providers, operators, and financiers reduce execution risk. Trade and tariff developments underscore the necessity of supply chain contingency planning and the strategic value of local manufacturing relationships. Ultimately, the maturity of synthetic natural gas as a decarbonization lever hinges on the sector's ability to convert pilot successes into repeatable, bankable projects that meet stringent environmental criteria while delivering reliable performance for industrial and energy systems.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Scaling of power-to-gas electrolysis facilities for green hydrogen conversion to synthetic natural gas
  • 5.2. Adoption of carbon capture utilization and storage integrated synthetic natural gas production plants reducing emissions footprint
  • 5.3. Development of biomethanation processes using agricultural and municipal organic waste to produce renewable synthetic gas at scale
  • 5.4. Market impact of government incentives and carbon pricing mechanisms on synthetic natural gas project viability and financing
  • 5.5. Advancements in methanation catalyst technologies to enhance conversion efficiency and lower CO2 consumption in SNG
  • 5.6. Role of synthetic natural gas in balancing renewable grid intermittency through long-term energy storage solutions
  • 5.7. Emerging small-scale modular synthetic natural gas generators for decentralized energy supply in remote industrial sites
  • 5.8. Investment trends in offshore power-to-gas platforms utilizing wind energy for large-scale synthetic fuel production projects
  • 5.9. Evolution of regulatory frameworks and safety standards for underground hydrogen storage in synthetic natural gas networks
  • 5.10. Competition between synthetic natural gas and green ammonia as carbon-neutral alternatives for heavy-duty transport fuels

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Synthetic Natural Gas Market, by Feedstock

  • 8.1. Biomass
  • 8.2. Coal
  • 8.3. Natural Gas
  • 8.4. Oil
  • 8.5. Shale Gas

9. Synthetic Natural Gas Market, by Application

  • 9.1. Chemical Intermediate
  • 9.2. Industrial Heating
  • 9.3. Power Generation
  • 9.4. Residential & Commercial Heating
  • 9.5. Transportation Fuel

10. Synthetic Natural Gas Market, by Region

  • 10.1. Americas
    • 10.1.1. North America
    • 10.1.2. Latin America
  • 10.2. Europe, Middle East & Africa
    • 10.2.1. Europe
    • 10.2.2. Middle East
    • 10.2.3. Africa
  • 10.3. Asia-Pacific

11. Synthetic Natural Gas Market, by Group

  • 11.1. ASEAN
  • 11.2. GCC
  • 11.3. European Union
  • 11.4. BRICS
  • 11.5. G7
  • 11.6. NATO

12. Synthetic Natural Gas Market, by Country

  • 12.1. United States
  • 12.2. Canada
  • 12.3. Mexico
  • 12.4. Brazil
  • 12.5. United Kingdom
  • 12.6. Germany
  • 12.7. France
  • 12.8. Russia
  • 12.9. Italy
  • 12.10. Spain
  • 12.11. China
  • 12.12. India
  • 12.13. Japan
  • 12.14. Australia
  • 12.15. South Korea

13. Competitive Landscape

  • 13.1. Market Share Analysis, 2024
  • 13.2. FPNV Positioning Matrix, 2024
  • 13.3. Competitive Analysis
    • 13.3.1. Air Products and Chemicals, Inc.
    • 13.3.2. Air Liquide S.A.
    • 13.3.3. Linde plc
    • 13.3.4. Siemens Energy AG
    • 13.3.5. Haldor Topsoe A/S
    • 13.3.6. Shell plc
    • 13.3.7. Sasol Limited
    • 13.3.8. BASF SE
    • 13.3.9. Exxon Mobil Corporation
    • 13.3.10. KBR, Inc.
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제