시장보고서
상품코드
1870716

5G IoT 시장 : 업계별, 접속 기술별, 용도별, 컴포넌트별, 네트워크 아키텍처별, 도입 형태별 - 세계 예측(2025-2032년)

5G IoT Market by Industry Vertical, Connectivity Technology, Application, Component, Network Architecture, Deployment Type - Global Forecast 2025-2032

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 197 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

5G IoT 시장은 2032년까지 CAGR 25.29%로 934억 달러 규모로 성장할 것으로 예측되고 있습니다.

주요 시장 통계
기준연도 2024 153억 7,000만 달러
추정연도 2025 192억 3,000만 달러
예측연도 2032 934억 달러
CAGR(%) 25.29%

기술, 규제, 운영 측면의 통합이 진행되고 연결성의 가치 제안을 재정의하면서 기업용 5G IoT 도입을 위한 기반이 마련되고 있습니다.

본고에서는 5G 기반 IoT가 실험적 도입 단계에서 산업, 상업, 소비자 영역의 디지털 전환의 핵심 동력으로 전환된 배경에 대해 설명합니다. 무선 기술, 주파수 정책, 엣지 컴퓨팅 프레임워크의 발전과 성숙한 디바이스 생태계가 결합되어 대중적인 연결이 기술적으로 실현 가능하고 운영 측면에서 매력적으로 다가오고 있습니다. 기업은 연결성을 단순한 고속 통신이 아닌 예측 가능한 지연, 고밀도 디바이스 지원, 차별화된 서비스 수준을 제공하는 플랫폼으로 인식하는 경향이 강해지고 있습니다.

독립형 아키텍처, 엣지 퍼스트 컴퓨팅, 반도체 기술 혁신, 성과 중심의 상업적 모델이 5G IoT의 경제성과 도입 동향을 어떻게 재구성하고 있는가?

5G IoT 환경의 혁신적 변화는 기술의 성숙, 진화하는 상업적 모델, 변화하는 기업의 기대치가 결합되어 추진되고 있습니다. 첫째, 독립형 5G 아키텍처의 단계적 보급과 프라이빗 네트워크의 확장으로 기존 셀룰러 IoT에서는 실현 불가능했던 확정적인 서비스 특성을 실현할 수 있게 되었습니다. 이러한 진화는 초저지연 통신과 정밀한 트래픽 세분화를 요구하는 이용 사례를 지원하고, 산업 SLA를 충족하도록 설계된 새로운 캐리어 및 중립 호스트용 서비스를 만들어내고 있습니다.

2025년 증가하는 무역 장벽과 관세 중심공급망 재편이 5G IoT 도입에 있으며, 조달, 설계 내결함성, 상업적 선택을 어떻게 재구성할 것인지 평가

무역과 관세를 둘러싼 상황은 5G IoT 솔루션을 배포하는 조직에 구체적인 운영상의 고려 사항을 야기하고 있으며, 2025년 관세 조치로 인한 누적된 영향은 장기적인 공급망 재편을 더욱 가속화할 것입니다. 반도체, 모듈, 완제품에 대한 관세 인상은 주요 하드웨어 부품의 착륙 비용을 상승시키고, 조달팀이 조달 전략과 재고 완충 방법을 재평가하도록 유도할 것입니다. 이러한 비용 압박은 공급업체 다변화를 가속화하고, 대체 제조업체의 인증을 촉진하며, 경우에 따라서는 관세 변동과 운송 위험에 대한 노출을 줄이기 위해 수직적 통합과 니어쇼어링을 장려하는 경향이 있습니다.

산업 부문, 연결 모드, 용도 요구사항, 구성 요소의 역할, 도입 모델을 실행 가능한 전략적 우선순위에 매핑하는 다차원적 세분화에 기반한 인사이트

세분화 분석을 통해 산업 분야 및 활용 상황별로 다른 수요 요인과 기술 우선순위를 파악하여 제품 개발, 시장 출시 및 통합을 위한 개별 전략을 수립할 수 있습니다. 산업별 세분화에서는 농업, 자동차, CE(Consumer Electronics), 에너지, 유틸리티, 의료, 제조, 소매 등 각 부문이 뚜렷한 성능 기준을 제시하고 있음을 알 수 있습니다. 농업 분야는 저전력 범위와 장비의 견고성이 최우선이며, 자동차는 엄격한 지연 성능과 안전 인증이 최우선입니다. 필수 가전제품은 비용, 폼팩터, 상호운용성에 중점을 둡니다. 에너지 및 유틸리티 사업은 신뢰성과 수명주기 지원을 중요시합니다. 의료는 프라이버시와 규제 준수가 필요합니다. 제조업은 자동화를 위한 결정론적 연결성을 요구합니다. 소매업은 매장내 분석과 재고 가시화에 집중합니다.

