![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1813216
¼¼°èÀÇ CCUS Èí¼ö ½ÃÀå ¿¹Ãø(-2032³â) : Èí¼ö ¸ÞÄ¿´ÏÁò, CO2 ¹èÃâ¿ø, Àü°³ ´Ü°è, °æÁ¦ °èÃþ, ȯ°æ ¿µÇâ, ±â¼ú À¯Çü, ¿ëµµ, ÃÖÁ¾»ç¿ëÀÚ, Áö¿ªº° ºÐ¼®CCUS Absorption Market Forecasts to 2032 - Global Analysis By Absorption Mechanism, CO2 Source, Deployment Stage, Economic Tier, Environmental Impact, Technology Type, Application, End User and By Geography |
Stratistics MRC¿¡ µû¸£¸é CCUS Èí¼ö ¼¼°è ½ÃÀåÀº 2025³â¿¡ 7¾ï 1,000¸¸ ´Þ·¯¸¦ Â÷ÁöÇϰí, ¿¹Ãø ±â°£ µ¿¾È CAGR 24.1%·Î ¼ºÀåÇÏ¿© 2032³â¿¡´Â 32¾ï 1,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ Àü¸ÁÀÔ´Ï´Ù.
ź¼Ò ȸ¼ö, ÀÌ¿ë, ÀúÀå(CCUS) Èí¼ö´Â »ê¾÷ ÀÌ»êÈź¼Ò(CO2) ¹èÃâÀ» ÁÙÀÌ´Â µ¥ ÀÖ¾î ¸Å¿ì Áß¿äÇÑ ´Ü°èÀÔ´Ï´Ù. ¹è±â°¡½º ¶Ç´Â »ê¾÷ ¹è±â°¡½º È帧¿¡¼ CO2¸¦ ¼±ÅÃÀûÀ¸·Î ÃßÃâÇϱâ À§ÇØ ÈÇÐÀû ¶Ç´Â ¹°¸®Àû ¿ë¸Å°¡ »ç¿ëµË´Ï´Ù. ÈÇÐÀû Èí¼ö¿¡¼´Â CO2¿Í ¾Æ¹Î°ú °°Àº ¿ë¸Å°¡ °áÇÕÇÏ¿© ÈÇÕ¹°À» Çü¼ºÇϰí, À̸¦ °¡¿ÇÏ¿© ³óÃàµÈ CO2¸¦ ¹æÃâÇÏ¿© »ç¿ë ¶Ç´Â ÀúÀåÇÕ´Ï´Ù. ¹°¸®Àû Èí¼ö´Â CO2°¡ °í¾ÐÀÇ ¾×ü¿¡ ¿ëÇØµÇ´Â ´É·Â¿¡ µû¶ó ´Þ¶óÁý´Ï´Ù. ȸ¼ö ÈÄ, CO2´Â ÁöÃþ ÀúÀåÀ» À§ÇØ À̵¿½ÃŰ°Å³ª ÈÇÐ ÇÕ¼º ¹× ¼®À¯È¸¼öÁõÁø µîÀÇ °øÁ¤¿¡ Ȱ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. ȼ®¿¬·á »ç¿ëÀ¸·Î ÀÎÇÑ È¯°æ ¿µÇâÀ» ÁÙÀ̰í Áö±¸ ±âÈÄ ¸ñÇ¥¸¦ ´Þ¼ºÇϱâ À§Çؼ´Â È¿À²ÀûÀΠź¼Ò Èí¼ö°¡ ÇʼöÀûÀÔ´Ï´Ù.
