시장보고서
상품코드
1912434

플라스틱 재활용 솔루션 시장 : 프로세스 기술별, 폴리머 유형별, 수집 방법별, 최종 용도 산업별 - 세계 예측(2026-2032년)

Plastic Recycling Solutions Market by Process Technology, Polymer Type, Collection Method, End-Use Industry - Global Forecast 2026-2032

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 190 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

플라스틱 재활용 솔루션 시장은 2025년에 5억 9만 달러로 평가되며, 2026년에는 5억 2,512만 달러로 성장하며, CAGR 4.56%로 추이하며, 2032년까지 6억 8,358만 달러에 달할 것으로 예측됩니다.

주요 시장 통계
기준연도 2025년 5억 9만 달러
추정연도 2026년 5억 2,512만 달러
예측연도 2032년 6억 8,358만 달러
CAGR(%) 4.56%

플라스틱 재활용을 재구성하는 전략적, 규제적, 기술적 요인과 통합적 순환형 접근의 필요성에 대한 권위 있는 견해

현대의 플라스틱 재활용 산업은 환경 문제의 시급성, 진화하는 규제, 급속한 기술 혁신이 교차하는 지점에 위치하고 있습니다. 제조, 폐기물 관리, 포장, 정책 등 각 부문의 이해관계자들은 순환성에 대한 높은 기대치와 원료의 변동성, 오염, 자본 집약성 등 운영상의 현실과 조화를 이루어야 합니다. 본 논문은 기술 선택, 회수 인프라, 최종 시장 개발이 공진화되어 기존 가공업체, 화학기업, 소재 사용자 간의 새로운 협업을 촉진하는 전략적 배경을 제시합니다.

규제 압력, 기술 수렴, 상업적 통합이 플라스틱 재활용 생태계와 밸류체인 경제를 빠르게 재구성하는 메커니즘

플라스틱 재활용 환경은 정책 강화, 기술 성숙, 밸류체인 전반의 상업적 통합이라는 세 가지 수렴 추세로 인해 혁신적인 변화를 겪고 있습니다. 정책적 측면의 촉진요인으로는 생산자 책임 확대 제도, 재생재 사용 의무화 등을 들 수 있습니다. 이는 위험과 비용을 생산자 측에 전가하고, 국내 처리 능력 확충과 업스트림 공정의 설계 변경에 대한 투자를 촉진하고 있습니다. 이러한 규제 압력으로 인해 브랜드 소유주와 가공업체들은 품질이 보장된 재생수지의 안정적인 공급을 원하고 있으며, 이력추적 및 관리연쇄(CoC) 시스템을 더욱 중시하고 있습니다.

2025년 도입된 미국의 관세 조정과 공급망 탄력성, 국내 가공 투자 우선순위, 부문별 상업 전략에 미치는 연쇄적 영향

2025년에 도입된 미국의 관세 조치는 상대적 경제성, 공급망 채널, 국내 처리 능력에 대한 투자 판단을 바꾸어 플라스틱 재활용 생태계 전체에 누적 영향을 미쳤습니다. 수입 폴리머 원료 및 특정 회수 재료에 대한 관세 조정은 2차 원료 수입과 지역 재활용 인프라 투자에 대한 비교우위를 변화시켰습니다. 그 결과, 기업은 장기적인 조달 전략을 재평가하고, 국내 공급의 안정성과 새로운 가공 라인 도입에 따른 높은 투입 비용과 자본 지출 요건을 저울질하게 되었습니다.

공정 기술, 고분자 화학, 최종 용도, 회수 채널을 실용적인 재활용 전략 및 투자 선택으로 연결시키는 상세한 세분화 분석

기술적 역량과 시장 기회가 교차하는 지점을 명확히 하는 정교한 세분화 프레임워크를 통해 공정 기술, 폴리머 유형, 최종 사용 산업, 회수 방법에 대한 신중한 분석을 통해 차별화된 가치 풀을 강조합니다. 공정 기술별 시장 구성은 화학적 재활용, 에너지 회수, 기계적 재활용으로 분류됩니다. 화학적 재활용은 탈중합, 가스화, 열분해로 세분화되어 각각 단량체 회수 및 석유 화학 통합에 적합한 중간체 생산을위한 고유 한 채널을 설명합니다. 에너지 회수는 가스화와 소각으로 구성되며, 물질 회수가 기술적으로나 경제적으로 어려운 잔류 스트림에 대한 대안을 기술하고 있습니다. 기계적 재활용은 여전히 많은 공정에서 핵심적인 역할을 하고 있으며, 세척 및 선별, 압출 및 펠릿화, 파쇄 공정으로 구성되어 최종 수지의 품질과 사용 적합성을 종합적으로 결정합니다.

