시장보고서
상품코드
1912052

탄소 네거티브 시멘트 시장 : 제품 유형별, 기술별, 용도별, 유통 채널별 예측(2026-2032년)

Carbon Negative Cement Market by Product Type, Technology, Application, Distribution Channel - Global Forecast 2026-2032

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 190 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

탄소 네거티브 시멘트 시장은 2025년에 5억 7,027만 달러로 평가되었고, 2026년에는 6억 2,891만 달러로 성장할 전망이며, CAGR 11.21%로 추이하여, 2032년까지 12억 27만 달러에 이를 것으로 예측됩니다.

주요 시장 통계
기준 연도(2025년) 5억 7,027만 달러
추정 연도(2026년) 6억 2,891만 달러
예측 연도(2032년) 12억 27만 달러
CAGR(%) 11.21%

탄소 네거티브 시멘트에 관한 간략한 전략적 입문서 : 기술 정의, 촉진요인, 건축 환경 의사 결정자에게 있어서 전략적 의의에 대해서

탄소 네거티브 시멘트는 건축 환경이 가장 큰 탄소 배출원 중 하나를 다루는 방식에 근본적인 변화를 가져옵니다. 단순한 효율 개선을 훨씬 뛰어넘는 이 일련의 재료 및 공정은 제조, 경화 및 수명 주기에서 탄산염화를 통해 순 탄소 배출 음수를 실현하는 것을 목표로 합니다. 이 기술 그룹은 대체 바인더, 광물화 기술, 통합 탄소 포집 및 이용 접근법을 포괄하여 기존 시멘트 공급망의 화학적 특성 및 물류를 재정의합니다.

규제 압력, 기업의 넷제로 공약, 공급망 혁신이 시멘트 산업의 구조를 재구축하고 저탄소화 이행을 가속시키는 구조

시멘트 및 콘크리트 산업은 시책, 조달, 기술 융합을 통해 변화하는 변화를 겪고 있습니다. 정부 및 지자체 기관은 조달 프레임워크와 건축 기준에 내재 탄소량의 상한을 통합하는 경우가 증가하고 있으며, 개발자와 계약자는 새로운 규제 체제에 적합한 대체 결합재나 공급망 솔루션을 모색할 수밖에 없습니다. 이와 병행하여 대규모 자산 소유자와 인프라 투자자들에 의한 기업의 넷 제로 공약은 내재탄소량을 주변의 지속가능성 지표가 아니라 자재 조달에 있어서 중요한 기준으로 변화시키고 있습니다.

2025년 미국이 발표한 시멘트와 관련 원료에 대한 관세조치의 누적적인 운용면, 투자면 및 전략면에 대한 영향 평가

2025년 미국이 도입한 관세 조치는 저탄소 시멘트 솔루션 공급망, 조달 결정, 투자 판단에 미치는 일련의 누적 영향을 낳았습니다. 수입 결합재, 첨가제, 전구체 재료의 경제성을 변화시킴으로써 관세는 공급의 보다 한층 현지화를 촉진하고 국내 생산 능력 확대의 필요성을 강화했습니다. 이러한 변화는 대규모 건설 프로젝트의 물류, 리드타임 및 조달 전략에 실질적인 영향을 미칩니다.

관점에 따라 제품, 용도, 최종 용도 기술, 유통 선택이 탄소 네거티브 시멘트의 도입 채널을 결정하는 메커니즘을 밝힙니다.

세분화 관점은 제품 조성, 적용 환경, 최종 용도 요구사항, 기술 선택, 유통 전략에 따라 채용 채널이 분기되는 방식을 명확하게 합니다. 제품 유형을 비교하면 기존 규산 칼슘 시멘트는 많은 기존 용도 분야에서 계속 사용되지만 지오폴리머 시멘트와 저탄소 제형은 명확한 내구성 또는 지속가능성 기준이 필요한 프로젝트에 적합합니다. 한편, 마그네슘계 시멘트는 새로운 광물화 특성과 경화시의 잠재적인 부의 배출량에 의해 주목을 받고 있습니다.

