시장보고서
상품코드
1868946

CCUS 흡수 시장 : 기술별, 용제 유형별, 최종 용도별, 산업별, 플랜트 규모별, 프로젝트 단계별 - 세계 예측(2025-2032년)

CCUS Absorption Market by Technology, Solvent Type, End Use, Industry, Plant Size, Project Phase - Global Forecast 2025-2032

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 194 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

CCUS 흡수 시장 규모는 2032년까지 CAGR 26.83%로 55억 6,047만 달러로 성장할 것으로 예측됩니다.

주요 시장 통계
기준 연도 2024년 8억 3,021만 달러
추정 연도 2025년 10억 5,569만 달러
예측 연도 2032 55억 6,047만 달러
CAGR(%) 26.83%

용매 과학, 공정 공학, 정책적 인센티브를 결합한 흡수 기반 탄소 회수에 대한 전략적 접근을 통해 도입 결정 및 파트너십 구축을 지원합니다.

탄소 회수, 이용, 저장(CCUS) 흡수 기술은 중공업, 전력, 탄화수소 가치사슬의 단기 및 장기 탈탄소화 전략의 핵심입니다. 이 분야는 용매 화학, 공정 통합, 재료 공학의 발전, 정책적 촉진요인, 자금 조달 수단, 진화하는 공급망과 융합하고 있습니다. 배출 감축 노력이 강화되는 가운데, 흡수 기반 회수 솔루션은 특정 배출원에서 CO2를 분리하여 영구 저장 또는 산업 공정에서 생산적으로 재사용할 수 있도록 하는 가장 성숙한 기술 접근법 중 하나입니다.

용매 과학, 공정의 모듈화, 지원적 정책 프레임워크, 진화하는 상업적 모델의 동시 진행이 CCUS 흡수법 도입을 가속화하는 메커니즘

기술의 성숙, 정책의 재조정, 진화하는 상업적 모델로 인해 흡수 기반 CCUS의 상황은 변혁적인 재편을 겪고 있습니다. 첫째, 용매의 혁신과 공정의 집약화를 통해 부수적인 에너지 부하를 줄이고 단위당 회수 효율을 향상시켰습니다. 이를 통해 기존 설비에 대한 개보수의 실현 가능성이 높아졌습니다. 동시에 모듈화 및 공장 생산 부품의 도입으로 프로젝트 공사 기간이 단축되고, 현장의 노동력 요구사항이 감소하여 기존에는 수익성이 낮았던 소규모 도입이 가능해졌습니다.

2025년 미국이 도입한 관세 조치가 CCUS 프로젝트 조달, 일정 리스크, 자금 조달, 국내 공급망 형성에 미치는 다각적인 영향 평가

2025년 미국이 도입한 관세 조치는 CCUS 프로젝트에 사용되는 특정 수입 장비 및 자재에 대해 단계적 관세를 부과하는 것으로, 그 누적 효과는 비용 구조, 조달 전략, 프로젝트 일정에 파급될 것입니다. 이러한 관세는 다방면에 영향을 미칩니다. 즉, 외국산 압축기, 열교환기, 특수 야금 부품의 현지 도착 비용을 증가시키는 한편, 국내 제조 및 공급망 현지화를 촉진하는 인센티브가 될 수 있습니다. 최근 수입 조립 및 주문 제작 부품에 의존하는 프로젝트의 자본 예산이 압박을 받고 있습니다.

CCUS 흡수 솔루션의 기술 경로, 용매 화학의 차이점, 최종 용도 통합 과제, 프로젝트 규모 및 단계별 영향을 매핑한 상세한 부문 분석

부문 수준의 동향은 기술적, 상업적, 규제적 압력이 교차하여 프로젝트 설계와 시장 기회에 영향을 미치는 영역을 보여줍니다. 기술 기반에서 산소 연소법, 연소 후 처리법, 연소 전처리법의 시장 간 상호 작용은 배출원마다 다른 솔루션 세트를 형성하고 있습니다. 후연소법은 여전히 개조 응용 분야에서 주류이며, 화학적 흡수와 물리적 흡수 접근법에 따라 차별화됩니다. 한편, 사전 연소법은 가스화와 수소 분리를 활용하여 수소와 CO2의 통합 관리를 실현합니다. 또한, 산소 연소법은 연료 연소 제어 및 고순도 CO2 스트림을 통해 회수 공정을 단순화할 수 있는 분야에서 기회를 제공합니다.