NITI AayogÀÇ 2023 CCUS Á¤Ã¥ ÇÁ·¹ÀÓ¿öÅ© º¸°í¼¿¡ µû¸£¸é, Àεµ´Â 400-500±â°¡ÅæÀÇ ´©Àû CO2 ÀúÀå ÀáÀç·ÂÀ» º¸À¯Çϰí ÀÖÀ¸¸ç, CCUS ±â¼ú(ƯÈ÷ Èí¼ö ±â¹Ý ½Ã½ºÅÛ)Àº ö°, ½Ã¸àÆ®, Á¤À¯¿Í °°ÀÌ Å»Åº¼Ò°¡ ¾î·Á¿î ºÎ¹®ÀÇ Å»Åº¼Ò¸¦ À§ÇØ ÇʼöÀûÀÔ´Ï´Ù.
Àü ¼¼°è ź¼Ò ¹èÃâ·® Áõ°¡
±Þ¼ÓÇÑ »ê¾÷È, µµ½ÃÈ, ȼ®¿¬·á¿¡ ´ëÇÑ ÀÇÁ¸À¸·Î ÀÎÇØ Àü ¼¼°è ź¼Ò ¹èÃâ·®Àº Àü·Ê ¾ø´Â ¼Óµµ·Î Áõ°¡Çϰí ÀÖ½À´Ï´Ù. Á¦Á¶, ¿î¼Û, ¹ßÀü¼Ò°¡ ¿Â½Ç°¡½ºÀÇ ÃàÀû¿¡ Å©°Ô ±â¿©Çϰí ÀÖ¾î ±âÈĺ¯È¿¡ ´ëÇÑ ¿ì·Á°¡ Ä¿Áö°í ÀÖ½À´Ï´Ù. ¹è±â°¡½º ¹× »ê¾÷ ¹è±â°¡½º È帧¿¡¼ CO2¸¦ Á÷Á¢ Èí¼öÇÏ´Â CCUS Èí¼ö ±â¼úÀº ÀÌ·¯ÇÑ ¹èÃâÀ» ÁÙÀÌ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº ´Ù·®ÀÇ Åº¼Ò°¡ ´ë±â ÁßÀ¸·Î À¯ÀԵǴ °ÍÀ» ¹æÁöÇÏ¿© ȯ°æÀû Áö¼Ó°¡´É¼º ¸ñÇ¥¸¦ Áö¿øÇÏ¸é¼ »ê¾÷ÀÌ °è¼Ó ¿î¿µµÉ ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù. ¶ÇÇÑ, ±âÈÄ º¯ÈÀÇ ¿µÇâ¿¡ ´ëÇÑ ÀνÄÀÌ ³ô¾ÆÁö°í ´õ ±ú²ýÇÑ »ê¾÷ °üÇà¿¡ ´ëÇÑ »çȸÀû ¾Ð·ÂÀÌ Áõ°¡ÇÔ¿¡ µû¶ó Àü ¼¼°èÀûÀ¸·Î Èí¼ö½Ä CCUS ¼Ö·ç¼ÇÀÇ Ã¤ÅÃÀÌ °¡¼Óȵǰí ÀÖ½À´Ï´Ù.