5G IoT 아키텍처 선택, 시장 출시 전략, 파트너 생태계에 실질적인 영향, 규제 초점, 인프라 성숙도, 기업 우선순위의 지역적 차이

지역별로 기술 선택과 상업적 모델 모두에 영향을 미치며, 각 지역마다 고유한 규제 프레임워크, 인프라 성숙도, 기업 우선순위를 가지고 있습니다. 북미와 남미에서는 통신사 주도의 프라이빗 네트워크 파일럿, 기업내 클라우드 배포의 진전, 공급망 내성에 대한 집중도가 솔루션 아키텍처와 조달 주기에 영향을 미칠 것으로 예측됩니다. 이 지역 수요는 기존 기업 IT 스택과의 통합성, 강력한 분석 능력, 지역적 보안 요건 준수를 중시하는 경향이 있습니다.

인프라 공급업체, 칩셋 설계자, 클라우드 엣지 플랫폼, 통합업체, 전문 혁신가들 간의 경쟁과 파트너십 모델은 도입 속도와 통합 위험을 결정

5G IoT경쟁 구도는 기존 인프라 프로바이더, 칩셋 및 모듈 제조업체, 클라우드 엣지 플랫폼 공급업체, 시스템 통합사업자, 전문 스타트업으로 구성되어 있으며, 각 업체는 엔드 투 엔드 솔루션 제공에 있으며, 상호 보완적인 역할을 담당하고 있습니다. 역할을 담당하고 있습니다. 인프라 프로바이더들은 프라이빗 네트워킹, 네트워크 슬라이싱, 매니지드 커넥티비티를 지원하는 기능에 지속적으로 투자하고 있으며, 이러한 서비스를 산업별 오케스트레이션 계층과 결합하여 제공하는 경우가 많습니다. 칩셋 및 모듈 공급업체들은 디바이스 제조업체 시장 출시 기간을 단축하기 위해 전력 효율, 집적도, 검증된 레퍼런스 디자인을 제공하는 것을 우선시하고 있습니다.

경영진이 파일럿 도입을 가속화하고, 공급망을 강화하고, 보안을 통합하고, 파트너 인센티브를 조정하여 측정 가능한 5G IoT의 가치를 신속하게 실현할 수 있도록 하는 실질적이고 영향력 있는 단계

업계 리더를 위한 구체적인 제안은 기술 선택과 측정 가능한 비즈니스 결과의 일치, 파일럿에서 프로덕션으로의 전환 가속화, 강력한 공급망 구축에 초점을 맞추었습니다. 명확한 운영 KPI와 정량화할 수 있는 가치를 지닌 이용 사례를 우선시하고, 검증된 하드웨어 및 소프트웨어 스택과 오픈 API를 활용하여 통합 복잡성을 최소화하는 레퍼런스 구현을 설계하는 것부터 시작합니다. 모듈형 제품 아키텍처에 대한 투자를 통해 공급 중단이나 새로운 표준에 대응할 때 전면적인 재설계 없이도 컴포넌트를 신속하게 교체할 수 있습니다.

전략적 인사이트와 권고안을 검증하기 위해 경영진 인터뷰, 사례 분석, 표준 검토, 시나리오 스트레스 테스트를 결합한 엄격하게 혼합된 조사 접근 방식을 채택

이 조사방법은 정성적, 정량적 기법을 통합하여 여러 데이터 소스와 이해관계자의 관점에서 조사결과를 지원합니다. 1차 조사에서는 기업 부문, 네트워크 사업자, 장비 벤더, 시스템 통합사업자 경영진을 대상으로 구조화된 인터뷰를 실시하여 도입 우선순위, 기술적 제약, 상업적 동향에 대한 직접적인 정보를 수집합니다. 이러한 대화는 대표적인 도입 사례의 구현 패턴, 통합 과제, 운영 성과를 검증하는 사례 연구 분석을 통해 보완됩니다.

