시장보고서
상품코드
1914356

그린 전력 발전 시장 : 기술별, 연결 유형별, 용량 범위별, 소유 모델별, 최종 용도별 - 세계 예측(2026-2032년)

Green Power Generation Market by Technology, Connection Type, Capacity Range, Ownership Model, End Use - Global Forecast 2026-2032

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 190 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

그린 전력 발전 시장은 2025년에 609억 7,000만 달러로 평가되었으며, 2026년에는 678억 1,000만 달러로 성장하여 CAGR 11.64%를 기록하며 2032년까지 1,318억 3,000만 달러에 달할 것으로 예측됩니다.

주요 시장 통계
기준 연도 2025년 609억 7,000만 달러
추정 연도 2026년 678억 1,000만 달러
예측 연도 2032년 1,318억 3,000만 달러
CAGR(%) 11.64%

촉진요인, 정책 동향, 기술 성숙도, 이해관계자 요구 등 전략적 배경을 바탕으로 강력한 녹색 전력 전환 기반을 구축합니다.

친환경 발전을 위한 에너지 전환은 정책적 야망, 기술 혁신, 자본 재분배가 결합된 시대를 정의하는 전환점입니다. 본 보고서에서는 전 세계 전력 시스템을 재구성하고 있는 주요 촉진요인, 즉 탈탄소화 노력, 청정 기술의 비용 경쟁력 향상, 그리고 지속가능성에 대한 소비자 및 기업의 기대 변화 등에 초점을 맞추어 현재 상황을 개괄적으로 설명합니다. 이러한 움직임은 진화하는 규제 프레임워크와 새로운 비즈니스 모델과 함께 진행되고 있으며, 기존 기업이나 신규 진입 기업 모두 리스크, 전략, 역량 투자에 대한 재검토를 요구하고 있습니다.

기술 혁신, 자금 조달 모델, 공급망 진화, 규제 재조정 등 전 세계 친환경 전력 환경을 재구성하는 변혁적 변화를 파악합니다.

녹색 전력의 전망은 점진적인 비용 개선을 넘어 전체 가치사슬의 구조적 변화로 이어지는 변혁적 전환을 경험하고 있습니다. 에너지 저장 화학 및 시스템 통합의 획기적인 발전으로 변동성 재생에너지 발전의 보급이 확대되고 있으며, 모듈식 제조 및 표준화된 프로젝트 구성요소는 개발 기간을 단축하고 있습니다. 동시에 블렌디드 파이낸스, 기업용 전력구매계약(PPA) 등 새로운 자금조달 모델은 자금원을 다양화하여 기존에는 은행 대출을 받을 수 없었던 프로젝트를 실현할 수 있도록 하고 있습니다.

2025년 미국의 관세 조치가 국제 공급망, 프로젝트 경제성, 부품 조달, 경쟁적 포지셔닝에 미치는 누적적 영향 평가

2025년 미국이 관세를 재도입하거나 조정할 경우, 녹색 전력 부문 전체의 국제 무역 흐름, 프로젝트 설계 선택, 조달 전략에 연쇄적인 영향을 미칠 것입니다. 관세 조치는 주요 부품의 상대적 비용을 변동시키고, 제조 거점 이전을 촉진하며, 프로젝트 개발자의 전략적 비축과 공급처 다변화를 촉진합니다. 가장 최근의 영향으로는 조달팀과 공급망 관리자는 벤더 리스크와 리드타임을 재평가해야 하고, 개발자는 잠재적인 비용 변동과 납기 리스크를 관리하기 위해 프로젝트 일정을 재검토해야 합니다.

기술 유형, 최종 용도, 연결 모델, 용량 범위, 소유 구조 등 도입 결정에 영향을 미치는 기술 유형, 최종 용도, 연결 모델, 용량 범위, 소유 구조 등 각 부문의 미묘한 기회를 파악할 수 있는 중요한 인사이트를 제공합니다.