지역의 도입 패턴 및 시책 환경이 탄소 네거티브 시멘트의 보급 규모에 영향을 미칩니다.

지역별 동향은 채택의 긴급성 및 탄소 네거티브 시멘트의 보급 채널을 결정합니다. 미국 대륙에서는 주와 지자체 수준에서의 규제 실험과 인프라 갱신 및 탄력적인 건설에 대한 강한 중점화가 결합되어 파일럿 도입이 매력적이 되고 있습니다. 주요 도시권의 공공 조달 기준 및 기업의 지속가능성 프로그램은 기술을 검증하고 이웃 시장 전체에서 상업적 채용 위험을 완화할 수 있는 수요의 집중된 영역을 창출하고 있습니다.

신흥 탄소 네거티브 시멘트 밸류 체인에서 기존 기업 및 신흥 기업이 가치 획득을 위해 전개하는 기업 전략 행동과 경쟁 구도

이 부문의 기업 활동은 전략적 제휴, 선택적 수직 통합, 지적 재산 및 파일럿 입증에 주력하는 것이 특징입니다. 주요 생산자 및 기술 공급자는 광물화용 원료 확보와 물질 순환 완결을 목적으로 산업 CO2 배출 기업과의 제휴를 추진하고 있습니다. 이러한 협업은 생산 파트너를 공통의 성능 기준과 검증 프로토콜로 결속시킴으로써 원료 리스크를 저감하고 학습 곡선을 가속화합니다.

산업 리더가 마이그레이션 위험을 줄이고 확장 가능한 탄소 네거티브 시멘트 도입을 가속화하기 위해 지금 실시할 수 있는 실습, 이사회 수준 및 운영 수준 제안

산업 리더는 거버넌스, 조달 및 운영의 모든 영역에서 전략적 의도를 구체적인 행동으로 옮겨야 합니다. 거버넌스 수준에서 이사회와 경영진은 자본 배분 프레임워크 및 조달 정책에 '내장된 탄소' 지표를 통합해야 합니다. 이로 인해 저탄소 재료는 초기 비용뿐만 아니라 전체 라이프 사이클 결과에 따라 평가됩니다. 이 무결성은 생산자에게 안정적인 수요 신호를 생성하고 파일럿 장비에 대한 초기 투자를 정당화하는 데 도움이 됩니다.

탄소 네거티브 시멘트의 동향 분석에 이용한, 1차 조사 및 2차 조사의 조사 방법, 검증 기술, 품질 관리를 명시한 투명성 및 재현성이 있는 조사 방법

본 분석의 기반이 되는 조사는 재현성 및 투명성을 확보하기 위해 정성적 및 정량적 어프로치를 조합하고 있습니다. 1차 조사에서는 의사결정 요인, 성능 우려, 도입 장벽을 파악하기 위해 조달 책임자, 기술 책임자, 프로젝트 엔지니어, 시책 입안자에 대한 구조화된 인터뷰를 실시했습니다. 이러한 인터뷰는 파일럿 시설의 현지 시찰과 기술 설명회에 의해 보완되어 생산, 양생, 품질 관리 프로세스를 직접 관찰했습니다.

탄소 네거티브 시멘트의 포트폴리오 통합에 임하는 이해 관계자를 위해, 주요 지견과 향후의 중요 과제를 정리한 통합 분석과 향후 전망

탄소 네거티브 시멘트는 재료 과학, 산업 탈탄소화 및 인프라 갱신의 교차점에 위치하고 있습니다. 규제압력, 조달기준, 생산 및 검증에 대한 전략적 투자에 힘입어 실증 단계에서 조기 상업 전개로 급속히 이행하고 있는 에코시스템의 존재가 시사되고 있습니다. 부문, 용도, 지역에 따라 도입 상황에 편차가 보이지만, 특정 채널의 기술 성숙도와 대규모 기관 구매자 수요 증가가 함께 신뢰할 수 있는 확대 채널이 형성되고 있습니다.

