시장보고서
상품코드
1914287

AI 교통 관리 솔루션 시장 : 구성요소별, 용도별, 최종 이용 산업별, 조직 규모별, 도입 모델별 - 세계 예측(2026-2032년)

AI Traffic Management Solution Market by Component, Application, End User Industry, Organization Size, Deployment Model - Global Forecast 2026-2032

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 186 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

인공지능(AI) 교통 관리 솔루션 시장은 2025년에 339억 8,000만 달러로 평가되었으며, 2026년에는 374억 달러로 성장하여 CAGR 11.80%를 기록하며 2032년까지 742억 2,000만 달러에 달할 것으로 예측됩니다.

주요 시장 통계
기준 연도 2025년 339억 8,000만 달러
추정 연도 2026년 374억 달러
예측 연도 2032년 742억 2,000만 달러
CAGR(%) 11.80%

전략적 의사결정자를 대상으로 AI를 활용한 교통관리 동향, 이해관계자의 요구사항, 실무적 도입 동향을 체계적으로 해설한 권위 있는 입문서

도시 모빌리티 생태계는 전통적인 교통 관리 방식과 신흥 인공지능 기술이 교차하는 교차로에 서 있습니다. 지자체, 민간 모빌리티 사업자, 인프라 운영자들은 점점 더 많은 센서, 커넥티드카, 엣지 컴퓨팅 리소스를 통합하여 보다 안전하고 효율적이며 견고한 교통 통로를 제공해야 한다는 기대에 직면해 있습니다. 기술 도입 속도는 가속화되고 있으며, 이해관계자들은 운영상의 제약과 새로운 데이터 흐름 및 자동화 가능성을 조화시켜야 합니다.

공공 및 민간 사업자가 AI 기반 교통 관리 솔루션을 대규모로 배포하는 방법을 재구성하고, 새로운 기술, 아키텍처, 조달의 변화를 가져옵니다.

도로 네트워크의 모니터링, 제어 및 최적화 방법을 재정의하는 여러 가지 변혁적 변화가 수렴되고 있습니다. 영상 분석, 센서 융합, 시계열 예측에 특화된 머신러닝 모델의 발전에 따라 고정밀 상황 인식과 자동 대응 능력이 실현되고 있습니다. 동시에 커넥티드카 및 인프라 구성요소의 보급으로 보다 고밀도, 다양화된 텔레메트리 기반이 구축되어 보다 풍부한 실시간 개입을 지원하고 있습니다.

진화하는 요금 정책이 하드웨어, 소프트웨어, 서비스 전반에 걸친 조달 전략, 공급망 탄력성, 도입 옵션을 재조정하는 방법

새로운 관세 정책의 도입은 교통 관리 프로그램의 비용 구조와 공급업체 선정 결정에 큰 영향을 미치고, 하드웨어 조달에서 클라우드 서비스 조달에 이르는 의사결정에 영향을 미칠 것입니다. 관세 조정은 엣지 디바이스, 네트워크 모듈, 센서 등 수입 전용 하드웨어에 의존하는 부품에 특히 큰 영향을 미치며, 구매자는 공급망을 재평가하고 제조사 및 지역 간 다변화를 모색해야 합니다. 이를 통해, 수입 혼란에 강한 현지 조달 대체품 및 모듈식 하드웨어 설계에 대한 평가가 촉진됩니다.

조직 규모, 산업 분야, 도입 모델, 애플리케이션 영역별로 상이한 요구사항 파악, 세분화된 세분화 및 컴포넌트 레벨 차별화

통찰력 있는 세분화를 통해 차별화된 도입 요인과 운영 요구사항을 파악하여 제품 로드맵과 조달 전략에 직접 반영할 수 있습니다. 조직 규모를 고려할 때, 대기업은 일반적으로 상호운용성, 분석 통합, 관리형 서비스를 중시하는 통합형 확장형 플랫폼을 추구하는 반면, 중소기업은 빠른 도입과 관리 오버헤드 감소를 실현하는 비용 효율적인 모듈형 솔루션을 우선시합니다.