지역 정책, 인프라 성숙도, 산업의 근접성, 아메리카, 유럽, 중동, 아프리카, 아시아태평양에서 순환경제로의 차별화된 채널이 어떻게 형성되고 있는가?

지역별 동향은 플라스틱의 수집, 처리 및 공급망에 다시 통합하는 방법을 계속 결정하고 있으며, 지역적 요인은 정책 프레임워크, 인프라 성숙도 및 기술 도입을 형성하고 있습니다. 미국 대륙에서는 첨단 회수 프로그램, 보증금 반환 제도, 기업 주도의 노력으로 재생 소재 사용 목표가 가속화되고 있는 반면, 도시와 농촌의 인프라 격차는 지속적인 운영 과제가 되고 있습니다. 이 지역의 많은 지역에서 물류 거리와 오염 프로파일은 첨단 기계 및 화학적 재활용 투자에 대한 경제성을 좌우하며, 인구 밀집 지역과 항구 주변에 전략적으로 집적화하도록 유도하고 있습니다.

주요 기업이 재생 폴리머의 가치를 창출하고 순환형 밸류체인을 확보하기 위해 원료 기술 및 판매처의 소유권을 재구축하는 방법

플라스틱 재활용 밸류체인 전반에 걸쳐 사업을 운영하는 주요 기업은 원료 확보, 기술 규모화, 최종 시장 접근을 위해 차별화된 전략을 채택하고 있습니다. 일부 전통적 폐기물 관리 기업은 선별 및 전처리 능력을 통합하여 고부가가치 재활용 사업에 진출하는 한편, 화학기업과 제휴하여 고도화 프로젝트를 추진하고 있습니다. 선별, 센서 기반 식별 및 재료 호환성을 전문으로 하는 기술 프로바이더는 특정 폴리머 등급을 위한 폐쇄형 루프 재료 흐름을 입증하기 위해 컨버터 회사와 전략적 제휴를 맺고 있습니다.

조달, 기술 투자, 부문 간 파트너십에서 실행 가능한 전략적 단계를 통해 운영 및 상업적 리스크를 관리하면서 순환성을 가속화할 수 있습니다.

산업 리더는 조달과 운영 혁신을 연계한 일련의 협력적 노력을 통해 순환형 성과를 가속화해야 합니다. 우선, 기업은 지자체 및 상업적 수집업체와의 전략적 제휴를 통해 원료를 확보하는 한편, 원료 공급처의 품질 향상을 위한 인센티브와 서비스 수준 계약을 도입해야 합니다. 재활용성을 고려한 업스트림 설계 강화, 제품 포트폴리오 전반에 걸친 폴리머 유형과 접착제의 통일성을 통해 선별 공정의 복잡성을 줄이고 기계적 재활용 공정에서 회수율을 향상시킵니다.

경영진 인터뷰, 공장 시찰, 기술적 검증, 규제 분석 등 투명하고 혼합된 조사방법을 통해 실행 가능한 결과를 지원

본 조사는 질적 지식과 기술 분석을 삼각측량하는 1차 조사와 2차 조사의 조사방법을 통합하여 확고한 의사결정 수준의 지식을 도출합니다. 1차 조사에서는 폐기물 관리, 변환 및 화학적 재활용 기업의 고위 경영진을 대상으로 구조화된 인터뷰를 실시했습니다. 또한 공정 엔지니어 및 재료 과학자와의 기술 협의를 통해 성능 주장 및 기술 성숙도를 검증했습니다. 선별 센터 및 실증 플랜트 현장 시찰을 통해 수율과 수지 품질에 영향을 미치는 오염 프로파일, 처리 용량 제약, 운영 관행에 대한 관찰 데이터를 수집합니다.