자주 묻는 질문

  • 탄소 네거티브 시멘트 시장 규모는 어떻게 예측되나요?
  • 탄소 네거티브 시멘트의 기술적 정의는 무엇인가요?
  • 탄소 네거티브 시멘트의 보급에 영향을 미치는 요인은 무엇인가요?
  • 2025년 미국의 관세 조치가 시멘트 산업에 미친 영향은 무엇인가요?
  • 탄소 네거티브 시멘트의 도입 채널은 어떻게 결정되나요?
  • 탄소 네거티브 시멘트의 산업 내 경쟁 구도는 어떻게 형성되고 있나요?

목차

제1장 서문

제2장 조사 방법

  • 조사 디자인
  • 조사 프레임워크
  • 시장 규모 예측
  • 데이터 트라이앵귤레이션
  • 조사 결과
  • 조사의 전제
  • 조사의 제약

제3장 주요 요약

  • CXO 시점
  • 시장 규모 및 성장 동향
  • 시장 점유율 분석(2025년)
  • FPNV 포지셔닝 매트릭스(2025년)
  • 새로운 수익 기회
  • 차세대 비즈니스 모델
  • 산업 로드맵

제4장 시장 개요

  • 산업 생태계 및 밸류체인 분석
  • Porter's Five Forces 분석
  • PESTEL 분석
  • 시장 전망
  • GTM 전략

제5장 시장 인사이트

  • 소비자 인사이트 및 최종 사용자 관점
  • 소비자 체험 벤치마크
  • 기회 매핑
  • 유통 채널 분석
  • 가격 동향 분석
  • 규제 규정 준수 및 표준 프레임워크
  • ESG 및 지속가능성 분석
  • 혁신 및 리스크 시나리오
  • ROI 및 CBA

제6장 미국 관세의 누적 영향(2025년)

제7장 AI의 누적 영향(2025년)

제8장 탄소 네거티브 시멘트 시장 : 제품 유형별

  • 규산칼슘 시멘트
  • 지오폴리머 시멘트
  • 저탄소 시멘트
  • 마그네슘 시멘트

제9장 탄소 네거티브 시멘트 시장 : 기술별

  • 알칼리 활성화 시멘트
    • 플라이 애쉬베이스
    • 슬래그 베이스
  • 이산화탄소 포집 및 이용 기술
    • 산소 연소법
    • 연소 후 회수
    • 연소 전 회수
  • 옥시염화마그네슘 기술

제10장 탄소 네거티브 시멘트 시장 : 용도별

  • 상업 건축
  • 인프라
    • 교량 및 터널
    • 도로 및 고속도로
  • 개수 및 보수
  • 주택 건설

제11장 탄소 네거티브 시멘트 시장 : 유통 채널별

  • 직접 판매
  • 리셀러
  • 온라인 채널

제12장 탄소 네거티브 시멘트 시장 : 지역별

  • 아메리카
    • 북미
    • 라틴아메리카
  • 유럽, 중동 및 아프리카
    • 유럽
    • 중동
    • 아프리카
  • 아시아태평양

제13장 탄소 네거티브 시멘트 시장 : 그룹별

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

제14장 탄소 네거티브 시멘트 시장 : 국가별

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 중국
  • 인도
  • 일본
  • 호주
  • 한국