AI 교통관리 시스템 도입 장소와 방식에 영향을 미치는 지역별 도입 우선순위, 규제 제약, 파트너십 전략의 차이

지역별 특성은 기술 선정, 조달 시기, 파트너십 모델의 우선순위를 각각 다르게 형성합니다. 아메리카에서는 정부 기관과 민간 사업자들이 기존 인프라 및 확장 가능한 클라우드 플랫폼과의 통합을 우선시하는 한편, 교통 관리를 보다 광범위한 모빌리티 및 지속가능성 목표와 연계하는 스마트 시티 구상을 추진하는 경향이 있습니다. 이 지역에서는 정체 완화 및 안전성 향상을 위한 새로운 서비스 시험 도입을 위해 지자체 당국과 민간 모빌리티 사업자 간의 활발한 협력이 이루어지고 있습니다.

경쟁 환경 분석 : 벤더 선정 및 장기적인 프로그램 성공에 영향을 미치는 전략적 차별화 요소와 파트너십 모델을 파악합니다.

AI 교통 관리 생태계의 경쟁 환경은 전문 솔루션 제공업체, 대규모 멀티 도메인 기술 공급업체, 도메인 전문성과 도입 규모를 연결하는 시스템 통합업체가 혼재된 형태로 정의됩니다. 리더 기업들은 분석 및 머신러닝 능력의 깊이, 하드웨어-소프트웨어 통합의 강점, 매니지드 서비스의 폭, 실제 운영 환경에서의 실적 등 여러 축에서 차별화를 꾀하고 있습니다.

AI 기반 교통 시스템 도입 가속화, 상호운용성 확보, 지속적인 운영 성능 유지를 위해 선도 기업이 실행할 수 있는 전략적 이니셔티브

선도 기업들은 AI 기반 교통 관리 이니셔티브의 가치 실현을 가속화하기 위해 실질적이고 영향력 있는 일련의 행동을 우선시해야 합니다. 먼저, 사고 대응 시간, 이동 시간 변동성, 보행자 안전 지표 등 측정 가능한 성과와 연계된 명확한 운영 목표를 설정하고, 이러한 성과를 조달 기준 및 벤더 평가 프로세스 구축에 활용합니다. 명확한 목표는 모호함을 줄이고, 시범사업과 공급업체 간 비교평가를 가능하게 합니다.

실무자 인터뷰, 기술 평가, 엄격한 사례 연구 분석을 결합한 투명성이 높은 혼합 방식의 조사를 통해 운영 관련성이 높은 조사 결과를 도출합니다.

본 조사는 해당 분야 전문가, 기술 실무자, 조달 책임자와의 직접 대화를 통한 1차 조사와 공공 정책 문서, 벤더의 기술 문헌, 도입 사례 연구 등 엄격한 2차 조사를 통합한 혼합 조사 방식을 채택하고 있습니다. 운영팀과 시스템 통합자의 질적 의견은 도입 과제에 대한 배경 정보를 제공하고, 기술적 측면의 인터뷰는 에지 처리, 센서 보정, 모델 수명주기 관리와 관련된 제약 사항을 파악할 수 있습니다.

거버넌스, 조달, 운영 현실의 균형을 유지하면서 AI 기반 교통 혁신을 확대하기 위한 실용적인 경로를 강화하는 간결한 결론

AI를 활용한 교통 관리는 도시 모빌리티의 실질적인 전환점이며, 센싱, 컴퓨팅, 분석 기술의 발전으로 안전, 효율성, 서비스 품질을 의미 있게 개선할 수 있습니다. 이러한 가능성을 실현하기 위해서는 복잡성을 관리하고 운영 연속성을 보장하기 위해 조달 전략, 시스템 아키텍처, 거버넌스 관행을 신중하게 조율해야 합니다. 따라서 의사결정자는 혁신과 실용성의 균형을 맞추고, 모듈성, 상호운용성, 인력 준비태세를 우선시해야 합니다.