³ôÀº ¿îÀü ¹× ÀÚº» ºñ¿ë
ÀÎÇÁ¶ó ¹× ¼³Ä¡¿¡ ¸¹Àº ÀÚº» ÁöÃâÀÌ ÇÊ¿äÇÑ °ÍÀº CCUS Èí¼ö¸¦ äÅÃÇÏ´Â °ÍÀ» ¸·´Â ÁÖ¿ä À庮 Áß ÇϳªÀÔ´Ï´Ù. Èí¼ö½Ä ½Ã½ºÅÛÀº °íµµÀÇ ±â°è, ÈÇÐ ¿ë¸Å, º¸Á¶ ¼³ºñ°¡ ÇÊ¿äÇϸç, Áß¼Ò±â¾÷¿¡°Ô´Â ¸Å¿ì °í°¡ÀÇ ºñ¿ëÀÌ ¼Ò¿äµÉ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¿ëÁ¦ Àç»ýÀ» À§ÇÑ ¿¡³ÊÁö »ç¿ë°ú ½Ã½ºÅÛ À¯Áö°ü¸® µî ¿î¿µºñ¿ëÀÌ °æÁ¦Àû ºÎ´ãÀ» Áõ°¡½Ãŵ´Ï´Ù. ºñ¿ë È¿À²¼ºÀº ¿¡³ÊÁö °¡°ÝÀÇ º¯µ¿¿¡ µû¶ó ¿µÇâÀ» ¹Þ½À´Ï´Ù. ¶ÇÇÑ, ƯÈ÷ ÀÚ±Ý Áö¿øÀ̳ª Àμ¾Æ¼ºê°¡ °ÅÀÇ ¾ø´Â Áö¿ª¿¡¼´Â Ãʱ⠺ñ¿ë°ú Áö¼Ó ºñ¿ëÀÌ ³ô±â ¶§¹®¿¡ µµÀÔÀÌ ´Ê¾îÁö°í ÀÖ½À´Ï´Ù. »ê¾÷°è´Â ºñ¿ë°ú ȯ°æÀû ÀÌÁ¡À» Àú¿ïÁúÇÏ´Â °æ¿ì°¡ ¸¹À¸¸ç, °æÁ¦Àû Áö¿øÀÌ ¾ø´Â °æ¿ì ´ë±Ô¸ð µµÀÔÀÌ ¿¬±âµÇ°Å³ª Á¦ÇÑµÉ ¼ö ÀÖ½À´Ï´Ù.
Àü ¼¼°èÀûÀ¸·Î ³ô¾ÆÁö´Â ź¼Ò Á߸³¿¡ ´ëÇÑ °ü½É
°¢±¹ÀÌ ³ÝÁ¦·Î ¸ñÇ¥¿Í ´õ ¾ö°ÝÇÑ Åº¼Ò °¨Ãà ¸ñÇ¥¸¦ ´Þ¼ºÇϱâ À§ÇØ ³ë·ÂÇÏ´Â °¡¿îµ¥, CCUS Èí¼ö ±â¼ú¿¡´Â Å« ±âȸ°¡ ÀÖ½À´Ï´Ù. Àü ¼¼°è »ê¾÷°è°¡ Żź¼Òȸ¦ ÃßÁøÇÏ¸é¼ È¿°úÀûÀΠź¼Ò ȸ¼ö ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ȯ°æ ¸ñÇ¥¸¦ ´Þ¼ºÇϱâ À§ÇØ ÈÇÐ, ö°, ½Ã¸àÆ®, ¹ßÀü »ê¾÷Àº È®Àå °¡´ÉÇÑ Èí¼ö½Ä ½Ã½ºÅÛÀ» Àû±ØÀûÀ¸·Î ã°í ÀÖ½À´Ï´Ù. CCUS¿¡ ÅõÀÚÇÏ´Â ±â¾÷Àº ±ÔÁ¦¸¦ ÃæÁ·½Ãų »Ó¸¸ ¾Æ´Ï¶ó ½ÃÀå¿¡¼ÀÇ ÁöÀ§¸¦ Çâ»ó½Ã۰í, ȯ°æ Ä£ÈÀûÀÎ ÅõÀÚÀÚ¸¦ À¯Ä¡ÇÏ¿© °æÀï·ÂÀ» È®º¸ÇÒ ¼ö ÀÖ½À´Ï´Ù. ±âÈĺ¯È¿¡ ´ëÀÀÇϰí Áö¼Ó°¡´É¼ºÀ» Ãß±¸ÇÏ´Â Àü ¼¼°èÀûÀÎ ¿òÁ÷ÀÓÀº Èí¼ö½Ä ±â¼ú¿¡ Àå±âÀûÀÎ ¼ºÀåÀÇ ±æÀ» ¿¾îÁÖ°í ÀÖ½À´Ï´Ù.