순환형 플라스틱 밸류체인을 실현하기 위해서는 통합 시스템, 대상별 기술 도입, 협력적 인센티브의 필요성을 강조하는 선견지명적인 통합 분석

플라스틱 재활용은 단편적인 지역적 노력에서 재료의 무결성, 정책, 상업적 인센티브가 결합된 보다 협력적이고 부가가치가 높은 시스템으로 전환되고 있습니다. 이러한 진전은 이해관계자들이 수집, 처리, 최종 사용 단계별로 인센티브를 조정하고, 차별화된 성능을 발휘하는 기술에 신중하게 투자하며, 재활용률 주장에 대한 신뢰를 구축할 수 있는 강력한 검증 시스템을 채택할 수 있는지에 달려 있습니다. 특히 혼합 폴리머와 고도로 오염된 스트림에서 기술적 과제는 여전히 남아 있지만, 선별 기술 향상, 표적화된 화학적 변환, 보다 현명한 수집 전략의 조합은 재료 가치를 회수할 수 있는 신뢰할 수 있는 경로를 제시합니다.

자주 묻는 질문

  • 플라스틱 재활용 솔루션 시장 규모는 어떻게 예측되나요?
  • 플라스틱 재활용 생태계의 혁신적인 변화는 어떤 요인에 의해 발생하나요?
  • 2025년에 도입된 미국의 관세 조정이 플라스틱 재활용 생태계에 미친 영향은 무엇인가요?
  • 플라스틱 재활용을 위한 기술적 접근은 어떻게 세분화되나요?
  • 주요 기업들이 재생 폴리머의 가치를 창출하기 위해 어떤 전략을 채택하고 있나요?

목차

제1장 서문

제2장 조사 방법

  • 조사 디자인
  • 조사 프레임워크
  • 시장 규모 예측
  • 데이터 삼각측정
  • 조사 결과
  • 조사 전제
  • 조사 제약

제3장 개요

  • CXO 시점
  • 시장 규모와 성장 동향
  • 시장 점유율 분석, 2025년
  • FPNV 포지셔닝 매트릭스, 2025년
  • 새로운 매출 기회
  • 차세대 비즈니스 모델
  • 산업 로드맵

제4장 시장 개요

  • 산업 에코시스템과 밸류체인 분석
  • Porter's Five Forces 분석
  • PESTEL 분석
  • 시장 전망
  • GTM 전략

제5장 시장 인사이트

  • 소비자 인사이트와 최종사용자 시점
  • 소비자 체험 벤치마킹
  • 기회 지도제작
  • 유통 채널 분석
  • 가격 동향 분석
  • 규제 컴플라이언스와 표준 프레임워크
  • ESG와 지속가능성 분석
  • 파괴적 변화와 리스크 시나리오
  • ROI와 CBA

제6장 미국 관세의 누적 영향, 2025년

제7장 AI의 누적 영향, 2025년

제8장 플라스틱 재활용 솔루션 시장 : 프로세스 기술별

  • 화학적 재활용
    • 탈중합
    • 가스화
    • 열분해
  • 에너지 회수
    • 가스화
    • 소각 처리
  • 기계적 재활용
    • 세정·선별
    • 압출 성형·펠릿화
    • 슈레딩

제9장 플라스틱 재활용 솔루션 시장 : 폴리머 유형별

  • 고밀도 폴리에틸렌(HDPE)
  • LDPE(Low-Density Polyethylene)
  • 폴리에틸렌 테레프탈레이트(PET)
  • 폴리프로필렌(PP)
  • 폴리스티렌(PS)
  • 폴리염화비닐(PVC)

제10장 플라스틱 재활용 솔루션 시장 : 수집 방법별

  • 상업 수집
  • 호별 회수
  • 디포지트 시스템
  • Drop-Off 수집

제11장 플라스틱 재활용 솔루션 시장 : 최종 용도 산업별

  • 자동차
    • 외장
    • 내장
  • 건설
    • 바닥재·지붕재
    • 파이프·피팅
    • 개요와 단열재
  • 소비재
  • 전기·전자기기
  • 포장
    • 연포장
    • 경질 포장
  • 섬유

제12장 플라스틱 재활용 솔루션 시장 : 지역별

  • 아메리카
    • 북미
    • 라틴아메리카
  • 유럽, 중동 및 아프리카
    • 유럽
    • 중동
    • 아프리카
  • 아시아태평양