CCUS 흡수 기술 도입 동향, 인프라 허브, 정책 인센티브, 산업 우선순위를 형성하는 지역 간 비교 : 아메리카, 유럽, 중동 및 아프리카, 아시아태평양

지역별 동향은 흡수 기반 CCUS 솔루션의 우선순위 결정, 자금 조달, 상업화에 큰 영향을 미칩니다. 미국 대륙에서는 정책적 인센티브와 투자 의욕이 허브 개발을 촉진하고 공유 운송 및 저장 인프라를 핵심으로 하는 프로젝트 집적화를 가능하게 하고 있습니다. 규제 프레임워크는 인센티브와 환경 감시의 균형을 맞추기 위해 진화하고 있으며, 민간 부문은 회수 및 이용 시장 또는 장기 저장을 결합할 수 있는 산업 클러스터에 적극적으로 자본을 집중하고 있습니다.

기술 제공자, 용제 제조업체, EPC 계약자, 서비스 제공업체가 엔드 투 엔드 CCUS 흡수 프로젝트를 주도하기 위해 파트너십과 역량을 구축하는 방법

CCUS 흡수 생태계 내 경쟁 환경은 기존 에너지 복합기업, 엔지니어링 회사, 용제 공급업체, 설비 제조사가 혼재된 형태로 형성되어 있으며, 각 업체들은 프로젝트 수행 및 라이프사이클 서비스에서 차별화된 역량을 제공하고 있습니다. 주요 기술 라이센서 및 용제 제조업체는 공정 효율성, 용제 내구성 및 총 운영 비용을 경쟁의 기반으로 삼고 있습니다. 반면, 엔지니어링, 조달, 건설(EPC) 기업은 인터페이스 리스크를 줄이고 시운전을 가속화할 수 있는 통합형 딜리버리 모델을 중요시합니다. 모듈식 공장 제조 유닛을 제공할 수 있는 장비 제조업체는 공기 단축과 재현성이 우선시되는 상황에서 우위를 점할 수 있습니다.

CCUS 흡수의 전개 위험 감소, 공급망 확보, 기술 검증, 정책 형성을 위한 기업 및 프로젝트 리더를 위한 실질적이고 영향력 있는 전략적 액션을 제공합니다.

업계 리더는 기술적 엄격성, 공급망 복원력, 규제 대응을 결합한 계획적인 전략을 채택하여 비용 효율적인 CCUS 흡수 도입을 가속화해야 합니다. 우선, 배출원의 특성, 현장별 조건에서의 용제 성능, 통합의 복잡성을 명확하게 매핑한 후 기술 선택에 우선순위를 두어 획일적인 솔루션을 피하고 개조 위험을 줄여야 합니다. 동시에, 의도적인 조달 전략을 통해 공급처를 다양화하고 국내 제조 옵션을 인증함으로써 관세 변동 위험과 장기 리드타임을 수반하는 수입 위험에 대한 노출을 줄일 수 있습니다.

흡수법에 대한 연구 결과를 검증하기 위해 이해관계자 인터뷰, 기술 문헌 검토, 프로세스 수준 및 공급망 분석을 결합한 투명하고 엄격한 조사 방법을 채택하고 있습니다.

본 조사는 흡수 기반 CCUS 경로에 대한 엄격한 견해를 제시하기 위해 1차 정보와 2차 조사를 통합하여 분석하였습니다. 기술 개발자, 엔지니어링 회사, 용제 제조업체, 프로젝트 개발자, 규제 이해관계자와의 구조화된 인터뷰를 통해 1차 정보를 수집하여 운영 지식과 조달 관행을 파악했습니다. 이러한 정성적 정보는 프로젝트 문서, 기술 논문, 동료 검토를 거친 연구와 대조하여 성능 특성, 실제 조건에서의 용매 거동 및 통합 문제를 검증했습니다.