¿¡³ÊÁö Áý¾àÀû Ȱµ¿°ú È¿À²¼º ¹®Á¦
¿¡³ÊÁö Áý¾àÇü Èí¼ö½Ä CCUS ½Ã½ºÅÛÀº ¿îÀü, ¿ëÁ¦ Àç»ý, CO2 ¾ÐÃà¿¡ ¸¹Àº Àü·ÂÀ» ÇÊ¿ä·Î ÇÕ´Ï´Ù. ¿¡³ÊÁö°¡ ȼ® ¿¬·á¿¡¼ ºñ·ÔµÈ °æ¿ì, ÀÌ·¯ÇÑ ¿¡³ÊÁö ¼ö¿äÀÇ Áõ°¡´Â ȯ°æÀû ÀÌÁ¡À» ºÎºÐÀûÀ¸·Î »ó¼âÇÏ°í ¿î¿µ ºñ¿ë°ú Àüü Ç÷£Æ® È¿À²À» Áõ°¡½Ãų ¼ö ÀÖ½À´Ï´Ù. ÀÌ ¿¡³ÊÁö °µµ´Â Àü±â·á°¡ ºñ½Î°Å³ª Àç»ý¿¡³ÊÁö¿¡ ´ëÇÑ Á¢±Ù¼ºÀÌ °ÅÀÇ ¾ø´Â Áö¿ª¿¡¼´Â Å« Àå¾Ö¹°ÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù. »ê¾÷°è´Â ź¼Ò ¹èÃâ °¨¼Ò¸¦ À§ÇØ Ã¤ÅÃÀ» Æ÷±âÇϰųª ´Ù¸¥ Á¢±Ù ¹æ½ÄÀ» ¼±È£ÇÒ ¼öµµ ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¿¡³ÊÁö È¿À²ÀÌ ³ôÀº Èí¼ö °øÁ¤°ú Àç»ý¿¡³ÊÁö¿ÍÀÇ ÅëÇÕÀÌ ÁøÇàµÇÁö ¾Ê´Â ÇÑ, ÀÌ·¯ÇÑ ¿î¿µ»óÀÇ ¹®Á¦´Â ´ë±Ô¸ð ½ÃÀå È®´ë¿¡ ´ëÇÑ Áö¼ÓÀûÀÎ À§ÇùÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù.
COVID-19 ÆÒµ¥¹ÍÀº CCUS Èí¼ö ½ÃÀå¿¡ »ó¹ÝµÈ ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. ÇÑÆíÀ¸·Î´Â Àü ¼¼°èÀûÀÎ °¡µ¿ Áߴܰú »ê¾÷ Ȱµ¿ °¨¼Ò·Î ÀÎÇÑ ÀϽÃÀûÀÎ CO2 ¹èÃâ·® °¨¼Ò·Î ÀÎÇØ »õ·Î¿î ź¼Ò ȸ¼ö ÇÁ·ÎÁ§Æ®¿¡ ´ëÇÑ ¼ö¿ä°¡ Áï°¢ÀûÀ¸·Î µÐȵǾú½À´Ï´Ù. ¶ÇÇÑ, Àη ºÎÁ·, °ø±Þ¸Á È¥¶õ, °Ç¼³ ¹× ¼³ºñ ³³Ç° Áö¿¬ µîÀÌ °èȹ ÁßÀ̰ųª ÁøÇà ÁßÀÎ CCUS ¼³Ä¡¿¡ °É¸²µ¹ÀÌ µÇ°í ÀÖ½À´Ï´Ù. ±×·¯³ª ÆÒµ¥¹ÍÀ¸·Î ÀÎÇØ Á¤ºÎ¿Í ±â¾÷µéÀº Àúź¼Ò ±â¼ú°ú ³ì»ö º¹±¸ ÇÁ·Î±×·¥À» ¿ì¼±¼øÀ§¿¡ µÎ°Ô µÇ¾ú°í, Èí¼ö½Ä CCUS´Â Àå±âÀûÀ¸·Î ¼ºÀåÇÒ ¼ö ÀÖ¾ú½À´Ï´Ù. Àü¹ÝÀûÀ¸·Î ´Ü±âÀûÀÎ ½ÃÀå Ȱµ¿Àº µÐȵǾúÁö¸¸, ÆÒµ¥¹ÍÀº Áö¼Ó°¡´É¼º°ú ±âÈÄ º¯È ¸ñÇ¥¸¦ ´Þ¼ºÇϱâ À§ÇØ Åº¼Ò ȸ¼ö°¡ ¾ó¸¶³ª Àü·«ÀûÀ¸·Î Áß¿äÇÑÁö ÀçÈ®ÀνÃÄÑÁÖ¾ú½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È »ó¾÷¿ë ¿î¿µ ºÎ¹®ÀÌ °¡Àå Å« ºñÁßÀ» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