제16장 미국의 탄소 네거티브 시멘트 시장

제17장 중국의 탄소 네거티브 시멘트 시장

제17장 경쟁 구도

  • 시장 집중도 분석(2025년)
    • 집중 비율(CR)
    • 하핀달 하쉬만 지수(HHI)
  • 최근의 동향 및 영향 분석(2025년)
  • 제품 포트폴리오 분석(2025년)
  • 벤치마킹 분석(2025년)
  • Blue Planet Systems Corporation
  • Calera Corporation
  • CarbiCrete Inc.
  • Carbon Upcycling Technologies Inc.
  • Carbon8 Systems Ltd.
  • CarbonBuilt, Inc.
  • CarbonCure Technologies Inc.
  • Dalmia Bharat Limited
  • EcoCem International Ltd.
  • Novacem Ltd.
  • Prometheus Materials, Inc
  • Solidia Technologies, Inc.
AJY

The Carbon Negative Cement Market was valued at USD 570.27 million in 2025 and is projected to grow to USD 628.91 million in 2026, with a CAGR of 11.21%, reaching USD 1,200.27 million by 2032.

KEY MARKET STATISTICS
Base Year [2025] USD 570.27 million
Estimated Year [2026] USD 628.91 million
Forecast Year [2032] USD 1,200.27 million
CAGR (%) 11.21%

A concise strategic primer on carbon negative cement: defining the technology, drivers, and strategic relevance for built environment decision-makers

Carbon negative cement represents a fundamental shift in how the built environment addresses one of its largest embodied carbon sources. Far beyond marginal efficiency improvements, this set of materials and processes aims to deliver net negative carbon outcomes across production, curing, and lifecycle carbonation. The technology suite spans alternative binders, mineralization techniques, and integrated carbon capture and utilization approaches that together redefine the chemistry and logistics of traditional cement supply chains.

Transition drivers are multifaceted. Regulatory pressure, procurement standards by institutional buyers, construction sector decarbonization roadmaps, and investor focus on climate risk collectively create a commercial rationale for adoption. At the same time, innovation in materials science and industrial symbiosis-whereby industrial CO2 streams are captured and mineralized-opens new industrial pathways that were previously conceptual rather than commercially viable. As these pathways mature, they invite new entrants and partnerships across cement producers, chemical firms, construction contractors, and public agencies.

Strategic decision makers should view carbon negative cement not only as a compliance instrument but as a product innovation opportunity that touches procurement, design standards, construction practices, and lifecycle management. Early movers can leverage pilot projects and offtake agreements to shape standards and secure technical know-how, while late adopters risk exposure to regulatory and market friction as supply chains reconfigure. The introduction of these materials will require deliberate change management and investment in skills, testing infrastructure, and certification frameworks to ensure performance parity with conventional options.

How regulatory pressure, corporate net-zero commitments, and supply chain innovation are reshaping the cement landscape and accelerating low-carbon transitions

The landscape for cement and concrete is undergoing transformative shifts driven by policy, procurement, and technological convergence. Governments and municipal agencies increasingly embed embodied carbon limits into procurement frameworks and building codes, prompting developers and contractors to seek alternative binders and supply chain solutions that align with emerging compliance regimes. Parallel to this, corporate net-zero commitments from large asset owners and infrastructure investors are turning embodied carbon into a material procurement criterion rather than a peripheral sustainability metric.

Technological advances are accelerating the feasibility of carbon negative outcomes. Alkali-activated systems, magnesium-based chemistries, and mineralization routes that sequester CO2 during curing or production are converging with digital tools that enable traceability and lifecycle assessment at the project level. This convergence reduces adoption risk by improving predictability and enabling performance verification, thereby smoothing pathways for standards bodies to codify new material classes.

Market structures are also evolving. Supply chain actors are forming cross-sector alliances to capture value from waste streams and CO2 sources, while financing instruments are emerging to underwrite early capital expenditures for low-carbon production lines. These shifts create windows of opportunity for pilots and scale-up, but they also shift competitive dynamics; incumbents face disruption from specialized technology providers and vertically integrated consortia that bundle material supply with carbon services. Decision makers must therefore balance short-term operational continuity with longer-term strategic shifts in sourcing and partnerships.