전략적 통합은 기술적 성숙도, 체계적인 배포, 강력한 공급망 설계가 5G IoT 구상을 성공적으로 확장하는 데 결정적인 요소임을 강조

결론적으로 이 보고서의 핵심 주제인 기술적 성숙도, 진화하는 상업적 모델, 변화하는 공급망 고려사항이 결합되어 규율과 명확한 목적의식을 가지고 행동하는 조직에게 기회가 창출되고 있음을 통합적으로 보여줍니다. 독립형 아키텍처, 엣지 퍼스트 용도 모델, 모듈형 하드웨어 접근 방식은 새로운 유형의 미션 크리티컬하고 고부가가치 IoT 이용 사례를 가능하게 하지만, 그 가치를 실현하기 위해서는 현실적인 엔지니어링 선택, 보안 우선 설계, 성과 중심의 벤더가 필요합니다. 보안을 최우선으로 하는 설계, 성과 중심의 벤더가 필수적입니다. 무역 정책 동향과 관세 압력으로 인해, 도입 일정과 이익률 전제를 유지하기 위해서는 조달의 탄력성과 공급업체 다변화가 더욱 중요해졌습니다.

목차

제1장 서문

제2장 조사 방법

제3장 개요

제4장 시장 개요

제5장 시장 인사이트

제6장 미국 관세의 누적 영향 2025

제7장 AI의 누적 영향 2025

제8장 5G IoT 시장 : 업계별

  • 농업
  • 자동차
  • 가전제품
  • 에너지·유틸리티
  • 헬스케어
  • 제조업
  • 소매

제9장 5G IoT 시장 : 커넥티비티 테크놀러지별

  • 강화형 모바일 브로드밴드
  • 대규모 기계 유형 통신
  • 초고신뢰·저지연 통신

제10장 5G IoT 시장 : 용도별

  • 자산 추적
  • 증강현실(AR)과 가상현실(VR)
  • 자율주행차
  • 스마트 농업
  • 스마트 그리드
  • 스마트홈
  • 스마트 제조
  • 원격의료

제11장 5G IoT 시장 : 컴포넌트별

  • 하드웨어
    • 칩셋
    • 모듈
    • 센서
  • 서비스
    • 매니지드 서비스
    • 전문 서비스
  • 소프트웨어
    • 애널리틱스 소프트웨어
    • 관리 소프트웨어
    • 보안 소프트웨어

제12장 5G IoT 시장 : 네트워크 아키텍처별

  • 비스탠드얼론
  • 스탠드얼론

제13장 5G IoT 시장 : 배포 유형별

  • 프라이빗 네트워크
  • 퍼블릭 네트워크

제14장 5G IoT 시장 : 지역별

  • 아메리카
    • 북미
    • 라틴아메리카
  • 유럽, 중동 및 아프리카
    • 유럽
    • 중동
    • 아프리카
  • 아시아태평양

제15장 5G IoT 시장 : 그룹별

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

제16장 5G IoT 시장 : 국가별

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 중국
  • 인도
  • 일본
  • 호주
  • 한국

제17장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • Quectel Wireless Solutions Co., Ltd.
    • Fibocom Wireless Inc.
    • Sierra Wireless, Inc.
    • Thales S.A.
    • Telit Communications PLC
    • u-blox Holding AG
    • Qualcomm Incorporated
    • Huawei Technologies Co., Ltd.
    • Telefonaktiebolaget LM Ericsson
    • Nokia Corporation
KSA

The 5G IoT Market is projected to grow by USD 93.40 billion at a CAGR of 25.29% by 2032.

KEY MARKET STATISTICS
Base Year [2024] USD 15.37 billion
Estimated Year [2025] USD 19.23 billion
Forecast Year [2032] USD 93.40 billion
CAGR (%) 25.29%

Setting the stage for enterprise-grade 5G IoT adoption with converging technology, regulatory, and operational forces that redefine connectivity value propositions

The introduction sets the context for why 5G-enabled IoT has shifted from experimental deployments to a core enabler of digital transformation across industrial, commercial, and consumer domains. Advances in radio technologies, spectrum policy, and edge compute frameworks have combined with maturing device ecosystems to make pervasive connectivity both technically feasible and operationally compelling. Enterprises increasingly view connectivity as a platform that must deliver predictable latency, higher device density, and differentiated service levels rather than merely higher peak speeds.