세분화에 대한 이해는 특정 시장 상황에 맞는 전략과 기술 선택을 수립하는 데 있어 매우 중요합니다. 기술 차원에는 바이오연료, 바이오가스, 바이오매스 등의 하위 범주를 포함하는 바이오에너지, 바이너리 사이클, 건식 증기, 플래시 증기 등의 변형이 있는 지열, 양수식, 저수지식, 유입식 구성을 포함하는 수력, 집광형 태양열 발전과 태양광발전으로 구분되는 태양광, 해상 및 육상 애플리케이션으로 분류되는 풍력 등이 포함됩니다. 태양광, 해상과 육상 애플리케이션으로 분류되는 풍력 등이 있습니다. 각 기술 및 하위 기술은 각각 다른 자본 집약도, 입지 제약, 수명주기 배출 프로파일, 운영 특성을 가지고 있으며, 이는 허가 절차, 자금 조달 의지, 계통연계 요구에 영향을 미칩니다.

정책, 투자, 인프라 개발의 우선순위, 아메리카, 유럽, 중동 및 아프리카, 아시아태평양의 지역적 동향과 전략적 시사점을 제시합니다.

지역별 동향은 탈탄소화 경로를 형성하는 데 결정적인 역할을 하고 있으며, 아메리카, 유럽, 중동 및 아프리카, 아시아태평양을 가로지르는 정밀한 분석을 통해 정책 우선순위, 투자 흐름, 인프라 구축 상황의 차이를 확인할 수 있습니다. 아메리카에서는 기업의 오프 테이크 수요, 주정부 차원의 정책 수단, 그리고 대규모 발전과 분산형 발전을 모두 가능하게 하는 다양한 자원 부존이 결합되어 시장의 모멘텀을 견인하고 있습니다. 이러한 환경은 지역적, 규제적 차이가 있는 다양한 프로젝트 프로파일에 대응할 수 있는 유연한 조달 전략과 경쟁력 있는 공급망에 유리하게 작용합니다.

경쟁 환경과 기업 전략 : 주요 개발자, 기술 제공자, 금융업체들이 탈탄소화 요구와 시장 혼란에 어떻게 적응하고 있는지 살펴봅니다.

친환경 전력 생태계를 구성하는 주요 기업들은 기술 발전, 규제 변화, 고객 기대치의 변화로부터 가치를 창출하기 위해 전략을 재구성하고 있습니다. 개발 사업자는 유연한 납기 설정, 지수 연동 가격 메커니즘, 공급 기반을 강화하는 제조 파트너십 등 보다 높은 수준의 리스크 관리를 계약 구조에 통합하고 있습니다. 기술 제공업체들은 라이프사이클 비용을 절감하고 자산 소유자의 예측 가능성을 높이기 위해 모듈식 설계와 디지털 운영 역량에 투자하고 있습니다. 금융기관과 프로젝트 투자자들은 공급망 탄력성, 탄소발자국 고려, 수익 다각화 전략을 통합한 보다 정교한 인수 프레임워크를 채택하고 있습니다.

업계 리더들이 개발을 가속화하고, 프로젝트 리스크를 줄이며, 공급망을 최적화하고, 상업적 전략을 발전하는 정책 프레임워크에 맞게 조정할 수 있는 실용적 제안

업계 리더들은 단기적 성과와 장기적 회복탄력성의 균형을 맞추기 위해 실천 가능한 일련의 조치를 취하는 것이 좋습니다. 첫째, 공급업체 관계의 다양화, 지역적으로 분산된 대체 공급업체 선정, 관세 및 무역정책 변동에 대응할 수 있는 유연한 조건 협상을 통해 공급망의 탄력성을 강화해야 합니다. 이를 통해 단일 위험에 대한 노출을 줄이고, 혼란 발생 시 전술적 선택권을 확보할 수 있습니다. 둘째, 인허가 및 건설 주기를 단축하고, 시장 전반에 걸쳐 재현 가능한 상업적 모델을 가능하게 하는 모듈화 및 표준화된 설계를 우선시해야 합니다. 표준화는 비용의 투명성을 높이고 확장 가능한 배포를 지원합니다.