제13장 플라스틱 재활용 솔루션 시장 : 그룹별

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

제14장 플라스틱 재활용 솔루션 시장 : 국가별

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 중국
  • 인도
  • 일본
  • 호주
  • 한국

제16장 미국의 플라스틱 재활용 솔루션 시장

제17장 중국의 플라스틱 재활용 솔루션 시장

제17장 경쟁 구도

  • 시장 집중도 분석, 2025년
    • 집중 비율(CR)
    • 허핀달-허쉬만 지수(HHI)
  • 최근 동향과 영향 분석, 2025년
  • 제품 포트폴리오 분석, 2025년
  • 벤치마킹 분석, 2025년
  • Alpek S.A.B. de C.V.
  • Biffa plc
  • Cleanaway Waste Management Limited
  • Envision Plastics, Inc.
  • Gravita India Limited
  • GreenMantra Technologies Inc.
  • Indorama Ventures Public Company Limited
  • MBA Polymers, Inc.
  • Plastic Energy Limited
  • PureCycle Technologies, Inc.
  • Renewi plc
  • Republic Services, Inc.
  • SUEZ S.A.
  • TOMRA Systems ASA
  • Veolia Environnement S.A.
KSA

The Plastic Recycling Solutions Market was valued at USD 500.09 million in 2025 and is projected to grow to USD 525.12 million in 2026, with a CAGR of 4.56%, reaching USD 683.58 million by 2032.

KEY MARKET STATISTICS
Base Year [2025] USD 500.09 million
Estimated Year [2026] USD 525.12 million
Forecast Year [2032] USD 683.58 million
CAGR (%) 4.56%

An authoritative orientation to the strategic, regulatory, and technological forces reshaping plastic recycling and the imperative for integrated circularity approaches

The contemporary plastic recycling landscape sits at the intersection of environmental urgency, evolving regulation, and fast-moving technological innovation. Stakeholders across manufacturing, waste management, packaging, and policy must reconcile rising expectations for circularity with operational realities such as feedstock variability, contamination, and capital intensity. This introduction frames the strategic context in which technology selection, collection infrastructure, and end-market development co-evolve, driving new alliances between incumbent processors, chemical firms, and material users.

Transitioning from linear to circular systems requires more than incremental improvements; it demands system-level thinking where product design, collection logistics, and conversion technologies are coordinated to retain material value. Corporate sustainability commitments and procurement policies are increasingly shaping demand signals for recycled content, while regulators are tightening requirements around producer responsibility and recycled content mandates. At the same time, new chemical recycling pathways and advanced mechanical processes are expanding the technical toolkit available to reclaim polymers that were previously destined for energy recovery or landfill.

Throughout this introduction, readers should view plastic recycling not merely as a waste-management problem but as a strategic opportunity to reconfigure supply chains, protect brand value, and capture material premium through verified circular streams. The remainder of this report builds from this framing to analyze where investment, policy, and technology choices will most influence outcomes in the near to medium term.

How regulatory pressure, technological convergence, and commercial integration are rapidly reconfiguring the plastic recycling ecosystem and value chain economics

The landscape of plastic recycling is undergoing transformative shifts driven by three convergent trends: policy intensification, technological maturation, and commercial integration across value chains. Policy drivers include extended producer responsibility frameworks and recycled content mandates that have shifted risk and cost back onto producers, catalyzing investment in both domestic processing capacity and upstream design changes. This regulatory pressure has encouraged brand owners and converters to seek assured supplies of quality recycled resin and to place greater emphasis on traceability and chain-of-custody systems.

On the technology front, the coexistence of mechanical recycling, energy recovery, and new chemical recycling pathways is reshaping business models. Mechanical recycling continues to improve in yield and quality through better sorting, cleaning, and extrusion processes, while chemical recycling approaches such as depolymerization, pyrolysis, and gasification are progressively demonstrated at commercial scale for complex or multilayer waste streams. These advances are enabling circular feedstocks for higher-value applications that previously required virgin polymers.

Commercial integration is accelerating as waste collectors, converters, and brand owners enter into long-term offtake agreements, joint ventures, and equity partnerships to secure feedstock and offtake certainty. Data-driven logistics and pay-for-performance contracting are optimizing collection and sorting efficiency, and digital traceability solutions are responding to stakeholder demands for transparency. Together, these shifts are collapsing traditional barriers between waste management and manufacturing, creating vertically coordinated ecosystems that can better align material quality with end-market requirements.