기술 발전, 정책 설계, 공급망 역학이 상호 작용하여 CCUS 흡수 기술의 보급을 결정한다는 점을 강조하는 통합적 인사이트와 향후 전망

이번 분석은 용제 화학, 공정 통합 및 프로젝트 실행 모델의 지속적인 발전에 힘입어 흡수 기반 CCUS가 다양한 산업 분야에서 배출량 감축을 위한 현실적인 경로임을 재확인합니다. 기술적 개선과 정책 수단의 상호 작용이 도입 속도와 지리적 분포를 결정하는 한편, 관세 정책과 같은 외부 요인은 조달 전략과 국내 공급망 투자를 계속 형성할 것입니다. 결과적으로, 회수를 추구하는 조직은 일정 지연과 예상치 못한 비용 증가를 피하기 위해 기술 선택, 조달 일정, 규제 대응을 일치시키는 통합적인 계획을 채택해야 합니다.

자주 묻는 질문

  • CCUS 흡수 시장 규모는 어떻게 예측되나요?
  • CCUS 흡수 기술의 주요 특징은 무엇인가요?
  • 2025년 미국의 관세 조치가 CCUS 프로젝트에 미치는 영향은 무엇인가요?
  • CCUS 흡수 기술의 도입을 가속화하는 요소는 무엇인가요?
  • CCUS 흡수 시장의 지역별 동향은 어떻게 되나요?
  • CCUS 흡수 생태계 내 주요 기업은 어디인가요?

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 인사이트

제6장 미국 관세의 누적 영향 2025

제7장 AI의 누적 영향 2025

제8장 CCUS 흡수 시장 : 기술별

  • 산소 연소법
  • 연소후 흡수
    • 화학 흡수법
    • 물리적 흡수
  • 연소전 흡수
    • 가스화
    • 수소 분리

제9장 CCUS 흡수 시장 용제 유형별

  • 아민계
    • 디에탄올아민
    • 메틸 디에탄올아민
    • 모노에탄올아민
      • 첨단
      • 표준
  • 탄산칼륨

제10장 CCUS 흡수 시장 : 최종 용도별

  • 화학제품 제조
    • 메탄올 합성
    • 요소 합성
  • 증진 채유
  • 가스 처리

제11장 CCUS 흡수 시장 : 업계별

  • 시멘트
    • 석회석 소성
  • 석유 및 가스
    • 다운스트림 부문
    • 미드스트림
    • 업스트림 부문
  • 발전
    • 석탄 화력
    • 가스 화력
  • 철강
    • 용광로
    • 전기 아크로

제12장 CCUS 흡수 시장 플랜트 규모별

  • 대규모
  • 소규모

제13장 CCUS 흡수 시장 프로젝트 단계별

  • 가동중
  • 계획중
  • 건설중

제14장 CCUS 흡수 시장 : 지역별

  • 아메리카
    • 북미
    • 라틴아메리카
  • 유럽, 중동 및 아프리카
    • 유럽
    • 중동
    • 아프리카
  • 아시아태평양

제15장 CCUS 흡수 시장 : 그룹별

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

제16장 CCUS 흡수 시장 : 국가별

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 중국
  • 인도
  • 일본
  • 호주
  • 한국

제17장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • Linde plc
    • Air Liquide S.A.
    • Mitsubishi Heavy Industries, Ltd.
    • Honeywell UOP LLC
    • Shell plc
    • BASF SE
    • Fluor Corporation
    • Aker Solutions ASA
    • Carbon Clean Solutions Limited
    • Carbon Engineering Ltd
KSM 25.12.01

The CCUS Absorption Market is projected to grow by USD 5,560.47 million at a CAGR of 26.83% by 2032.

KEY MARKET STATISTICS
Base Year [2024] USD 830.21 million
Estimated Year [2025] USD 1,055.69 million
Forecast Year [2032] USD 5,560.47 million
CAGR (%) 26.83%

A strategic orientation to absorption-based carbon capture that bridges solvent science, process engineering, and policy incentives to inform deployment decisions and partnerships

Carbon capture, utilization, and storage (CCUS) absorption technologies are central to near- and long-term decarbonization strategies across heavy industry, power, and hydrocarbon value chains. The field converges advances in solvent chemistry, process integration, and materials engineering with policy drivers, financing instruments, and evolving supply chains. As emission reduction commitments intensify, absorption-based capture solutions remain among the most mature technical approaches for separating CO2 from point sources, enabling either permanent storage or productive reuse in industrial processes.