ÈÇÐ Á¦Á¶, ½Ã¸àÆ®, ö°, ¹ßÀü µî ´Ù¾çÇÑ ºÐ¾ß¿¡¼ ´ë±Ô¸ðÀÇ ¿ÏÀüÇÑ ±â´ÉÀ» °®Ãá ź¼Ò ȸ¼ö ½Ã¼³ÀÌ ¼³Ä¡µÊ¿¡ µû¶ó ¿¹Ãø ±â°£ µ¿¾È »ó¾÷¿ë »ç¾÷ ºÎ¹®ÀÌ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ ÇÁ·ÎÁ§Æ®µéÀº ´ë·®ÀÇ CO2¸¦ Èí¼öÇÒ ¼ö ÀÖ´Â °ËÁõµÈ ±â¼úÀ» ¼±º¸ÀÌ´Â °ÍÀ¸·Î, ȯ°æ°ú °æÁ¦¿¡ µµ¿òÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù. ´ë±Ô¸ð Èí¼ö ÇÁ·ÎÁ§Æ®´Â Á¤ºÎ Àμ¾Æ¼ºê, ±ÔÁ¦ Áؼö ¿ä°Ç, ±â¾÷ÀÇ Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ ¾à¼Ó µî ÀÌ ºÎ¹®ÀÇ ÀåÁ¡À¸·Î ÀÎÇØ ÀçÁ¤ÀûÀ¸·Î ½ÇÇö °¡´ÉÇÑ ÇÁ·ÎÁ§Æ®ÀÔ´Ï´Ù. ¶ÇÇÑ, ¿ë¸Å ±â¼ú, °øÁ¤ È¿À²¼º, CO2 Ȱ¿ë°úÀÇ ÅëÇÕÀÇ Áö¼ÓÀûÀÎ ¹ßÀüÀ¸·Î CCUS Èí¼ö ȯ°æ¿¡¼ÀÇ »ó¾÷Àû »ç¾÷ È®´ë¿Í Áö¹è·ÂÀº ´õ¿í °ÈµÉ °ÍÀÔ´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµÇ´Â ºÐ¾ß´Â ½Ã¸àÆ® ¹× °Ç¼³ ºÐ¾ßÀÔ´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ½Ã¸àÆ® ¹× °Ç¼³ ºÐ¾ß°¡ °¡Àå ³ôÀº ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ½Ã¸àÆ® Á¦Á¶¿¡ ÇʼöÀûÀÎ ¼ººÐÀΠŬ¸µÄ¿ÀÇ ¿¡³ÊÁö Áý¾àÀûÀÎ »ý»êÀ¸·Î ÀÎÇØ ÀÌ »ê¾÷ÀÇ Åº¼Ò ¹èÃâ·®ÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ƯÈ÷ ³²¹Ý±¸¿¡¼ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó Áö¼Ó°¡´ÉÇÑ ¼Ö·ç¼ÇÀÇ Çʿ伺ÀÌ ½Ã±ÞÈ÷ ´ëµÎµÇ°í ÀÖ½À´Ï´Ù. »õ·Î¿î Çõ½ÅÀ¸·Î´Â ´ëü¿¬·á, AI¸¦ ÅëÇÑ »ý»ê ÃÖÀûÈ, Àúź¼Ò ÄÜÅ©¸®Æ® µîÀÌ ÀÖ½À´Ï´Ù. CCUS ±â¼úÀº ³ôÀº ºñ¿ë¿¡µµ ºÒ±¸ÇÏ°í ¹Î°£ ÁÖµµ ¹× ±ÔÁ¦Àû ÇÁ·¹ÀÓ¿öÅ©ÀÇ µµ¿òÀ¸·Î º¸±ÞµÇ°í ÀÖ½À´Ï´Ù. ³ë¸£¿þÀÌ ÇÏÀ̵¨º£¸£±×ÀÇ CCS ½Ã¼³°ú °°Àº ³ë·ÂÀº ¾÷°èÀÇ Å»Åº¼Òȸ¦ À§ÇÑ ³ë·ÂÀ» ÀÔÁõÇϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì°¡ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ Áö¿ªÀº ƯÈ÷ Á¦Á¶¾÷, ¹ßÀü¾÷, ¼®À¯ ¹× °¡½º »ê¾÷ µî CO2¸¦ ´Ù·® ¹èÃâÇÏ´Â »ê¾÷ ±â¹ÝÀÌ ÅºÅºÇÑ °ÍÀÌ ÀÌ·¯ÇÑ ¿ìÀ§¸¦ µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù. CCUS ±â¼ú°ú °ü·ÃÇÏ¿© 35³â ÀÌ»óÀÇ °æÇèÀ» °¡Áø ¹Ì±¹Àº ƯÈ÷ ÃÖ÷´Ü ±â¼úÀ» ¼±µµÇØ ¿Ô½À´Ï´Ù. CCUS ¼Ö·ç¼ÇÀÇ Ã¤ÅÃÀº 45Q ¼¼¾× °øÁ¦ µî Á¤ºÎ ÇÁ·Î±×·¥¿¡ ÀÇÇØ ´õ¿í ÃËÁøµÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ Honeywell, Fluor, ExxonMobil°ú °°Àº ´ë±â¾÷µéµµ ÀÌ ºÐ¾ß¿¡¼ CCUS ±â¼ú ¹ßÀü¿¡ Àû±Ø ³ª¼°í ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀÌ °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Áß±¹, Àεµ µî ¼¼°è CO2 ¹èÃâ·® »óÀ§±Ç ±¹°¡µéÀÇ ±Þ¼ÓÇÑ »ê¾÷Ȱ¡ ÀÌ·¯ÇÑ ¼ºÀåÀÇ ÁÖ¿ä ¿øµ¿·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù. ƯÈ÷ Áß±¹Àº 2060³â±îÁö ź¼Ò Á߸³À» ´Þ¼ºÇÏ°Ú´Ù°í ¼±¾ðÇÑ ¹Ù ÀÖ¾î CCUS ±â¼úÀ» Ȱ¿ëÇÑ ´ë±Ô¸ð ¹èÃâ·® °¨ÃàÀÌ ¿ä±¸µÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, APACÀº Áö¼Ó°¡´ÉÇÑ ¿¡³ÊÁö ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡, CCUS ÀÎÇÁ¶ó¿¡ ´ëÇÑ ÅõÀÚ, Á¤ºÎÀÇ Àå·Á Á¤Ã¥À¸·Î ÀÎÇØ ¼¼°è CCUS Èí¼ö·® ½ÃÀåÀÇ ÁÖ¿ä ±â¾÷À¸·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.