The 2025 US tariff adjustments and their cascading effects on supply chain resilience, domestic processing investment priorities, and sectoral commercial strategies

United States tariff policy introduced in 2025 has had cumulative effects across the plastic recycling ecosystem by altering relative economics, supply chain routing, and investment calculus for domestic processing capacity. Tariff adjustments on imported polymer feedstocks and certain recovered materials changed the comparative advantage between importing secondary feedstocks and investing in localized recycling infrastructure. As a consequence, companies re-evaluated long-term sourcing strategies, weighing the security of domestic supply against higher input costs and capital expenditure requirements for new processing lines.

The tariffs reinforced incentives to capture and upgrade domestic post-consumer streams, prompting accelerated partnership activity between municipal collection systems and private recyclers. At the same time, some processors responded by prioritizing higher-margin polymer types and product formats that justify the incremental cost of domestic processing, thereby reshaping the types of waste streams that receive investment-backed sorting and upgrading. Logistic patterns also shifted, with regional hubs emerging to aggregate materials and reduce cross-border transport exposure.

Regulatory and policy responses at state and local levels amplified these effects by introducing complementary measures that encouraged local capacity expansion and workforce development in recycling and advanced conversion technologies. Importers and multinational players adjusted commercial strategies to mitigate tariff exposure, including restructuring supply contracts, increasing localization of sourcing, and accelerating technology transfers for cleaner feedstock preparation. The net effect of the 2025 tariffs was not uniform across the sector; instead, it privileged vertically integrated players and regions with mature collection infrastructure while creating transitional windows for technology providers to demonstrate cost-effective domestic solutions.

A detailed segmentation lens tying process technology, polymer chemistry, end-use applications, and collection pathways to practical recycling strategies and investment choices

A nuanced segmentation framework reveals where technical capabilities and market opportunities intersect, and careful analysis of process technology, polymer type, end-use industry, and collection method highlights differentiated value pools. Based on process technology, the market includes Chemical Recycling, Energy Recovery, and Mechanical Recycling. Chemical Recycling is further divided into Depolymerization, Gasification, and Pyrolysis, each offering distinctive pathways to reclaim monomers or produce intermediates suitable for petrochemical integration. Energy Recovery comprises Gasification and Incineration, providing options for residual streams where material recovery is not technically or economically feasible. Mechanical Recycling remains central for many streams and is further composed of Cleaning & Sorting, Extrusion & Pelletizing, and Shredding operations that collectively determine final resin quality and application fit.

When examined by polymer type, High-Density Polyethylene, Low-Density Polyethylene, Polyethylene Terephthalate, Polypropylene, Polystyrene, and Polyvinyl Chloride display divergent recyclability profiles, market demand, and processing requirements. For instance, PET and certain HDPE streams have well-established mechanical recycling pathways that yield food-contact-qualified rekinds in some jurisdictions, while PVC and multi-layer films present greater technical challenges that often necessitate chemical routes or energy recovery. End-use industry segmentation further refines demand dynamics, with Automotive, Construction, Consumer Goods, Electrical And Electronics, Packaging, and Textile representing key demand centers. Within automotive, exteriors and interiors have differing tolerance for recycled content and performance requirements; construction applications such as flooring & roofing, pipes & fittings, and profiles & insulation impose distinct mechanical and fire-performance considerations. Packaging divides into flexible packaging and rigid packaging, with flexible films demanding advanced sorting and compatibilization strategies to be recyclable at scale.

Collection method analysis is equally critical because feedstock quality and contamination levels trace directly to collection systems. Commercial collection, curbside collection, deposit systems, and drop-off collection each produce material streams with differing heterogeneity and cleanliness profiles, thereby influencing the most appropriate downstream conversion technology and the economics of processing. Understanding the interactions among these segmentations enables more precise investment decisions and technology selection, and supports tailored policy interventions to optimize material recovery and preserve polymer value across the life cycle.