The discipline is simultaneously technical and strategic: technical because solvent selection, absorber design, and thermal management determine operational cost and energy penalty; strategic because deployment depends on regulatory clarity, carbon pricing, and the availability of transport and storage infrastructure. This introduction frames the report's focus on absorption processes by emphasizing how incremental innovations and systemic shifts in policy and tariffs are jointly reshaping deployment timelines, capital allocation, and commercial partnerships across sectors.

How concurrent advances in solvent science, process modularization, supportive policy frameworks, and evolving commercial models are accelerating CCUS absorption deployment

The landscape for absorption-based CCUS is undergoing transformative realignment driven by technological maturation, policy recalibration, and evolving commercial models. First, solvent innovation and process intensification are reducing parasitic energy loads and improving per-unit capture efficiency, which in turn raises the feasibility of retrofits on existing assets. Concurrently, modularization and factory-built components are shortening project schedules and lowering site labor requirements, enabling smaller-scale implementations that were previously uneconomical.

Policy momentum has shifted from conceptual frameworks to executable mechanisms, with governments and industry consortia increasingly offering multi-year incentives, contracts-for-difference, and tax credits tied directly to captured CO2 volumes and verified storage. These instruments are changing the risk allocation between developers, host sites, and investors, encouraging larger offtake commitments and integrated hub development. On the commercial front, new collaboration models are emerging in which technology licensors, solvent suppliers, and infrastructure developers co-invest to accelerate first-of-a-kind projects and derisk subsequent replications.

Finally, the supply chain for critical equipment and engineered systems is diversifying. Fabrication capacity is expanding in multiple regions, while service providers scale remote monitoring and digital twin capabilities to optimize operations over asset lifecycles. Taken together, these shifts create a landscape where technical advances, supportive policy, and adaptive commercial structures reinforce each other to increase the pace and breadth of deployment.

Assessing the multifaceted repercussions of 2025 United States tariff measures on procurement, schedule risk, financing, and domestic supply chain emergence for CCUS projects

Tariff actions introduced in 2025 by the United States impose layered duties on specific imported equipment and materials used in CCUS projects, and their cumulative effects ripple through cost structures, procurement strategies, and project timelines. These tariffs have a multi-dimensional impact: they increase landed costs for foreign-made compressors, heat exchangers, and specialized metallurgy components, while also incentivizing onshore manufacturing and supply chain localization. The immediate consequence is pressure on capital budgets for projects relying on imported assemblies and bespoke components.

In response, developers and engineering firms are re-evaluating sourcing strategies and procurement timeframes. Some are accelerating orders for critical long-lead items placed prior to tariff implementation, while others are negotiating with domestic suppliers to requalify components and reduce exposure to duties. These adjustments often introduce engineering changes or qualification steps that can extend schedule risk for projects in late-stage development. At the same time, the tariffs have the unintended effect of stimulating investment in local fabrication capacity, which over a medium time horizon can reduce lead times and create more resilient regional supply chains for CCUS hardware.

From a finance and risk perspective, tariff-related cost inflation raises the importance of contract clauses that allocate duty risk and provide price escalation protections. Lenders and equity providers are incorporating these variables into due diligence, and procurement strategies increasingly include tariff contingencies and hedging approaches. Policy countermeasures, such as localized incentives for domestic content and targeted tariff exemptions for verified low-emission technologies, are emerging in certain jurisdictions to mitigate dislocation and preserve project viability. In aggregate, the 2025 tariff measures are reshaping how project teams approach procurement, contract architecture, and supply chain development, with implications that cascade into project selection and staging decisions across the sector.

Granular segmentation insights that map technology pathways, solvent chemistry distinctions, end-use integration challenges, and project scale and phase implications for CCUS absorption solutions

Segment-level dynamics reveal where technical, commercial, and regulatory pressures converge to influence project design and market opportunities. Based on technology, the market interplay among Oxyfuel Combustion, Post Combustion, and Pre Combustion pathways creates distinct solution sets for different emitters; Post Combustion remains dominant for retrofit applications and is differentiated by chemical absorption and physical absorption approaches, while Pre Combustion pathways leverage gasification and hydrogen separation for integrated hydrogen and CO2 management, and Oxyfuel presents opportunities where fuel combustion control and high-purity CO2 streams can simplify capture processes.