Assessing the cumulative operational, investment and strategic consequences of the United States tariffs announced in 2025 for cement and related raw materials

The tariff measures introduced by the United States in 2025 have produced a set of cumulative effects that reverberate across supply chains, procurement decisions, and investment calculus for low-carbon cement solutions. By altering the economics of imported binders, additives, and precursor materials, tariffs have incentivized greater localization of supply and reinforced the case for domestic capacity expansion. This shift has practical implications for logistics, lead times, and the sourcing strategies of large construction programs.

In response to altered trade dynamics, organizations are reassessing vendor relationships and material substitution options. Contractors and specifiers facing higher landed costs for imported inputs have accelerated evaluations of alternative cement chemistries that rely on locally available feedstocks. Simultaneously, the tariffs have highlighted the strategic value of long-term offtake arrangements and vertically integrated supply models that can mitigate exposure to trade volatility.

The policy action has also affected investment flows. Capital providers now weigh tariff risk into project economics, favoring modular, scalable production technologies that can be deployed quickly to serve regional demand. On the regulatory front, the tariff environment has emphasized the need for harmonized standards and mutual recognition regimes to avoid fragmentation of certifications and to facilitate cross-border technology transfer. For stakeholders focused on decarbonization, the net effect is an intensification of efforts to co-locate capture resources with production assets and to build resilient procurement strategies that can operate under evolving trade constraints.

Segmentation-driven perspectives that reveal how product, application, end-use, technology and distribution choices determine adoption pathways for carbon negative cement

A segmentation lens clarifies how adoption pathways diverge based on product formulation, application context, end-use requirements, technological choice, and distribution strategy. When product types are compared, traditional calcium silicate cements continue to serve many conventional applications, but geopolymer cements and low carbon formulations appeal to projects with explicit durability or sustainability criteria, whereas magnesium-based cements are gaining attention for novel mineralization properties and potential negative emissions during curing.

Application dynamics influence specification and acceptance. Commercial construction projects that prioritize green building ratings and brand reputation tend to be early adopters, while infrastructure programs require rigorous long-term performance validation for bridges, tunnels, roads, and highways. Repair and maintenance markets offer immediate substitution opportunities because retrofit projects can trial alternative binders at lower regulatory friction, enabling data collection that supports broader deployment in new builds.

End-use segmentation further refines demand patterns. Commercial clients are often driven by tenant and investor expectations, industrial end users by process compatibility and uptime, and residential markets by cost and regulatory incentives. Technology choices interact strongly with these demands. Alkali-activated cements-whether fly ash based or slag based-offer pathways to repurpose industrial byproducts, while carbon capture and utilization approaches, including oxy fuel, post combustion, and pre combustion capture, introduce process complexity but also create durable carbon offsets. Magnesium oxychloride technology presents distinct performance and handling characteristics that can be advantageous in specific use cases.

Distribution channels shape commercialization speed. Direct sales can foster technical collaboration and bespoke solutions for large projects, distributors provide breadth and logistics for regional markets, and online channels facilitate specification discovery and smaller volume purchases. Each distribution route imposes different requirements for packaging, testing documentation, and customer support, thereby influencing which product types and technologies reach which end users and at what cadence.

Regional adoption patterns and policy ecosystems across the Americas, Europe, Middle East & Africa, and Asia-Pacific that influence scaling of carbon negative cement

Regional dynamics determine both the urgency of adoption and the pathways by which carbon negative cement scales. In the Americas, regulatory experimentation at state and municipal levels, coupled with a strong emphasis on infrastructure renewal and resilient construction, makes pilot deployment attractive. Public procurement standards and corporate sustainability programs in major metropolitan areas create concentrated pockets of demand that can validate technologies and de-risk commercial adoption across adjacent markets.