자주 묻는 질문

  • AI 교통 관리 솔루션 시장의 2025년 시장 규모는 얼마인가요?
  • AI 교통 관리 솔루션 시장의 2026년 시장 규모는 어떻게 되나요?
  • AI 교통 관리 솔루션 시장의 2032년 예측 규모는 얼마인가요?
  • AI 교통 관리 솔루션 시장의 CAGR은 얼마인가요?
  • AI 기반 교통 관리 솔루션의 도입 동향은 어떻게 변화하고 있나요?
  • AI 교통 관리 솔루션의 도입에 영향을 미치는 요인은 무엇인가요?
  • AI 교통 관리 솔루션의 경쟁 환경은 어떻게 구성되어 있나요?

목차

제1장 서문

제2장 조사 방법

  • 조사 설계
  • 조사 프레임워크
  • 시장 규모 예측
  • 데이터 삼각측량
  • 조사 결과
  • 조사 가정
  • 조사의 제약

제3장 주요 요약

  • CXO 관점
  • 시장 규모와 성장 동향
  • 시장 점유율 분석, 2025
  • FPNV 포지셔닝 매트릭스, 2025
  • 새로운 수익 기회
  • 차세대 비즈니스 모델
  • 업계 로드맵

제4장 시장 개요

  • 업계 생태계와 밸류체인 분석
  • Porter's Five Forces 분석
  • PESTEL 분석
  • 시장 전망
  • GTM 전략

제5장 시장 인사이트

  • 소비자 인사이트와 최종사용자 관점
  • 소비자 경험 벤치마크
  • 기회 매핑
  • 유통 채널 분석
  • 가격 동향 분석
  • 규제 준수와 표준 프레임워크
  • ESG와 지속가능성 분석
  • 디스럽션과 리스크 시나리오
  • ROI와 CBA

제6장 미국 관세의 누적 영향, 2025

제7장 AI의 누적 영향, 2025

제8장 AI 교통 관리 솔루션 시장 : 구성요소별

  • 하드웨어
    • 엣지 디바이스
    • 네트워크 장비
    • 센서
  • 서비스
    • 매니지드 서비스
    • 전문 서비스
  • 소프트웨어
    • 애널리틱스 소프트웨어
    • 애플리케이션 소프트웨어
    • 미들웨어

제9장 AI 교통 관리 솔루션 시장 : 용도별

  • 커넥티드카
    • V2I
      • 인프라 센서
      • 도로측 장비
    • V2V
  • 스마트 주차
    • 노상외
    • 노상
  • 요금 관리
    • 전자요금징수 시스템
    • 수동 요금 징수
  • 도시 교통 관리
    • 적응 신호 제어
    • 사고 감지
      • 센서 기반 감지
      • 영상 해석
    • 교통 예측

제10장 AI 교통 관리 솔루션 시장 : 최종 이용 산업별

  • 정부
    • 자치체
    • 주정부 기관
  • 민간 기업
    • 물류
    • 라이드셰어링 기업
  • 운송 기관
    • 도로 운영자
    • 교통 경찰

제11장 AI 교통 관리 솔루션 시장 : 조직 규모별

  • 대기업
  • 중소기업

제12장 AI 교통 관리 솔루션 시장 : 전개 모델별

  • 클라우드
    • 프라이빗 클라우드
    • 퍼블릭 클라우드
  • 하이브리드
  • 온프레미스
    • 데이터센터
    • 로컬 서버

제13장 AI 교통 관리 솔루션 시장 : 지역별

  • 아메리카
    • 북미
    • 라틴아메리카
  • 유럽, 중동 및 아프리카
    • 유럽
    • 중동
    • 아프리카
  • 아시아태평양

제14장 AI 교통 관리 솔루션 시장 : 그룹별

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

제15장 AI 교통 관리 솔루션 시장 : 국가별

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 중국
  • 인도
  • 일본
  • 호주
  • 한국