In parallel, software-defined networking, containerized edge applications, and a more modular hardware supply chain have reduced integration timelines and increased the pace at which pilots can evolve to production. Regulatory attention to security and data sovereignty has intensified, driving new approaches to architecture design and vendor selection. Meanwhile, sustainability and energy efficiency have moved from being secondary concerns to primary considerations for procurement teams, influencing choices around device lifecycles and network architectures.

This report frames these developments to help executives understand where value is being created in the 5G IoT stack, which adoption patterns are gaining traction, and how competitive dynamics are evolving. By synthesizing technology inflections with operational realities, the introduction clarifies the strategic imperatives that will inform investment priorities in the near to medium term.

How standalone architectures, edge-first computing, semiconductor innovation, and outcome-focused commercial models are reshaping 5G IoT economics and adoption dynamics

Transformative shifts in the 5G IoT landscape are being driven by a confluence of technological maturation, evolving commercial models, and changing enterprise expectations. First, the gradual normalization of standalone 5G architectures and the proliferation of private networks are enabling deterministic service characteristics that were previously unattainable in cellular IoT. This evolution supports use cases that demand ultra-reliable low-latency communications and precise traffic segmentation, resulting in new carrier and neutral-host offerings designed to meet industrial SLAs.

Second, edge computing and distributed cloud models are redefining application placement, enabling data processing closer to endpoints and reducing both latency and core network load. As a result, application developers and systems integrators are rethinking data pipelines, embedding analytics and AI models at the edge to deliver contextualized insights in real time. Third, the semiconductor pathway is adapting: heterogeneous compute, purpose-built accelerators, and power-optimized chiplets are enabling battery-efficient devices and higher throughput gateways without proportional increases in form factor or cost.

Finally, commercial dynamics are shifting. Partnerships between network operators, cloud providers, equipment vendors, and enterprise integrators are increasingly outcomes-focused, tying commercial terms to deployment milestones and operational performance. These shifts collectively transform how value is created and captured across the ecosystem, compelling incumbents and new entrants alike to reexamine business models, go-to-market strategies, and product roadmaps.

Assessing how elevated trade barriers and tariff-driven supply chain realignment in 2025 reshape procurement, design resilience, and commercial choices across 5G IoT deployments

The policy landscape around trade and tariffs has created tangible operational considerations for organizations deploying 5G IoT solutions, and the cumulative effects attributed to tariff actions in 2025 compound longer-term supply chain realignments. Increased tariffs on semiconductors, modules, or finished devices can raise the landed cost of key hardware components, prompting procurement teams to reevaluate sourcing strategies and inventory buffering practices. These cost pressures tend to accelerate supplier diversification, encourage qualification of alternative manufacturers, and in some cases incentivize vertical integration or nearshoring to reduce exposure to tariff volatility and transit risks.

Beyond direct cost implications, tariff-driven shifts influence product design and procurement cycles. Engineering teams may prioritize component substitution, modular design, and the use of commodity interfaces to retain flexibility in supplier selection. Concurrently, operators and enterprise buyers often respond by extending procurement lead times and implementing phased rollouts that mitigate short-term price shocks. For service providers, tariff impacts can alter pricing structures for managed connectivity and private network offerings, potentially shifting competitive dynamics between incumbents and regional challengers.

Trade policy adjustments also intersect with national security and data sovereignty debates, which can lead to increased regulatory scrutiny around equipment origin and supply chain transparency. Consequently, enterprise architects must incorporate compliance checkpoints into vendor evaluations and lifecycle planning. While tariffs do not change the technical potential of 5G IoT, they materially affect the economics of deployment, the pace of adoption in price-sensitive segments, and the strategic calculus behind supply chain design and vendor partnerships.