Examining solvent type shows a clear bifurcation between amine-based systems and potassium carbonate chemistries. Amine-based solutions are further partitioned by specific compounds such as Diethanolamine, Methyl Diethanolamine, and Monoethanolamine, each offering tradeoffs in regeneration energy, degradation resistance, and solvent management requirements. Within Monoethanolamine there is additional differentiation between advanced formulations designed for lower energy penalty and reduced volatility, and standard grades that prioritize simplicity and proven performance under established operating envelopes.

End-use segmentation highlights how capture objectives and integration complexity differ by application: Chemical Production requires tailored capture approaches for processes like Methanol Synthesis and Urea Synthesis where CO2 purity and continuity are critical for downstream reactions, Enhanced Oil Recovery demands transport and injection coordination with oilfield operators, and Gas Processing emphasizes capture configurations that align with gas treatment and dehydration systems. Industry segmentation sheds light on emitter-specific challenges; Cement presents limestone calcination as a unique point-source with high-temperature flue gas, Oil and Gas spans Downstream, Midstream, and Upstream contexts each with variable stream compositions and logistical constraints, Power Generation separates Coal Fired and Gas Fired operations with divergent flue gas compositions and retrofit pathways, and Steel differentiates between Blast Furnace and Electric Arc Furnace routes with distinct emission profiles and integration opportunities.

Plant size and project phase further refine commercial considerations: Large scale installations focus on economies of scale and integration with transport and storage hubs, while small scale plants emphasize modularity and lower capital intensity to serve distributed or niche emitters. Project phase classification into Operational, Planned, and Under Construction categories illuminates where technological maturity, operational experience, and lessons learned are concentrated, and where developer interest and capital formation are most active. These segmentation lenses collectively guide strategic choices around technology selection, partnership models, and phased deployment strategies for absorption-based CCUS initiatives.

Comparative regional dynamics shaping CCUS absorption deployment, infrastructure hubs, policy incentives, and industrial priorities across Americas, Europe Middle East Africa, and Asia-Pacific

Regional dynamics strongly influence how absorption-based CCUS solutions are prioritized, funded, and commercialized. In the Americas, policy incentives and growing investment appetite have stimulated hub development, enabling project clustering around shared transport and storage infrastructure; regulatory frameworks are evolving to balance incentives with environmental oversight, and the private sector is actively aligning capital toward industrial clusters where capture can be coupled with utilization markets or long-term storage.

Europe, Middle East & Africa exhibits a heterogeneous policy landscape where progressive climate targets in some European markets drive early adopter projects and technical innovation, while resource-rich jurisdictions in the Middle East explore CCUS as a means to sustain hydrocarbon-based industries under decarbonization pressure. Infrastructure coordination and cross-border transport arrangements are particularly salient across this region, as is the role of public-private partnerships in financing first-of-a-kind projects.

Asia-Pacific presents a rapid scale-up imperative driven by industrial coal usage, steel production, and concentrated chemical manufacturing. National strategies increasingly emphasize localization of manufacturing and technology transfer, alongside state-supported pilots and strategic partnerships with international technology providers. Across all regions, the pace of hub formation, the availability of long-term storage sites, and the relative maturity of permitting processes determine where absorption technologies are prioritized and how quickly projects move from planning to operation.

How technology licensors, solvent manufacturers, EPC contractors, and service providers are structuring partnerships and capabilities to lead end-to-end CCUS absorption projects

Competitive dynamics in the CCUS absorption ecosystem are shaped by a mix of established energy conglomerates, engineering firms, solvent suppliers, and equipment fabricators, each bringing differentiated capabilities to project execution and lifecycle services. Leading technology licensors and solvent producers compete on the basis of process efficiency, solvent durability, and total cost of operation, while engineering, procurement, and construction firms emphasize integrated delivery models that reduce interface risk and accelerate commissioning. Equipment providers that can offer modular, factory-built units gain advantage where schedule compression and repeatability are prioritized.