제16장 미국 AI 교통 관리 솔루션 시장

제17장 중국 AI 교통 관리 솔루션 시장

제18장 경쟁 구도

  • 시장 집중도 분석, 2025
    • 집중 비율(CR)
    • 허핀달-허쉬만 지수(HHI)
  • 최근 동향과 영향 분석, 2025
  • 제품 포트폴리오 분석, 2025
  • 벤치마킹 분석, 2025
  • Bosch Mobility Solutions GmbH
  • Cisco Systems, Inc.
  • Cubic Corporation
  • Econolite Group, Inc.
  • Hitachi Ltd.
  • Huawei Technologies Co., Ltd.
  • IBM Corporation
  • INRIX, Inc.
  • Intel Corporation
  • Iteris, Inc.
  • Kapsch TrafficCom AG
  • Siemens AG
  • SWARCO AG
  • Thales Group S.A.
  • TomTom N.V.
KSM

The AI Traffic Management Solution Market was valued at USD 33.98 billion in 2025 and is projected to grow to USD 37.40 billion in 2026, with a CAGR of 11.80%, reaching USD 74.22 billion by 2032.

KEY MARKET STATISTICS
Base Year [2025] USD 33.98 billion
Estimated Year [2026] USD 37.40 billion
Forecast Year [2032] USD 74.22 billion
CAGR (%) 11.80%

An authoritative introduction that frames AI-enabled traffic management trends, stakeholder imperatives, and practical adoption dynamics for strategic decision-makers

Urban mobility ecosystems are at a crossroads where legacy traffic management approaches collide with emergent artificial intelligence capabilities. Municipal authorities, private mobility providers, and infrastructure operators face rising expectations to deliver safer, more efficient, and resilient transport corridors while integrating a proliferating set of sensors, connected vehicles, and edge compute resources. The pace of technology adoption is accelerating, and stakeholders must reconcile operational constraints with new data flows and automation potential.

This executive summary synthesizes the strategic implications of AI-enabled traffic management for leaders responsible for policy, procurement, and operations. It highlights how heterogeneous deployments-from cloud-based orchestration to edge-centric analytics-interact with organizational structures, regulatory environments, and vendor ecosystems. By focusing on practical considerations such as interoperability, incident response, and service-level continuity, the narrative underscores pragmatic pathways to move pilot projects into sustained production.

Throughout, the emphasis is on equipping decision-makers with a strong grasp of the forces reshaping the landscape, the segmentation that structures buyer needs, and the regional nuances that influence deployment priorities. The goal is to provide an actionable synthesis that supports short-term tactical moves and longer-term strategic planning without delving into raw numerical projections, thereby enabling leaders to set priorities and allocate attention where it matters most.

Emerging technological, architectural, and procurement shifts that are reshaping how public and private operators deploy AI-driven traffic management solutions at scale

Several transformative shifts are converging to redefine how road networks are monitored, controlled, and optimized. Advances in machine learning models tailored for video analytics, sensor fusion, and time-series prediction are enabling higher-fidelity situational awareness and automated response capabilities. At the same time, the proliferation of connected vehicles and infrastructure components is creating a denser, more diversified telemetry fabric that supports richer real-time interventions.

Concurrently, architecture paradigms are evolving. Edge computing has emerged as a necessary complement to centralized processing, enabling low-latency decisioning for safety-critical functions while reducing backhaul costs and improving privacy posture. Hybrid deployment models that combine local inference with cloud-based model orchestration are becoming the preferred pattern for agencies balancing responsiveness with centralized analytics and long-term model training.

Policy and procurement frameworks are shifting in parallel. Procurement teams are increasingly oriented toward outcomes rather than discrete products, favoring managed services and platform approaches that can integrate multi-vendor ecosystems. Interoperability standards and open APIs are rising in importance as operators seek to avoid lock-in and to enable modular upgrades. These technological, architectural, and procurement shifts together create new levers for performance improvement but also demand stronger governance models and staff capabilities focused on data stewardship, model validation, and cross-agency coordination.

How evolving tariff policies are recalibrating procurement strategies, supply chain resilience, and deployment choices across hardware, software, and services

The introduction of new tariff policies has a pronounced effect on the cost structure and vendor selection calculus for traffic management programs, influencing decisions from hardware sourcing to cloud service procurement. Tariff adjustments can disproportionately affect components that rely on imported specialized hardware such as edge devices, networking modules, and sensors, prompting purchasers to reassess supply chains and to seek diversification across manufacturers and regions. This, in turn, encourages the evaluation of locally sourced alternatives and modular hardware designs that are resilient to import disruptions.