Multidimensional segmentation-driven insights that map industry verticals, connectivity modes, application demands, component roles, and deployment models to actionable strategic priorities

Segmentation insights reveal differentiated demand drivers and technology priorities across industry verticals and usage contexts, requiring tailored strategies for product development, go-to-market, and integration. The industry vertical segmentation highlights that sectors such as Agriculture, Automotive, Consumer Electronics, Energy And Utilities, Healthcare, Manufacturing, and Retail demonstrate distinct performance criteria: Agriculture prioritizes low-power wide-area coverage and device ruggedness; Automotive demands stringent latency and safety certifications; Consumer Electronics focuses on cost, form factor, and interoperability; Energy And Utilities emphasize reliability and lifecycle support; Healthcare requires privacy and regulatory compliance; Manufacturing seeks deterministic connectivity for automation; and Retail concentrates on in-store analytics and inventory visibility.

When viewed through the lens of connectivity technology, the dataset shows adoption patterns across Enhanced Mobile Broadband, Massive Machine Type Communications, and Ultra-Reliable Low Latency Communications, each enabling different classes of applications. Enhanced Mobile Broadband supports bandwidth-intensive AR/VR and video-centric services, Massive Machine Type Communications addresses high-density sensor deployments with optimized power profiles, and Ultra-Reliable Low Latency Communications underpins mission-critical control and autonomous systems. Application-driven segmentation underscores where value realization occurs, spanning Asset Tracking, Augmented Reality Virtual Reality, Autonomous Vehicles, Smart Agriculture, Smart Grid, Smart Home, Smart Manufacturing, and Telemedicine, each with distinct operational and integration demands.

Component-based segmentation clarifies investment and capability gaps across Hardware, Services, and Software. Hardware considerations focus on chipsets, modules, and sensors that must balance performance with power and cost constraints. Services encompass managed and professional offerings that bridge technical implementation and ongoing operations. Software divides into analytics, management, and security stacks that enable insights, orchestration, and trust. Network architecture segmentation between Non-Standalone and Standalone approaches further differentiates migration pathways and interoperability requirements, while deployment type distinctions between Private Network and Public Network define control, security posture, and commercial models. Taken together, these segmentation lenses provide a multidimensional map to prioritize product features, partnership models, and sales motions aligned with real customer needs.

Regional contrasts in regulatory focus, infrastructure maturity, and enterprise priorities that materially affect 5G IoT architecture choices, go-to-market approaches, and partner ecosystems

Regional dynamics shape both technology choices and commercial models, with each geography presenting unique regulatory frameworks, infrastructure maturity, and enterprise priorities. In the Americas, network operator-led private network pilots, strong enterprise cloud adoption, and a pronounced focus on supply-chain resilience influence solution architectures and procurement cycles. Demand in this region often emphasizes integration with existing enterprise IT stacks, strong analytics capabilities, and compliance with regional security expectations.

By contrast, Europe, Middle East & Africa exhibits a mosaic of regulatory regimes and industrial modernization initiatives. European markets tend to emphasize data protection, interoperability standards, and green transition goals, driving interest in energy-efficient deployments and standardized interfaces. Middle Eastern markets often show rapid infrastructure build-out and state-led industrial digitization, while parts of Africa prioritize connectivity expansion and low-cost device strategies to broaden inclusion.

Asia-Pacific remains a heterogeneous but high-adoption region where aggressive infrastructure investment, large-scale factory automation projects, and vibrant device ecosystems accelerate rollout timelines. Many countries in the region combine strong manufacturing bases with ambitious smart-city and industrial automation agendas, resulting in diverse demand across public and private deployment types. Collectively, regional contrasts influence vendor go-to-market strategies, the localization of service offerings, and the composition of partner ecosystems required to scale deployments effectively.

Competitive dynamics and partnership models across infrastructure vendors, chipset designers, cloud-edge platforms, integrators, and specialist innovators that determine adoption velocity and integration risk

The competitive landscape for 5G IoT comprises established infrastructure providers, chipset and module manufacturers, cloud and edge platform vendors, systems integrators, and specialized startups, each playing complementary roles in delivering end-to-end solutions. Infrastructure providers continue to invest in capabilities that support private networking, network slicing, and managed connectivity, often packaging these services with vertical-specific orchestration layers. Chipset and module vendors are prioritizing power efficiency, integration density, and validated reference designs to reduce time to market for device manufacturers.