데이터 수집, 검증, 이해관계자 인터뷰, 인사이트를 통합하고 전략적 의사결정을 지원하는 데 사용된 분석 프레임워크를 설명하는 투명한 조사 방법론

본 조사는 전략적 의사결정을 지원하기 위해 설계된 투명하고 엄격한 조사 방법을 사용하여 1차 정보와 2차 정보를 통합하고 있습니다. 1차 자료는 개발자, 기술 공급업체, 금융 관계자, 송배전 사업자와의 구조화된 인터뷰를 통해 운영상의 문제, 계약 관행, 지역별로 미묘한 규제 차이에 대한 직접적인 견해를 수집합니다. 이러한 결과는 공개된 정책 문서, 기술 표준, 기업 공시 정보와 대조하여 신뢰성을 확보하고, 이해관계자 그룹 간 일관된 주제를 확인합니다.

결론적으로, 핵심적인 발견, 전략적 방향성, 잔여 과제 및 민관 이해관계자 간 협업 우선순위에 대한 통합적인 전망을 제시합니다.

결론적으로, 녹색 전력으로의 전환은 기술 선택, 공급망 설계, 상업적 혁신을 통합하는 전략이 필요합니다. 이 분야는 정책 수단의 변화, 자금 조달 방법의 진화, 무역 정책의 동향에 의해 형성되고 있으며, 이러한 것들이 결합되어 위험과 기회를 재정의하고 있습니다. 따라서 공급망 탄력성 강화, 모듈화 추진, 자금 조달 구조 개선, 규제 당국과의 건설적인 대화 등 적극적으로 적응하는 조직이 새로운 수요를 포착하고 하방 리스크를 줄이는 데 유리한 위치를 점할 수 있을 것입니다.

자주 묻는 질문

  • 그린 전력 발전 시장의 2025년 시장 규모는 얼마인가요?
  • 그린 전력 발전 시장의 2032년 예측 규모는 어떻게 되나요?
  • 2026년 그린 전력 발전 시장의 성장률은 어떻게 되나요?
  • 그린 전력 발전 시장의 주요 촉진 요인은 무엇인가요?
  • 2025년 미국의 관세 조치가 그린 전력 시장에 미치는 영향은 무엇인가요?
  • 그린 전력 발전 시장에서 기술 유형에 따른 기회는 무엇인가요?
  • 아메리카 지역의 그린 전력 시장 동향은 어떤가요?
  • 친환경 전력 생태계의 주요 기업들은 어떤 전략을 채택하고 있나요?

목차

제1장 서문

제2장 조사 방법

  • 조사 설계
  • 조사 프레임워크
  • 시장 규모 예측
  • 데이터 삼각측량
  • 조사 결과
  • 조사 가정
  • 조사의 제약

제3장 주요 요약

  • CXO 관점
  • 시장 규모와 성장 동향
  • 시장 점유율 분석, 2025
  • FPNV 포지셔닝 매트릭스, 2025
  • 새로운 수익 기회
  • 차세대 비즈니스 모델
  • 업계 로드맵

제4장 시장 개요

  • 업계 생태계와 밸류체인 분석
  • Porter's Five Forces 분석
  • PESTEL 분석
  • 시장 전망
  • GTM 전략

제5장 시장 인사이트

  • 소비자 인사이트와 최종사용자 관점
  • 소비자 경험 벤치마크
  • 기회 매핑
  • 유통 채널 분석
  • 가격 동향 분석
  • 규제 준수와 표준 프레임워크
  • ESG와 지속가능성 분석
  • 디스럽션과 리스크 시나리오
  • ROI와 CBA