Europe, Middle East & Africa presents a mosaic of regulatory stringency and resource endowments. Western European nations often lead with rigorous embodied carbon reporting and incentives for circular material use, while parts of the Middle East are investing in large-scale industrial decarbonization projects leveraging abundant energy resources for electrified or hydrogen-enabled processes. Sub-Saharan Africa faces different priorities, where affordability, local material sourcing, and capacity building are central to adoption decisions.

Asia-Pacific encompasses both advanced manufacturing hubs and rapidly urbanizing economies with massive construction pipelines. Policy drivers that target air quality and lifecycle emissions are pushing manufacturers and developers to consider alternative binders, while supply chain density in the region supports rapid iteration and scaling. Across these regions, local feedstock availability, logistics networks, and standards development pace interact to shape how quickly carbon negative cement becomes a mainstream procurement option. Stakeholders need regionally specific pathways that align technology selection, certification, and commercial models with local regulatory and infrastructure realities.

Corporate strategic behaviors and competitive moves that incumbents and challengers are using to capture value in the emerging carbon negative cement value chain

Corporate activity in this space is characterized by strategic partnerships, selective vertical integration, and a focus on intellectual property and pilot demonstration. Leading producers and technology providers are forming alliances with industrial CO2 emitters to secure feedstocks for mineralization and to close material loops. Such collaborations reduce feedstock risk and accelerate learning curves by aligning production partners around shared performance and verification protocols.

Business models are diversifying. Some organizations prioritize licensing of technology and process know-how to regional manufacturers, enabling rapid geographic expansion without heavy capital commitments. Others pursue end-to-end integration-from raw material sourcing, capture, and binder production to blended cement supply-positioning themselves to capture margin across the value chain. Across both approaches, offtake agreements and long-term supply commitments are commonly used to underwrite early capex and to demonstrate commercial viability to investors and regulators.

Competitive differentiation increasingly rests on data and validation. Firms that invest in third-party testing, transparent lifecycle assessment, and traceability systems are better positioned to win institutional procurement because they reduce buyer risk. Additionally, companies that engage proactively with standards bodies and construction communities influence the development of new codes and certifications, thereby shaping technical specifications in ways that favor their technological strengths. For decision makers evaluating partners, the ability to demonstrate scalable production, consistent technical performance, and robust verification frameworks is a key selection criterion.

Practical, board-level and operational recommendations that industry leaders can implement now to de-risk transition and accelerate scalable carbon negative cement deployment

Industry leaders must translate strategic intent into concrete actions across governance, sourcing, and operations. At the governance level, boards and executive teams should integrate embodied carbon metrics into capital allocation frameworks and procurement policies so that low-carbon materials are evaluated on total lifecycle outcomes rather than upfront cost alone. This alignment creates a stable demand signal for producers and helps justify early investments in pilot capacity.

Operationally, organizations should pursue de-risked pilot projects that pair novel binders with legacy construction practices to gather performance data under real conditions. These pilots must be supported by rigorous testing protocols, stakeholder education programs for contractors and specifiers, and contractual clauses that address performance warranty and acceptance criteria. Procurement teams should develop flexible sourcing frameworks that incorporate direct supply, distributor partnerships, and digital procurement channels to manage volume variability and geographic reach.

From a technology standpoint, investing in modular, scalable production units and securing access to reliable CO2 streams will materially reduce deployment risk. Leaders should also engage proactively with standards bodies to accelerate certification pathways and harmonize testing regimes. Financially, blending capital grants, green finance instruments, and offtake agreements can distribute risk and accelerate ramp-up. Finally, workforce development-training installers, quality inspectors, and design professionals on new material handling and performance considerations-ensures that technical advantages translate into industry-wide acceptance.

Transparent, reproducible research methodology outlining primary and secondary approaches, validation techniques, and quality controls used to analyze carbon negative cement dynamics

The research underpinning this analysis combines qualitative and quantitative approaches to ensure reproducibility and transparency. Primary research included structured interviews with procurement leads, technical directors, project engineers, and policy makers to capture decision drivers, performance concerns, and adoption barriers. These interviews were complemented by site visits and technical briefings at pilot facilities to observe production, curing, and quality control processes firsthand.