How regional policy, infrastructure maturity, and industrial proximity are shaping differentiated pathways to circularity across the Americas, EMEA, and Asia-Pacific

Regional dynamics continue to determine how plastics are collected, processed, and reincorporated into supply chains, with geography shaping policy frameworks, infrastructure maturity, and technology adoption. The Americas show heterogeneous development where advanced collection programs, deposit return schemes, and corporate initiatives have accelerated recycled content commitments, while differences between urban and rural infrastructure remain a persistent operational challenge. In many parts of the region, logistics distances and contamination profiles shape the economic viability of advanced mechanical and chemical recycling investments, prompting strategic clustering around population centers and ports.

In Europe, Middle East & Africa the policy environment has been particularly influential, with the European Union and several national governments advancing ambitious circularity regulations and extended producer responsibility mechanisms that incentivize high-quality sorting and closed-loop applications. These rules have driven rapid adoption of digital traceability and certification systems to assure recycled content claims. Within parts of the Middle East and Africa, however, uneven collection infrastructure and variable enforcement capacity mean that opportunities for leapfrogging to decentralized or modular processing solutions are emerging, especially where export constraints or feedstock scarcity create incentives for local value creation.

Asia-Pacific is marked by a diversity of trajectories, from economies with sophisticated municipal recycling programs and large downstream manufacturing clusters to regions where informal collection and material trading remain dominant. Supply chain proximity to major polymer converters in the Asia-Pacific has historically supported material exports, but recent policy shifts and domestic industrial strategies have encouraged onshore upgrading and investment in both mechanical and chemical recycling capacity. Regional trade flows, port logistics, and local regulatory changes will continue to influence where capacity additions are most viable and how quickly recycled materials can be channeled into higher-value end uses.

How leading organizations are realigning ownership of feedstock, technology, and offtake to capture value from recycled polymers and secure circular supply chains

Key companies operating across the plastic recycling value chain are adopting differentiated strategies to secure feedstock, scale technologies, and access end markets. Some established waste management firms are expanding into higher-value recycling operations, integrating sorting and pre-processing capabilities while partnering with chemical firms for advanced conversion projects. Technology providers specializing in sorting, sensor-based identification, and material compatibilization are forming strategic alliances with converters to demonstrate closed-loop material flows for specific polymer grades.

Manufacturers and brand owners are increasingly active in shaping upstream supply through procurement commitments, take-back schemes, and investments in collection networks. Joint ventures between converters and downstream users are becoming more common as a mechanism to lock in recycled content volumes and to share technical risk associated with process qualification. Meanwhile, innovators focused on depolymerization, pyrolysis, and gasification are pursuing pilot-to-commercial scale demonstrations while negotiating offtake arrangements with petrochemical operators to ensure product uptake.

Across these company strategies, common themes emerge: the pursuit of traceability and quality assurance, a preference for integrated value chain partnerships to reduce feedstock and offtake risk, and the prioritization of polymer streams that balance technical ease of recycling with strong downstream demand. These approaches reflect a pragmatic alignment between technological capability and commercial viability, and they influence where capital is most likely to flow in the near term.

Actionable strategic steps for procurement, technology investment, and cross-sector partnerships that accelerate circularity while managing operational and commercial risk

Industry leaders should pursue a coordinated set of actions that align procurement, operations, and innovation to accelerate circular performance. First, corporations should secure feedstock through strategic partnerships with municipal and commercial collectors, while deploying incentives and service-level agreements that improve material quality at source. Enhancing upstream design for recyclability and harmonizing polymer types and adhesives across product portfolios will reduce sorting complexity and raise yield from mechanical recycling streams.

Second, decision-makers should adopt a pragmatic technology portfolio approach that balances proven mechanical processes with targeted investments in chemical recycling where feedstock composition justifies higher processing complexity. Pilot projects should be structured with clear performance metrics, defined offtake pathways, and stepwise scaling triggers to manage execution risk. Leaders should also prioritize digital traceability solutions to substantiate recycled content claims and to improve chain-of-custody transparency for regulators and customers.

Third, companies should evaluate vertical integration or long-term offtake partnerships to stabilize feedstock supply and to capture margin uplift from upgraded resins. Cross-sector collaboration-linking waste managers, converters, and brand owners-can reduce capital requirements per partner and speed technology deployment. Finally, firms should invest in workforce development and operational excellence to improve sorting accuracy and process yields, and to ensure regulatory compliance and product safety across recycled applications.