Cloud and edge platform vendors are focusing on seamless hybrid integration between public cloud services and on-premises edge environments, enabling consistent development environments, telemetry aggregation, and lifecycle management. Systems integrators and managed service providers are evolving from implementation-focused offerings toward outcome-based contracts that include performance SLAs and ongoing optimization. Meanwhile, specialized software vendors are carving out differentiated positions in analytics, device management, and security, bringing domain-specific capabilities that accelerate enterprise adoption.

Startups and niche vendors contribute innovation in sensors, AI inference at the edge, and verticalized application suites, often becoming acquisition targets for larger ecosystem players. Strategic partnerships and M&A remain important routes to address capability gaps quickly, while open interfaces and standards adoption serve as accelerants for interoperability. For buyers, vendor selection increasingly emphasizes proven integration experience, security provenance, and commitment to long-term support rather than point-product features alone.

Practical, high-impact steps for executives to accelerate pilots, harden supply chains, embed security, and align partner incentives to unlock measurable 5G IoT value quickly

Actionable recommendations for industry leaders focus on aligning technology choices with measurable business outcomes, accelerating pilot-to-production transitions, and building resilient supply chains. Begin by prioritizing use cases with clear operational KPIs and quantifiable value, then design reference implementations that minimize integration complexity by leveraging validated hardware-software stacks and open APIs. Investing in modular product architectures enables rapid substitution of components in response to supply disruptions or emerging standards without requiring full redesigns.

Enterprises should adopt a phased deployment approach that begins with tightly scoped pilots to validate performance, security, and economic assumptions, then scale via replication of proven patterns across sites. Procurement strategies benefit from dual-sourcing critical components and negotiating performance-based commercial terms for managed services to better align vendor incentives with operational outcomes. Security must be embedded from device to cloud, incorporating hardware anchor points, secure boot, and lifecycle key management to reduce exposure across distributed networks.

Finally, leaders should cultivate a partner ecosystem that combines connectivity providers, cloud-edge platforms, systems integrators, and specialized application developers. Formalize collaboration through joint roadmaps and shared SLAs to ensure accountability across interdependent service layers. By combining disciplined use-case selection, modular engineering, resilient procurement, and partnership orchestration, organizations can accelerate adoption while managing risk and preserving flexibility for future innovation.

A rigorous mixed-methods research approach combining executive interviews, case analyses, standards review, and scenario stress-testing to validate strategic insights and recommendations

The research methodology combines qualitative and quantitative techniques to ensure findings are corroborated across multiple data sources and stakeholder perspectives. Primary research includes structured interviews with executives from enterprise verticals, network operators, equipment vendors, and systems integrators to capture firsthand insights on deployment priorities, technical constraints, and commercial dynamics. These conversations are supplemented by case study analyses that examine implementation patterns, integration challenges, and operational outcomes across representative deployments.

Secondary research encompasses a comprehensive review of technical standards, white papers, regulatory filings, and publicly available performance benchmarks to ground technical observations in widely accepted reference material. The methodology emphasizes triangulation: insights derived from interviews are validated against documented evidence and observed product roadmaps to reduce bias. Scenario analysis is applied to stress-test strategic assumptions under different supply-chain and regulatory conditions, helping translate trends into practical guidance for decision-makers.

Finally, peer review by subject-matter experts ensures that conclusions are technically sound and commercially relevant. Where appropriate, the methodology documents uncertainty and identifies areas where further primary investigation would reduce residual risk, enabling clients to commission focused follow-on work if deeper specificity is required.

A strategic synthesis underscoring that technical maturity, disciplined deployment, and resilient supply-chain design are decisive factors for scaling 5G IoT initiatives successfully

The conclusion synthesizes the report's central themes: technological maturation, evolving commercial models, and shifting supply-chain considerations together create a window of opportunity for organizations that move with discipline and clarity of purpose. Standalone architectures, edge-first application models, and modular hardware approaches unlock new classes of mission-critical and high-value IoT use cases, but realizing that value requires pragmatic engineering choices, security-first design, and outcome-driven vendor relationships. Trade policy dynamics and tariff pressures further underscore the need for procurement resilience and supplier diversification to preserve deployment timelines and margin assumptions.