Strategic partnerships and joint ventures are common as project developers seek to combine emission sources, transport networks, and storage capacity into viable commercial propositions. Service providers that offer comprehensive monitoring, verification, and reporting solutions add value by lowering compliance costs and improving stakeholder confidence. Meanwhile, new entrants are focusing on niche propositions, such as low-energy solvents, advanced membranes for pre-combustion separation, and digital process optimization tools that reduce operational expenditure. In this environment, firms that demonstrate end-to-end capabilities-from solvent R&D and pilot validation to full-scale integration and long-term operations support-are best positioned to capture leadership roles in multi-site deployments.

Practical, high-impact strategic actions for corporate and project leaders to de-risk deployment, secure supply chains, validate technology, and shape enabling policy for CCUS absorption

Industry leaders should adopt deliberate strategies that combine technical rigor, supply chain resilience, and regulatory engagement to accelerate cost-effective CCUS absorption deployment. First, organizations must prioritize technology selection based on a clear mapping of emitter characteristics, solvent performance under site-specific conditions, and integration complexity, thereby avoiding one-size-fits-all solutions and reducing retrofit risk. Concurrently, intentional sourcing strategies that diversify suppliers and qualify domestic fabrication options can mitigate exposure to tariff volatility and long-lead import risk.

Leaders should also invest in pilot and demonstration projects that de-risk scale-up while generating operational data to support financing and regulatory approvals. These pilots should incorporate robust monitoring protocols and life-cycle assessments to validate performance claims and build credibility with stakeholders. Strategic engagement with policymakers to shape incentive structures and secure predictable revenue streams is equally important; clear policy signals reduce investment uncertainty and enable multiyear contracting for offtake or storage services.

Finally, firms ought to cultivate multidisciplinary alliances-linking solvent chemists, process engineers, infrastructure developers, and finance specialists-to create vertically integrated offerings that simplify procurement for host sites. By combining technical excellence with adaptive commercial models and proactive policy engagement, industry leaders can both accelerate near-term deployment and lay the groundwork for scalable, lower-cost capture over the medium term.

Transparent and rigorous research methodology combining stakeholder interviews, technical literature review, and process-level and supply chain analysis to validate absorption findings

This research synthesizes primary and secondary evidence to present a rigorous view of absorption-based CCUS pathways. Primary input was gathered through structured interviews with technology developers, engineering firms, solvent producers, project developers, and regulatory stakeholders to capture operational insights and procurement practices. These qualitative inputs were triangulated against project documentation, technical papers, and peer-reviewed studies to validate performance characteristics, solvent behavior under field conditions, and integration challenges.

Secondary research included a systematic review of policy instruments, public procurement records, technical standards, and recent tariff announcements that influence procurement and project viability. The methodology applied process-level analysis to compare energy penalty, solvent degradation pathways, and retrofit complexity for major technology routes, while supply chain analysis assessed fabrication capacity, long-lead items, and regional manufacturing trends. Throughout, the approach prioritized transparency and traceability of sources, with sensitivity checks performed on assumptions related to equipment lead times, tariff pass-through, and policy incentive design to ensure robustness of the conclusions.

Synthesis and forward-looking implications highlighting the interplay of technical progress, policy design, and supply chain dynamics that will determine CCUS absorption uptake

This analysis reaffirms that absorption-based CCUS remains a pragmatic pathway for emissions mitigation across diverse industrial sectors, supported by ongoing advances in solvent chemistry, process integration, and project delivery models. The interplay between technological improvements and policy instruments will determine the speed and geographic distribution of adoption, while external factors such as tariff policies will continue to shape procurement strategies and domestic supply chain investments. As a result, organizations pursuing capture should adopt integrated planning that aligns technology choice, procurement timelines, and regulatory engagement to avoid schedule and cost surprises.