A transparent mixed-methods research approach combining executive interviews, plant observations, technical validation, and regulatory analysis to underpin actionable insights

This research synthesizes primary and secondary methodologies designed to triangulate qualitative insight with technical analysis to produce robust, decision-grade findings. Primary research includes structured interviews with senior executives across waste management, conversion, and chemical recycling firms, supplemented by technical consultations with process engineers and material scientists to validate performance claims and technology readiness. Field visits to sorting centers and demonstration plants provided observational data on contamination profiles, throughput constraints, and operational practices that influence yield and resin quality.

Secondary research comprised systematic review of regulatory texts, standards for recycled content and chain-of-custody, patent landscapes, and publicly disclosed corporate commitments. Complementary analysis of logistics flows and regional policy environments grounded the assessment of where capacity additions and infrastructure investment would be most effective. Comparative case studies illuminated practical trade-offs among mechanical, chemical, and energy recovery approaches, while sensitivity analyses identified critical operational parameters such as contamination tolerance, energy intensity, and product qualification timelines.

Throughout, data integrity was preserved by cross-referencing interview statements with operational evidence and third-party technical literature. The methodology emphasizes transparency, with explicit documentation of assumptions and limitations to enable informed interpretation and tailored application of the findings by decision-makers.

A forward-looking synthesis that underscores the necessity of integrated systems, targeted technology deployment, and collaborative incentives to realize circular plastic value chains

Plastic recycling is transitioning from fragmented local practices to more coordinated, higher-value systems where material integrity, policy, and commercial incentives converge. Progress will hinge on the ability of stakeholders to align incentives across collection, processing, and end-use, to invest judiciously in technology where it delivers differentiated performance, and to adopt robust verification systems that build trust in recycled-content claims. While technical challenges persist-particularly for mixed polymers and heavily contaminated streams-the combination of improved sorting, targeted chemical conversion, and smarter collection strategies offers a credible pathway to recapture material value.

The sectors that adopt systemic thinking and form partnerships to manage feedstock risk and product qualification will be best positioned to capture near-term opportunities. Policy will remain an important lever, and adaptive regulatory frameworks that reward quality recycling and foster transparent markets for recycled resin will accelerate deployment. Ultimately, realizing the promise of circular plastics requires a pragmatic sequence of investments and collaborations that prioritize scalable solutions, operational excellence, and market trust.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Definition
  • 1.3. Market Segmentation & Coverage
  • 1.4. Years Considered for the Study
  • 1.5. Currency Considered for the Study
  • 1.6. Language Considered for the Study
  • 1.7. Key Stakeholders

2. Research Methodology

  • 2.1. Introduction
  • 2.2. Research Design
    • 2.2.1. Primary Research
    • 2.2.2. Secondary Research
  • 2.3. Research Framework
    • 2.3.1. Qualitative Analysis
    • 2.3.2. Quantitative Analysis
  • 2.4. Market Size Estimation
    • 2.4.1. Top-Down Approach
    • 2.4.2. Bottom-Up Approach
  • 2.5. Data Triangulation
  • 2.6. Research Outcomes
  • 2.7. Research Assumptions
  • 2.8. Research Limitations

3. Executive Summary

  • 3.1. Introduction
  • 3.2. CXO Perspective
  • 3.3. Market Size & Growth Trends
  • 3.4. Market Share Analysis, 2025
  • 3.5. FPNV Positioning Matrix, 2025
  • 3.6. New Revenue Opportunities
  • 3.7. Next-Generation Business Models
  • 3.8. Industry Roadmap

4. Market Overview

  • 4.1. Introduction
  • 4.2. Industry Ecosystem & Value Chain Analysis
    • 4.2.1. Supply-Side Analysis
    • 4.2.2. Demand-Side Analysis
    • 4.2.3. Stakeholder Analysis
  • 4.3. Porter's Five Forces Analysis
  • 4.4. PESTLE Analysis
  • 4.5. Market Outlook
    • 4.5.1. Near-Term Market Outlook (0-2 Years)
    • 4.5.2. Medium-Term Market Outlook (3-5 Years)
    • 4.5.3. Long-Term Market Outlook (5-10 Years)
  • 4.6. Go-to-Market Strategy