Services and software procurement are also affected, as changes in tariff regimes can alter the relative economics of deploying cloud-based platforms versus localized on-premise solutions. Agencies and enterprises are therefore revisiting deployment models to weigh latency and sovereignty considerations against ongoing operational costs and vendor support models. For organizations with multi-jurisdictional footprints, tariff volatility increases the premium on flexible deployment templates that can be adapted to local trade conditions without undermining system interoperability.

Operationally, procurement teams are placing more emphasis on total cost of ownership drivers that extend beyond headline acquisition costs, including maintenance cycles, firmware and security patching, and the lifecycle management of analytics models. Project leads are also integrating scenario planning into procurement strategies to maintain program continuity amid shifting trade policies, and to preserve competitive tendering dynamics that encourage innovation while controlling cost exposure.

Granular segmentation and component-level distinctions that reveal divergent requirements across organization sizes, industry verticals, deployment models, and application domains

Insightful segmentation reveals differentiated adoption drivers and operational requirements that directly inform product roadmaps and procurement strategies. When considering organization size, large enterprises typically pursue integrated, scalable platforms with heavy emphasis on interoperability, analytics integration, and managed services, whereas small and medium-sized enterprises prioritize cost-effective, modular solutions that offer rapid deployment and lower administrative overhead.

Examining end-user industries exposes nuanced demand patterns. Government agencies, spanning municipalities and state departments, prioritize regulatory compliance, system reliability, and long lifecycle support for infrastructure investments. Private enterprises, including logistics operators and ride-sharing companies, emphasize real-time optimization, fleet-level analytics, and integration with existing operational platforms. Transportation agencies, composed of road operators and traffic police, require robust incident detection and enforcement-grade data fidelity to support operational decision-making and public safety.

A component-based view clarifies technology and investment priorities. Hardware includes edge devices, networking equipment, and a broad array of sensors that must be ruggedized for field conditions. Services cover both managed services and professional services, enabling ongoing operations, integration, and domain expertise. Software spans analytics suites, application software, and middleware, with analytics delivering the predictive capabilities that underpin dynamic signal control and incident recognition, application software driving workflows, and middleware ensuring system cohesion and data integration.

Deployment model distinctions matter for governance and operational performance. Cloud options split into private and public variants that influence data governance and scalability; hybrid models, often implemented as multi-cloud, provide flexibility for balancing latency and cost; on-premise alternatives, whether housed in data centers or on local servers, deliver control and deterministic performance for safety-critical functions.

Application-level segmentation highlights where AI delivers tangible operational value. Connected vehicle implementations require vehicle-to-infrastructure and vehicle-to-vehicle solutions, supported by infrastructure sensors and roadside units. Smart parking initiatives differ by context, with off-street solutions focusing on lot-level management and on-street implementations integrating curbside sensors and payment systems. Toll management ranges from fully electronic collection architectures to legacy manual systems with evolving automation overlays. Urban traffic management encompasses adaptive signal control, incident detection, and traffic prediction, with incident detection itself leveraging both sensor-based systems and advanced video analytics to provide rapid, reliable alerts.

Regional distinctions in deployment priorities, regulatory constraints, and partnership strategies that influence where and how AI traffic management systems are implemented

Regional dynamics shape priorities for technology selection, procurement timing, and partnership models in distinct ways. In the Americas, agencies and private operators often prioritize integration with legacy infrastructure and scalable cloud platforms, while also pursuing smart city initiatives that link traffic management to broader mobility and sustainability goals. This region exhibits active collaboration between municipal authorities and private mobility players to pilot new services that reduce congestion and improve safety.

Across Europe, the Middle East, and Africa, regulatory harmonization, data protection imperatives, and geopolitical considerations influence the choice of suppliers and deployment modalities. European cities, in particular, balance ambitious decarbonization agendas with stringent privacy frameworks, prompting investments in privacy-preserving analytics and edge processing. In some Middle Eastern and African contexts, rapid urbanization and constrained infrastructure budgets drive interest in modular, cost-efficient systems that can be incrementally scaled and supported by managed service models.