제6장 미국 관세의 누적 영향, 2025

제7장 AI의 누적 영향, 2025

제8장 그린 전력 발전 시장 : 기술별

  • 바이오에너지
    • 바이오연료
    • 바이오가스
    • 바이오매스
  • 지열
    • 바이너리 사이클
    • 건식 증기
    • 플래시 증기
  • 수력발전
    • 양수 발전
    • 저수식
    • 유입식 수력발전
  • 태양광발전
    • 집광형 태양열발전
    • 태양광발전
  • 풍력발전
    • 오프쇼어
    • 온쇼어

제9장 그린 전력 발전 시장 : 연결 유형별

  • 오프그리드
  • 온그리드

제10장 그린 전력 발전 시장 : 용량 범위별

  • 대규모
  • 중규모
  • 소규모

제11장 그린 전력 발전 시장 소유 형태별

  • 민자발전사업자
  • 민관 제휴
  • 유틸리티

제12장 그린 전력 발전 시장 : 최종 용도별

  • 상업용
  • 산업용
  • 주거용
  • 유틸리티용

제13장 그린 전력 발전 시장 : 지역별

  • 아메리카
    • 북미
    • 라틴아메리카
  • 유럽, 중동 및 아프리카
    • 유럽
    • 중동
    • 아프리카
  • 아시아태평양

제14장 그린 전력 발전 시장 : 그룹별

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

제15장 그린 전력 발전 시장 : 국가별

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 중국
  • 인도
  • 일본
  • 호주
  • 한국

제16장 미국 그린 전력 발전 시장

제17장 중국 그린 전력 발전 시장

제18장 경쟁 구도

  • 시장 집중도 분석, 2025
    • 집중 비율(CR)
    • 허핀달-허쉬만 지수(HHI)
  • 최근 동향과 영향 분석, 2025
  • 제품 포트폴리오 분석, 2025
  • 벤치마킹 분석, 2025
  • China Datang Corporation Renewable Power Co., Ltd.
  • China Huaneng Group Co., Ltd.
  • China Longyuan Power Group Corporation Limited
  • Enel S.p.A.
  • Engie S.A.
  • Iberdrola, S.A.
  • NextEra Energy, Inc.
  • RWE AG
  • Siemens Energy AG
  • Trina Solar Co., Ltd.
  • Electricite de France S.A.
  • Orsted A/S
KSM 26.02.03

The Green Power Generation Market was valued at USD 60.97 billion in 2025 and is projected to grow to USD 67.81 billion in 2026, with a CAGR of 11.64%, reaching USD 131.83 billion by 2032.

KEY MARKET STATISTICS
Base Year [2025] USD 60.97 billion
Estimated Year [2026] USD 67.81 billion
Forecast Year [2032] USD 131.83 billion
CAGR (%) 11.64%

Setting the stage for a resilient green power transition with strategic context on drivers, policy dynamics, technology maturation, and stakeholder imperatives

The energy transition toward greener power generation is an era-defining shift that combines policy ambition, technology innovation, and capital reallocation. This introduction frames the current context by highlighting the primary drivers that are reshaping power systems worldwide: decarbonization commitments, improved cost competitiveness of clean technologies, and changing consumer and corporate expectations for sustainability. These forces are occurring alongside evolving regulatory frameworks and new commercial models, prompting incumbents and newcomers alike to reassess risk, strategy, and capability investments.

In addition, the maturation of enabling technologies and digital tools is altering project design, operations, and asset management. As a result, decision-makers must consider not only technology selection but also integration into wider grid systems and markets. This introduction also underscores the importance of cross-stakeholder collaboration, noting that public policy, private capital, utilities, independent developers, and communities each play distinct roles in enabling scalable deployment. By situating current momentum within this broader ecosystem, readers can better appreciate both near-term tactical choices and longer-term strategic imperatives that will determine who successfully captures value in the green power transition.

Identifying transformative shifts reshaping the global green power landscape including technological breakthroughs, financing models, supply chain evolution, and regulatory recalibration

The green power landscape is experiencing transformative shifts that extend beyond incremental cost improvements and into structural changes across value chains. Breakthroughs in energy storage chemistry and system integration are enabling higher penetrations of variable renewable generation, while modular manufacturing and standardized project components are compressing development timelines. Concurrently, new financing models such as blended finance and corporate power purchase agreements are diversifying capital sources and enabling projects that previously lacked bankability.