According to Stratistics MRC, the Global CCUS Absorption Market is accounted for $0.71 billion in 2025 and is expected to reach $3.21 billion by 2032 growing at a CAGR of 24.1% during the forecast period. Carbon Capture, Utilization, and Storage (CCUS) Absorption is a crucial step in reducing emissions of industrial carbon dioxide (CO2). In order to selectively extract CO2 from flue gases or industrial exhaust streams, chemical or physical solvents are used. In chemical absorption, CO2 and solvents like amines combine to form a compound that can be heated to release concentrated CO2 for use or storage. Physical absorption depends on CO2's ability to dissolve in high-pressure liquids. Following capture, the CO2 can be moved for geological formation storage or utilized for processes like chemical synthesis or enhanced oil recovery. Reducing the environmental impact of using fossil fuels and promoting global climate goals depend on efficient absorption.
According to the NITI Aayog's 2023 CCUS Policy Framework Report, India has a cumulative CO2 storage potential of 400-500 gigatonnes, and CCUS technologies-particularly absorption-based systems-are critical for decarbonizing hard-to-abate sectors like steel, cement, and refining.
Increasing carbon emissions worldwide
Global carbon emissions have increased at an unprecedented rate due to rapid industrialization, urbanization, and reliance on fossil fuels. Concerns about climate change are heightened by the significant contributions of manufacturing, transportation, and power plants to the buildup of greenhouse gases. By directly absorbing CO2 from flue gases or industrial exhaust streams, CCUS absorption technologies are essential in reducing these emissions. These systems enable industries to continue operating while supporting environmental sustainability goals by keeping significant amounts of carbon from entering the atmosphere. Additionally, global adoption of absorption-based CCUS solutions is accelerating due to growing awareness of the effects of climate change and social pressure for cleaner industrial practices.
High operating and capital expenses
The significant capital expenditure needed for infrastructure and installation is one of the main barriers to the adoption of CCUS absorption. Advanced machinery, chemical solvents, and auxiliary facilities are required for absorption-based systems, and these can be prohibitively expensive for small and medium-sized businesses. The financial burden is further increased by operational expenses, such as energy use for solvent regeneration and system upkeep. Cost-effectiveness is also impacted by changes in energy prices. Furthermore, adoption is slowed down by high initial and continuing costs, particularly in areas with little financial assistance or incentives. Cost and environmental benefits are frequently weighed by industries, and large-scale deployment may be postponed or limited in the absence of economic support.
Increasing attention to carbon neutrality worldwide
There is a huge opportunity for CCUS absorption technologies as nations commit to net-zero targets and more stringent carbon reduction goals. There is a growing need for effective carbon capture solutions as industries worldwide are being pressured to decarbonize their operations. To meet environmental goals, the chemical, steel, cement, and power generation industries are actively looking for scalable absorption-based systems. In addition to meeting regulations, businesses that invest in CCUS can improve their market standing, draw in eco-aware investors, and gain a competitive edge. The global push for climate commitments and sustainability offers absorption technologies a long-term growth path.
Energy-intensive activities and issues with efficiency
Energy-intensive absorption-based CCUS systems need a lot of power to operate, regenerate solvents, and compress CO2. If the energy is derived from fossil fuels, this increased energy demand may partially offset environmental benefits and increase operating costs and overall plant efficiency. This energy intensity is a significant obstacle in areas with expensive electricity or little access to renewable energy. Industries might put off adoption or favor different approaches to reducing carbon emissions. Moreover, this operational challenge continues to be a persistent threat to large-scale market expansion in the absence of advancements in energy-efficient absorption processes or integration with renewable energy.
There were conflicting effects of the COVID-19 pandemic on the market for CCUS absorption. On the one hand, the demand for new carbon capture projects was slowed immediately by the temporary drop in CO2 emissions caused by worldwide lockdowns and decreased industrial activity. Further impeding planned and ongoing CCUS installations were labor shortages, supply chain disruptions, and delays in construction and equipment delivery. However, the pandemic forced governments and businesses to prioritize low-carbon technologies and green recovery programs, which allowed absorption-based CCUS to grow over the long run. Overall, even though short-term market activity slowed, the pandemic reaffirmed how strategically important carbon capture is to reaching sustainability and climate goals.