The Asia-Pacific region is characterized by a spectrum of maturity levels where highly urbanized centers lead in large-scale deployments of connected vehicle infrastructure and adaptive signal control, while rapidly developing cities focus on leapfrogging legacy systems with cloud-native service models. Supply chain considerations and local manufacturing capabilities are also prominent drivers in this region, shaping vendor strategies and partnership approaches for both hardware and software providers.

These regional profiles inform where to prioritize interoperability, where to emphasize sovereignty and privacy, and where to design solutions that accommodate a rapid rollout and incremental capability expansion. Decision-makers should thus tailor procurement templates, stakeholder engagement strategies, and pilot designs to align with the specific regulatory, operational, and economic contours of each geography.

Competitive landscape analysis highlighting the strategic differentiators and partnership models that influence vendor selection and long-term program success

Competitive dynamics in the AI traffic management ecosystem are defined by a mix of specialist solution providers, large multi-domain technology vendors, and systems integrators that bridge domain expertise with implementation scale. Leaders differentiate along several axes: depth of analytics and machine learning capabilities, strength of hardware-software integration, breadth of managed services, and proven experience in live operational environments.

Innovation frequently emerges from firms that combine field-proven sensor and edge device portfolios with robust analytics stacks, enabling lower-latency inference and high-confidence incident detection. Meanwhile, larger technology vendors bring advantages in cloud scalability, enterprise-grade security, and global support infrastructures that appeal to organizations with multi-jurisdictional mandates. Systems integrators and professional service firms play a critical role in tailoring off-the-shelf capabilities to local operational practices and in providing the change management expertise required for sustained adoption.

Strategic partnerships and open integration frameworks are increasingly important; vendors who demonstrate clear APIs, support for industry standards, and collaborative proof-of-concept processes are better positioned to win long-term engagements. For procurement teams, the most compelling vendor propositions combine demonstrable field outcomes with transparent model governance, clear upgrade pathways, and flexible commercial terms that allow for iterative capability expansion without costly rip-and-replace cycles.

Actionable strategic initiatives leaders can implement to accelerate deployment, ensure interoperability, and sustain operational performance of AI-driven traffic systems

Leaders should prioritize a set of pragmatic, high-impact actions to accelerate value realization from AI-driven traffic management initiatives. First, establish clear operational objectives tied to measurable outcomes such as incident response times, travel-time variability, or pedestrian safety indicators, and use these outcomes to structure procurement criteria and vendor evaluation processes. Clear objectives reduce ambiguity and enable comparative assessments across pilots and suppliers.

Second, adopt a modular architecture that separates sensing, edge inference, and centralized analytics, which facilitates incremental upgrades and reduces vendor lock-in. This architecture should incorporate well-defined APIs and data schemas to support multi-vendor interoperability and to enable third-party innovation. Complementing this, embed robust data governance and model validation practices to ensure analytics remain accurate, auditable, and aligned with privacy obligations.

Third, diversify supply chains for critical hardware components and consider hybrid deployment pathways that leverage local compute for latency-sensitive tasks while maintaining cloud-based model training and archival analytics. Procurement teams should negotiate lifecycle support clauses and transparent maintenance arrangements to reduce long-term operational risk. Finally, invest in workforce capabilities by building cross-functional teams that combine domain expertise in traffic operations with data science and software engineering skills, and create continual learning programs that keep staff current with evolving AI methodologies and cybersecurity practices.

A transparent mixed-methods research approach combining practitioner interviews, technical assessments, and rigorous case study analysis to derive operationally relevant insights

This research employs a mixed-methods approach that synthesizes primary engagements with domain experts, technical practitioners, and procurement leaders together with rigorous secondary analysis of public policy documents, vendor technical literature, and implementation case studies. Qualitative inputs from operational teams and systems integrators provide context on deployment challenges, while technical interviews illuminate constraints associated with edge processing, sensor calibration, and model lifecycle management.