5. Market Insights

  • 5.1. Consumer Insights & End-User Perspective
  • 5.2. Consumer Experience Benchmarking
  • 5.3. Opportunity Mapping
  • 5.4. Distribution Channel Analysis
  • 5.5. Pricing Trend Analysis
  • 5.6. Regulatory Compliance & Standards Framework
  • 5.7. ESG & Sustainability Analysis
  • 5.8. Disruption & Risk Scenarios
  • 5.9. Return on Investment & Cost-Benefit Analysis

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Plastic Recycling Solutions Market, by Process Technology

  • 8.1. Chemical Recycling
    • 8.1.1. Depolymerization
    • 8.1.2. Gasification
    • 8.1.3. Pyrolysis
  • 8.2. Energy Recovery
    • 8.2.1. Gasification
    • 8.2.2. Incineration
  • 8.3. Mechanical Recycling
    • 8.3.1. Cleaning & Sorting
    • 8.3.2. Extrusion & Pelletizing
    • 8.3.3. Shredding

9. Plastic Recycling Solutions Market, by Polymer Type

  • 9.1. High-Density Polyethylene (HDPE)
  • 9.2. Low-Density Polyethylene (LDPE)
  • 9.3. Polyethylene Terephthalate (PET)
  • 9.4. Polypropylene (PP)
  • 9.5. Polystyrene (PS)
  • 9.6. Polyvinyl Chloride (PVC)

10. Plastic Recycling Solutions Market, by Collection Method

  • 10.1. Commercial Collection
  • 10.2. Curbside Collection
  • 10.3. Deposit Systems
  • 10.4. Drop-Off Collection

11. Plastic Recycling Solutions Market, by End-Use Industry

  • 11.1. Automotive
    • 11.1.1. Exteriors
    • 11.1.2. Interiors
  • 11.2. Construction
    • 11.2.1. Flooring & Roofing
    • 11.2.2. Pipes & Fittings
    • 11.2.3. Profiles & Insulation
  • 11.3. Consumer Goods
  • 11.4. Electrical And Electronics
  • 11.5. Packaging
    • 11.5.1. Flexible Packaging
    • 11.5.2. Rigid Packaging
  • 11.6. Textile

12. Plastic Recycling Solutions Market, by Region

  • 12.1. Americas
    • 12.1.1. North America
    • 12.1.2. Latin America
  • 12.2. Europe, Middle East & Africa
    • 12.2.1. Europe
    • 12.2.2. Middle East
    • 12.2.3. Africa
  • 12.3. Asia-Pacific

13. Plastic Recycling Solutions Market, by Group

  • 13.1. ASEAN
  • 13.2. GCC
  • 13.3. European Union
  • 13.4. BRICS
  • 13.5. G7
  • 13.6. NATO

14. Plastic Recycling Solutions Market, by Country

  • 14.1. United States
  • 14.2. Canada
  • 14.3. Mexico
  • 14.4. Brazil
  • 14.5. United Kingdom
  • 14.6. Germany
  • 14.7. France
  • 14.8. Russia
  • 14.9. Italy
  • 14.10. Spain
  • 14.11. China
  • 14.12. India
  • 14.13. Japan
  • 14.14. Australia
  • 14.15. South Korea

15. United States Plastic Recycling Solutions Market

16. China Plastic Recycling Solutions Market

17. Competitive Landscape

  • 17.1. Market Concentration Analysis, 2025
    • 17.1.1. Concentration Ratio (CR)
    • 17.1.2. Herfindahl Hirschman Index (HHI)
  • 17.2. Recent Developments & Impact Analysis, 2025
  • 17.3. Product Portfolio Analysis, 2025
  • 17.4. Benchmarking Analysis, 2025
  • 17.5. Alpek S.A.B. de C.V.
  • 17.6. Biffa plc
  • 17.7. Cleanaway Waste Management Limited
  • 17.8. Envision Plastics, Inc.
  • 17.9. Gravita India Limited
  • 17.10. GreenMantra Technologies Inc.
  • 17.11. Indorama Ventures Public Company Limited
  • 17.12. MBA Polymers, Inc.
  • 17.13. Plastic Energy Limited
  • 17.14. PureCycle Technologies, Inc.
  • 17.15. Renewi plc
  • 17.16. Republic Services, Inc.
  • 17.17. SUEZ S.A.
  • 17.18. TOMRA Systems ASA
  • 17.19. Veolia Environnement S.A.
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제