Looking forward, momentum will accrue where multi-stakeholder collaboration enables shared infrastructure, where policy frameworks provide predictable revenue mechanisms, and where scalable manufacturing and modular designs reduce unit costs. The path to widespread deployment is iterative: each operational project yields valuable performance data that informs subsequent designs and reduces execution risk. Stakeholders that combine technical discipline with strategic partnerships and proactive policy engagement will lead the transition from demonstration to mainstream application of absorption-based capture.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Scale-up of proprietary high-performance amine solvents to lower regeneration energy in industrial carbon capture
  • 5.2. Integration of membrane contactors with absorption columns for enhanced CO2 mass transfer efficiency in power plants
  • 5.3. Deployment of structured packing internals to optimize solvent distribution and minimize pressure drop in large-scale CCUS units
  • 5.4. Development of dual amine-alkali solvent blends to improve amine stability and reduce solvent degradation rates
  • 5.5. Adoption of digital twin technology for real-time monitoring and predictive optimization of absorption-based carbon capture systems
  • 5.6. Implementation of hybrid cryogenic-amine capture trains to achieve higher CO2 purity for sequestration in saline aquifers
  • 5.7. Commercialization of low-liquid loading absorbents to decrease equipment footprint and operational expenditures in industrial CCUS

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. CCUS Absorption Market, by Technology

  • 8.1. Oxyfuel Combustion
  • 8.2. Post Combustion
    • 8.2.1. Chemical Absorption
    • 8.2.2. Physical Absorption
  • 8.3. Pre Combustion
    • 8.3.1. Gasification
    • 8.3.2. Hydrogen Separation

9. CCUS Absorption Market, by Solvent Type

  • 9.1. Amine Based
    • 9.1.1. Diethanolamine
    • 9.1.2. Methyl Diethanolamine
    • 9.1.3. Monoethanolamine
      • 9.1.3.1. Advanced
      • 9.1.3.2. Standard
  • 9.2. Potassium Carbonate

10. CCUS Absorption Market, by End Use

  • 10.1. Chemical Production
    • 10.1.1. Methanol Synthesis
    • 10.1.2. Urea Synthesis
  • 10.2. Enhanced Oil Recovery
  • 10.3. Gas Processing

11. CCUS Absorption Market, by Industry

  • 11.1. Cement
    • 11.1.1. Limestone Calcination
  • 11.2. Oil And Gas
    • 11.2.1. Downstream
    • 11.2.2. Midstream
    • 11.2.3. Upstream
  • 11.3. Power Generation
    • 11.3.1. Coal Fired
    • 11.3.2. Gas Fired
  • 11.4. Steel
    • 11.4.1. Blast Furnace
    • 11.4.2. Electric Arc Furnace

12. CCUS Absorption Market, by Plant Size

  • 12.1. Large Scale
  • 12.2. Small Scale

13. CCUS Absorption Market, by Project Phase

  • 13.1. Operational
  • 13.2. Planned
  • 13.3. Under Construction

14. CCUS Absorption Market, by Region

  • 14.1. Americas
    • 14.1.1. North America
    • 14.1.2. Latin America
  • 14.2. Europe, Middle East & Africa
    • 14.2.1. Europe
    • 14.2.2. Middle East
    • 14.2.3. Africa
  • 14.3. Asia-Pacific

15. CCUS Absorption Market, by Group

  • 15.1. ASEAN
  • 15.2. GCC
  • 15.3. European Union
  • 15.4. BRICS
  • 15.5. G7
  • 15.6. NATO

16. CCUS Absorption Market, by Country

  • 16.1. United States
  • 16.2. Canada
  • 16.3. Mexico
  • 16.4. Brazil
  • 16.5. United Kingdom
  • 16.6. Germany
  • 16.7. France
  • 16.8. Russia
  • 16.9. Italy
  • 16.10. Spain
  • 16.11. China
  • 16.12. India
  • 16.13. Japan
  • 16.14. Australia
  • 16.15. South Korea

17. Competitive Landscape

  • 17.1. Market Share Analysis, 2024
  • 17.2. FPNV Positioning Matrix, 2024
  • 17.3. Competitive Analysis
    • 17.3.1. Linde plc
    • 17.3.2. Air Liquide S.A.
    • 17.3.3. Mitsubishi Heavy Industries, Ltd.
    • 17.3.4. Honeywell UOP LLC
    • 17.3.5. Shell plc
    • 17.3.6. BASF SE
    • 17.3.7. Fluor Corporation
    • 17.3.8. Aker Solutions ASA
    • 17.3.9. Carbon Clean Solutions Limited
    • 17.3.10. Carbon Engineering Ltd
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제