Leaders who prioritize use cases with clear KPIs, employ phased rollouts, and cultivate interoperable partner ecosystems will be better positioned to capture operational improvements and create defensible advantage. At the same time, continuous attention to standards, lifecycle management, and sustainability will influence long-term viability and total cost of ownership. In short, the path from pilot to scale is navigable, but it requires a structured approach that aligns technical design, commercial contracts, and organizational capabilities to the specific demands of each deployment context.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Implementation of network slicing in 5G IoT for tailored industry-grade connectivity and performance
  • 5.2. Deployment of private 5G IoT networks in smart factories for enhanced automation and security
  • 5.3. Adoption of edge computing in 5G IoT architectures to achieve ultra low latency in mission critical use cases
  • 5.4. Integration of artificial intelligence and 5G IoT for predictive maintenance in industrial equipment monitoring
  • 5.5. Growth of vehicle to everything communication using 5G IoT for real time autonomous driving and traffic management
  • 5.6. Evolution of 5G IoT security frameworks to safeguard edge devices against emerging cyber threats in distributed networks
  • 5.7. Scalability of massive IoT deployments on 5G networks for smart city applications and environmental monitoring solutions

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. 5G IoT Market, by Industry Vertical

  • 8.1. Agriculture
  • 8.2. Automotive
  • 8.3. Consumer Electronics
  • 8.4. Energy And Utilities
  • 8.5. Healthcare
  • 8.6. Manufacturing
  • 8.7. Retail

9. 5G IoT Market, by Connectivity Technology

  • 9.1. Enhanced Mobile Broadband
  • 9.2. Massive Machine Type Communications
  • 9.3. Ultra-Reliable Low Latency Communications

10. 5G IoT Market, by Application

  • 10.1. Asset Tracking
  • 10.2. Augmented Reality Virtual Reality
  • 10.3. Autonomous Vehicles
  • 10.4. Smart Agriculture
  • 10.5. Smart Grid
  • 10.6. Smart Home
  • 10.7. Smart Manufacturing
  • 10.8. Telemedicine

11. 5G IoT Market, by Component

  • 11.1. Hardware
    • 11.1.1. Chipsets
    • 11.1.2. Modules
    • 11.1.3. Sensors
  • 11.2. Services
    • 11.2.1. Managed Services
    • 11.2.2. Professional Services
  • 11.3. Software
    • 11.3.1. Analytics Software
    • 11.3.2. Management Software
    • 11.3.3. Security Software

12. 5G IoT Market, by Network Architecture

  • 12.1. Non-Standalone
  • 12.2. Standalone

13. 5G IoT Market, by Deployment Type

  • 13.1. Private Network
  • 13.2. Public Network

14. 5G IoT Market, by Region

  • 14.1. Americas
    • 14.1.1. North America
    • 14.1.2. Latin America
  • 14.2. Europe, Middle East & Africa
    • 14.2.1. Europe
    • 14.2.2. Middle East
    • 14.2.3. Africa
  • 14.3. Asia-Pacific

15. 5G IoT Market, by Group

  • 15.1. ASEAN
  • 15.2. GCC
  • 15.3. European Union
  • 15.4. BRICS
  • 15.5. G7
  • 15.6. NATO

16. 5G IoT Market, by Country

  • 16.1. United States
  • 16.2. Canada
  • 16.3. Mexico
  • 16.4. Brazil
  • 16.5. United Kingdom
  • 16.6. Germany
  • 16.7. France
  • 16.8. Russia
  • 16.9. Italy
  • 16.10. Spain
  • 16.11. China
  • 16.12. India
  • 16.13. Japan
  • 16.14. Australia
  • 16.15. South Korea

17. Competitive Landscape

  • 17.1. Market Share Analysis, 2024
  • 17.2. FPNV Positioning Matrix, 2024
  • 17.3. Competitive Analysis
    • 17.3.1. Quectel Wireless Solutions Co., Ltd.
    • 17.3.2. Fibocom Wireless Inc.
    • 17.3.3. Sierra Wireless, Inc.
    • 17.3.4. Thales S.A.
    • 17.3.5. Telit Communications PLC
    • 17.3.6. u-blox Holding AG
    • 17.3.7. Qualcomm Incorporated
    • 17.3.8. Huawei Technologies Co., Ltd.
    • 17.3.9. Telefonaktiebolaget LM Ericsson
    • 17.3.10. Nokia Corporation
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제