Secondary research synthesized peer-reviewed literature on cement chemistry and mineralization, regulatory documents, procurement policies, technical standards, and industry white papers. Supply chain mapping techniques were applied to trace raw material flows, identify CO2 source nodes, and assess logistics implications for alternative binder deployment. Technology readiness and risk assessments were conducted to classify approaches by integration complexity and verification needs.

Validation steps included cross-referencing interview findings with independent laboratory test results and consulting with third-party certification experts to confirm performance claims and measurement methodologies. Data quality controls comprised triangulation across at least three independent sources for major assertions and peer review by subject matter experts. The combination of primary insight, secondary evidence, and iterative validation supports the robustness of the conclusions and the practical relevance of the recommendations.

Synthesis and forward posture summarizing key takeaways and essential next steps for stakeholders committed to integrating carbon negative cement into their portfolios

Carbon negative cement stands at the intersection of materials science, industrial decarbonization, and infrastructure renewal. The evidence points to an ecosystem that is rapidly moving from demonstration toward early commercial deployment, driven by regulatory pressure, procurement standards, and strategic investments in production and verification. Adoption is uneven across segments, applications, and regions, but the combination of technological maturity in certain pathways and growing demand from large institutional buyers creates a credible path to scale.

Key enablers include clarified certification regimes, availability of reliable CO2 sources, modular production technologies that reduce capital intensity, and procurement frameworks that account for lifecycle outcomes. Conversely, barriers such as certification lag, supply chain fragmentation, and contractor familiarity remain material and must be addressed through coordinated industry action. The most effective strategies pair targeted pilots with policy engagement and financial instruments that reduce perceived risk for early adopters.

For stakeholders, the imperative is twofold: first, to accelerate validation and standardization so that alternative binders can be specified with confidence; and second, to structure commercial models that align incentives across producers, buyers, and CO2 suppliers. Doing so will unlock both emissions reductions and new value pools within the built environment, while ensuring the resilience of supply chains under evolving trade and policy dynamics.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Definition
  • 1.3. Market Segmentation & Coverage
  • 1.4. Years Considered for the Study
  • 1.5. Currency Considered for the Study
  • 1.6. Language Considered for the Study
  • 1.7. Key Stakeholders

2. Research Methodology

  • 2.1. Introduction
  • 2.2. Research Design
    • 2.2.1. Primary Research
    • 2.2.2. Secondary Research
  • 2.3. Research Framework
    • 2.3.1. Qualitative Analysis
    • 2.3.2. Quantitative Analysis
  • 2.4. Market Size Estimation
    • 2.4.1. Top-Down Approach
    • 2.4.2. Bottom-Up Approach
  • 2.5. Data Triangulation
  • 2.6. Research Outcomes
  • 2.7. Research Assumptions
  • 2.8. Research Limitations

3. Executive Summary

  • 3.1. Introduction
  • 3.2. CXO Perspective
  • 3.3. Market Size & Growth Trends
  • 3.4. Market Share Analysis, 2025
  • 3.5. FPNV Positioning Matrix, 2025
  • 3.6. New Revenue Opportunities
  • 3.7. Next-Generation Business Models
  • 3.8. Industry Roadmap

4. Market Overview

  • 4.1. Introduction
  • 4.2. Industry Ecosystem & Value Chain Analysis
    • 4.2.1. Supply-Side Analysis
    • 4.2.2. Demand-Side Analysis
    • 4.2.3. Stakeholder Analysis
  • 4.3. Porter's Five Forces Analysis
  • 4.4. PESTLE Analysis
  • 4.5. Market Outlook
    • 4.5.1. Near-Term Market Outlook (0-2 Years)
    • 4.5.2. Medium-Term Market Outlook (3-5 Years)
    • 4.5.3. Long-Term Market Outlook (5-10 Years)
  • 4.6. Go-to-Market Strategy