The methodology emphasizes cross-validation across data sources to ensure conclusions are grounded in observed practice. Implementation case studies were analyzed to extract recurring success factors and failure modes, with particular attention to integration patterns, governance models, and long-term support arrangements. Technical assessments considered both functional performance-such as latency and detection accuracy-and non-functional attributes like maintainability and security posture.

Where appropriate, scenario analysis was used to explore the operational implications of varying procurement and tariff environments, enabling a robust understanding of procurement resilience strategies. The combined qualitative and technical lens supports actionable guidance for stakeholders while avoiding speculative numerical forecasting, focusing instead on observable trends and operationally relevant insights.

A concise concluding narrative that reinforces pragmatic pathways to scale AI-driven traffic innovations while balancing governance, procurement, and operational realities

AI-enabled traffic management represents a practical inflection point for urban mobility, where advances in sensing, compute, and analytics can deliver meaningful improvements in safety, efficiency, and service quality. Realizing this potential requires careful alignment of procurement strategies, system architectures, and governance practices to manage complexity and to safeguard operational continuity. Decision-makers must therefore balance innovation with pragmatism, prioritizing modularity, interoperability, and workforce readiness.

The path to durable impact is iterative: early pilots should focus on clear operational outcomes, validated by empirical performance data, and structured to scale through modular design and flexible commercial terms. Long-term success will hinge on cross-stakeholder collaboration that connects policy objectives, technical standards, and operational expertise, enabling smoother transitions from pilot phases to city- or network-wide deployments.

Ultimately, the most resilient programs will be those that combine strategic clarity, technical rigor, and procurement flexibility to adapt to evolving trade conditions and technology trajectories. With disciplined governance and targeted investments in people and processes, agencies and enterprises can harness AI to deliver safer, more fluid, and more equitable urban mobility experiences.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Definition
  • 1.3. Market Segmentation & Coverage
  • 1.4. Years Considered for the Study
  • 1.5. Currency Considered for the Study
  • 1.6. Language Considered for the Study
  • 1.7. Key Stakeholders

2. Research Methodology

  • 2.1. Introduction
  • 2.2. Research Design
    • 2.2.1. Primary Research
    • 2.2.2. Secondary Research
  • 2.3. Research Framework
    • 2.3.1. Qualitative Analysis
    • 2.3.2. Quantitative Analysis
  • 2.4. Market Size Estimation
    • 2.4.1. Top-Down Approach
    • 2.4.2. Bottom-Up Approach
  • 2.5. Data Triangulation
  • 2.6. Research Outcomes
  • 2.7. Research Assumptions
  • 2.8. Research Limitations

3. Executive Summary

  • 3.1. Introduction
  • 3.2. CXO Perspective
  • 3.3. Market Size & Growth Trends
  • 3.4. Market Share Analysis, 2025
  • 3.5. FPNV Positioning Matrix, 2025
  • 3.6. New Revenue Opportunities
  • 3.7. Next-Generation Business Models
  • 3.8. Industry Roadmap

4. Market Overview

  • 4.1. Introduction
  • 4.2. Industry Ecosystem & Value Chain Analysis
    • 4.2.1. Supply-Side Analysis
    • 4.2.2. Demand-Side Analysis
    • 4.2.3. Stakeholder Analysis
  • 4.3. Porter's Five Forces Analysis
  • 4.4. PESTLE Analysis
  • 4.5. Market Outlook
    • 4.5.1. Near-Term Market Outlook (0-2 Years)
    • 4.5.2. Medium-Term Market Outlook (3-5 Years)
    • 4.5.3. Long-Term Market Outlook (5-10 Years)
  • 4.6. Go-to-Market Strategy

5. Market Insights

  • 5.1. Consumer Insights & End-User Perspective
  • 5.2. Consumer Experience Benchmarking
  • 5.3. Opportunity Mapping
  • 5.4. Distribution Channel Analysis
  • 5.5. Pricing Trend Analysis
  • 5.6. Regulatory Compliance & Standards Framework
  • 5.7. ESG & Sustainability Analysis
  • 5.8. Disruption & Risk Scenarios
  • 5.9. Return on Investment & Cost-Benefit Analysis

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. AI Traffic Management Solution Market, by Component