The commercial operations segment is expected to be the largest during the forecast period
The commercial operations segment is expected to account for the largest market share during the forecast period, driven by the installation of large-scale, fully functional carbon capture facilities in a variety of sectors, such as chemical manufacturing, cement, steel, and power generation. These projects show off tested technologies that can absorb large amounts of CO2, which has advantages for the environment and the economy. Large-scale absorption projects are made financially feasible by the segment's advantages, which include government incentives, regulatory compliance requirements, and corporate sustainability commitments. Moreover, the expansion and domination of commercial operations in the CCUS absorption landscape are further enhanced by ongoing advancements in solvent technology, process efficiency, and integration with CO2 utilization.
The cement & construction segment is expected to have the highest CAGR during the forecast period
Over the forecast period, the cement & construction segment is predicted to witness the highest growth rate. The energy-intensive production of clinker, an essential ingredient in the making of cement, is the cause of this industry's high carbon emissions. The need for sustainable solutions has grown urgently due to rising demand, especially in the Global South. Emerging innovations include alternative fuels, AI-driven production optimization, and low-carbon concrete. With the help of private initiatives and regulatory frameworks, CCUS technologies are gaining traction despite their high costs. The industry's dedication to decarbonization is demonstrated by initiatives such as Heidelberg's CCS facility in Norway.
During the forecast period, the North America region is expected to hold the largest market share. The region's strong industrial base, especially in the manufacturing, power generation, and oil and gas industries-all of which are major CO2 emitters-is what propels this dominance. With more than 35 years of experience with CCUS technologies, the US has been at the forefront in particular. Adoption of CCUS solutions has been further encouraged by government programs like the 45Q tax credits. Moreover, major corporations like Honeywell, Fluor, and ExxonMobil are also actively working to advance CCUS technologies in the area.
Over the forecast period, the Asia Pacific region is anticipated to exhibit the highest CAGR. Rapid industrialization in nations like China and India, which rank among the top emitters of CO2 worldwide, is the main driver of this growth. China, in particular, has pledged to become carbon neutral by 2060, which calls for large-scale emission reductions using CCUS technologies. Additionally, APAC is positioned as a major player in the global CCUS absorption market due to the region's growing need for sustainable energy solutions, as well as investments in CCUS infrastructure and encouraging government policies.
Key players in the market
Some of the key players in CCUS Absorption Market include Aker Solutions, Fluor Corporation, Mitsubishi Heavy Industries, Shell, Linde plc, Honeywell UOP, ExxonMobil Corporation, Chevron, Schlumberger (SLB), BASF SE, Equinor ASA, TotalEnergies SE, JGC Holdings Corporation, Siemens AG, Hitachi Ltd. and TechnipFMC.
In August 2025, Fluor and JGC win FEED contract for LNG Canada expansion. A joint venture between US-based Fluor Corporation and Japan's JGC Holdings Corporation has been awarded the Front-End Engineering and Design (FEED) contract for the proposed Phase 2 expansion of the LNG Canada facility, in Kitimat, British Columbia (Canada). The duo, which secured the EPC contract for Phase 1 in 2018, will now update the FEED to support further development.
In June 2025, Cognizant and Aker Solutions have extended their long-lasting partnership, which began in 2016, with a new multi-year agreement. Using the Cognizant Neuro(R) platform, designed to boost generative AI adoption with flexibility, security, scalability, and responsibility, this agreement aims to transform Aker Solutions' IT service delivery, making it more agile and efficient for the evolving energy sector.
In February 2025, Mitsubishi Heavy Industries, Ltd. (MHI) has concluded a Positive Impact Finance agreement with Meiji Yasuda Life Insurance Company. MHI Group, in response to the growing need to address the global challenge of climate change, in 2020, identified five material issues, including Provide energy solutions to enable a carbon neutral world and Transform society through AI and digitalization, as priority measures to contribute to solving societal issues and ensuring continued growth over the medium to long term.