5. Market Insights

  • 5.1. Consumer Insights & End-User Perspective
  • 5.2. Consumer Experience Benchmarking
  • 5.3. Opportunity Mapping
  • 5.4. Distribution Channel Analysis
  • 5.5. Pricing Trend Analysis
  • 5.6. Regulatory Compliance & Standards Framework
  • 5.7. ESG & Sustainability Analysis
  • 5.8. Disruption & Risk Scenarios
  • 5.9. Return on Investment & Cost-Benefit Analysis

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Carbon Negative Cement Market, by Product Type

  • 8.1. Calcium Silicate Cement
  • 8.2. Geopolymer Cement
  • 8.3. Low Carbon Cement
  • 8.4. Magnesium Cement

9. Carbon Negative Cement Market, by Technology

  • 9.1. Alkali Activated Cement
    • 9.1.1. Fly Ash Based
    • 9.1.2. Slag Based
  • 9.2. Carbon Capture And Utilization
    • 9.2.1. Oxy Fuel Combustion
    • 9.2.2. Post Combustion Capture
    • 9.2.3. Pre Combustion Capture
  • 9.3. Magnesium Oxychloride Technology

10. Carbon Negative Cement Market, by Application

  • 10.1. Commercial Construction
  • 10.2. Infrastructure
    • 10.2.1. Bridges And Tunnels
    • 10.2.2. Roads And Highways
  • 10.3. Repair And Maintenance
  • 10.4. Residential Construction

11. Carbon Negative Cement Market, by Distribution Channel

  • 11.1. Direct Sales
  • 11.2. Distributors
  • 11.3. Online Channels

12. Carbon Negative Cement Market, by Region

  • 12.1. Americas
    • 12.1.1. North America
    • 12.1.2. Latin America
  • 12.2. Europe, Middle East & Africa
    • 12.2.1. Europe
    • 12.2.2. Middle East
    • 12.2.3. Africa
  • 12.3. Asia-Pacific

13. Carbon Negative Cement Market, by Group

  • 13.1. ASEAN
  • 13.2. GCC
  • 13.3. European Union
  • 13.4. BRICS
  • 13.5. G7
  • 13.6. NATO

14. Carbon Negative Cement Market, by Country

  • 14.1. United States
  • 14.2. Canada
  • 14.3. Mexico
  • 14.4. Brazil
  • 14.5. United Kingdom
  • 14.6. Germany
  • 14.7. France
  • 14.8. Russia
  • 14.9. Italy
  • 14.10. Spain
  • 14.11. China
  • 14.12. India
  • 14.13. Japan
  • 14.14. Australia
  • 14.15. South Korea

15. United States Carbon Negative Cement Market

16. China Carbon Negative Cement Market

17. Competitive Landscape

  • 17.1. Market Concentration Analysis, 2025
    • 17.1.1. Concentration Ratio (CR)
    • 17.1.2. Herfindahl Hirschman Index (HHI)
  • 17.2. Recent Developments & Impact Analysis, 2025
  • 17.3. Product Portfolio Analysis, 2025
  • 17.4. Benchmarking Analysis, 2025
  • 17.5. Blue Planet Systems Corporation
  • 17.6. Calera Corporation
  • 17.7. CarbiCrete Inc.
  • 17.8. Carbon Upcycling Technologies Inc.
  • 17.9. Carbon8 Systems Ltd.
  • 17.10. CarbonBuilt, Inc.
  • 17.11. CarbonCure Technologies Inc.
  • 17.12. Dalmia Bharat Limited
  • 17.13. EcoCem International Ltd.
  • 17.14. Novacem Ltd.
  • 17.15. Prometheus Materials, Inc
  • 17.16. Solidia Technologies, Inc.
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제