  • 8.1. Hardware
    • 8.1.1. Edge Devices
    • 8.1.2. Networking Devices
    • 8.1.3. Sensors
  • 8.2. Services
    • 8.2.1. Managed Services
    • 8.2.2. Professional Services
  • 8.3. Software
    • 8.3.1. Analytics Software
    • 8.3.2. Application Software
    • 8.3.3. Middleware

9. AI Traffic Management Solution Market, by Application

  • 9.1. Connected Vehicles
    • 9.1.1. V2I
      • 9.1.1.1. Infrastructure Sensors
      • 9.1.1.2. Roadside Units
    • 9.1.2. V2V
  • 9.2. Smart Parking
    • 9.2.1. Off Street
    • 9.2.2. On Street
  • 9.3. Toll Management
    • 9.3.1. Electronic Toll Collection
    • 9.3.2. Manual Toll
  • 9.4. Urban Traffic Management
    • 9.4.1. Adaptive Signal Control
    • 9.4.2. Incident Detection
      • 9.4.2.1. Sensor Based Detection
      • 9.4.2.2. Video Analytics
    • 9.4.3. Traffic Prediction

10. AI Traffic Management Solution Market, by End User Industry

  • 10.1. Government
    • 10.1.1. Municipalities
    • 10.1.2. State Departments
  • 10.2. Private Enterprises
    • 10.2.1. Logistics
    • 10.2.2. Ride Sharing Companies
  • 10.3. Transportation Agencies
    • 10.3.1. Road Operators
    • 10.3.2. Traffic Police

11. AI Traffic Management Solution Market, by Organization Size

  • 11.1. Large Enterprises
  • 11.2. Smes

12. AI Traffic Management Solution Market, by Deployment Model

  • 12.1. Cloud
    • 12.1.1. Private Cloud
    • 12.1.2. Public Cloud
  • 12.2. Hybrid
  • 12.3. On Premise
    • 12.3.1. Data Centers
    • 12.3.2. Local Servers

13. AI Traffic Management Solution Market, by Region

  • 13.1. Americas
    • 13.1.1. North America
    • 13.1.2. Latin America
  • 13.2. Europe, Middle East & Africa
    • 13.2.1. Europe
    • 13.2.2. Middle East
    • 13.2.3. Africa
  • 13.3. Asia-Pacific

14. AI Traffic Management Solution Market, by Group

  • 14.1. ASEAN
  • 14.2. GCC
  • 14.3. European Union
  • 14.4. BRICS
  • 14.5. G7
  • 14.6. NATO

15. AI Traffic Management Solution Market, by Country

  • 15.1. United States
  • 15.2. Canada
  • 15.3. Mexico
  • 15.4. Brazil
  • 15.5. United Kingdom
  • 15.6. Germany
  • 15.7. France
  • 15.8. Russia
  • 15.9. Italy
  • 15.10. Spain
  • 15.11. China
  • 15.12. India
  • 15.13. Japan
  • 15.14. Australia
  • 15.15. South Korea

16. United States AI Traffic Management Solution Market

17. China AI Traffic Management Solution Market

18. Competitive Landscape

  • 18.1. Market Concentration Analysis, 2025
    • 18.1.1. Concentration Ratio (CR)
    • 18.1.2. Herfindahl Hirschman Index (HHI)
  • 18.2. Recent Developments & Impact Analysis, 2025
  • 18.3. Product Portfolio Analysis, 2025
  • 18.4. Benchmarking Analysis, 2025
  • 18.5. Bosch Mobility Solutions GmbH
  • 18.6. Cisco Systems, Inc.
  • 18.7. Cubic Corporation
  • 18.8. Econolite Group, Inc.
  • 18.9. Hitachi Ltd.
  • 18.10. Huawei Technologies Co., Ltd.
  • 18.11. IBM Corporation
  • 18.12. INRIX, Inc.
  • 18.13. Intel Corporation
  • 18.14. Iteris, Inc.
  • 18.15. Kapsch TrafficCom AG
  • 18.16. Siemens AG
  • 18.17. SWARCO AG
  • 18.18. Thales Group S.A.
  • 18.19. TomTom N.V.
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제