Furthermore, supply chains are evolving in response to geopolitical pressures and nearshoring initiatives; manufacturers, developers, and financiers are reassessing sourcing strategies to reduce exposure and ensure continuity. Regulatory environments are also recalibrating through updated interconnection protocols, capacity market reforms, and incentives that reward flexibility and emissions avoidance rather than simple volume. Taken together, these shifts create a landscape in which agility, partnership, and technology-agnostic value creation matter as much as unit-level cost competitiveness. In practice, successful players are those who can combine technical expertise with commercial creativity and policy fluency to navigate accelerating complexity and capture emergent opportunities.

Assessing the cumulative impact of United States tariffs in 2025 on international supply chains, project economics, component sourcing, and competitive positioning

The reinstatement or adjustment of tariffs by the United States in 2025 has cascading implications for international trade flows, project engineering choices, and procurement strategies across the green power sector. Tariff measures alter relative costs for key components, incentivize relocation of manufacturing, and prompt strategic stockpiling or supplier diversification by project developers. As an immediate consequence, procurement teams and supply chain managers must reassess vendor risk and lead times, while developers recalibrate project schedules to manage potential cost and delivery volatility.

Beyond procurement, tariffs change competitive dynamics among equipment manufacturers and service providers by shifting comparative advantage toward regions or firms that can internalize added duties or that operate within preferential trade regimes. This reality often accelerates conversations around local content, domestic manufacturing partnerships, and joint ventures, as project sponsors seek to mitigate exposure and satisfy evolving policy expectations. Moreover, tariffs influence financing conversations: lenders and insurers increasingly require transparency on supply chain resilience and contingency planning, and they factor trade policy risk into credit assessments. In sum, the tariff landscape requires integrated responses spanning commercial contracting, manufacturing strategy, and stakeholder engagement to preserve project viability and competitive positioning.

Key segmentation insights revealing nuanced opportunities across technology types, end uses, connection models, capacity ranges, and ownership structures driving deployment decisions

Understanding segmentation is critical for tailoring strategy and technology choices to specific market contexts. The technology dimension includes Bioenergy with subcategories such as Biofuel, Biogas, and Biomass; Geothermal with Binary Cycle, Dry Steam, and Flash Steam variants; Hydro encompassing Pumped Storage, Reservoir, and Run Of River configurations; Solar divided between Concentrated Solar Power and Photovoltaic approaches; and Wind separated into Offshore and Onshore applications. Each technology and sub-technology carries distinct capital intensity, siting constraints, lifecycle emissions profiles, and operational characteristics, which influence permitting pathways, financing appetite, and grid integration needs.

End use segmentation spans commercial, industrial, residential, and utility contexts, and demand patterns in each end use influence contract structures, sizing decisions, and the viability of behind-the-meter versus utility-scale deployments. Connection type differentiates off grid from on grid solutions, shaping design priorities around resilience, autonomy, and interaction with central networks. Capacity range-large, medium, and small-affects project economics and investor mixes, with smaller capacities often favoring decentralized finance and community ownership models while larger assets attract institutional capital. Ownership model further refines strategic considerations, with independent power producers, public private partnerships, and utility-owned projects each following distinct procurement protocols, risk allocations, and stakeholder expectations. Taken together, these segmentation layers enable more granular strategy development and targeted value propositions for developers, equipment manufacturers, financiers, and policymakers.

Regional dynamics and strategic implications across the Americas, Europe Middle East and Africa, and the Asia Pacific highlighting policy, investment, and infrastructure priorities

Regional dynamics now play a decisive role in shaping pathways to decarbonization, and a nuanced view across the Americas, Europe Middle East and Africa, and the Asia Pacific reveals differentiated policy priorities, investment flows, and infrastructure readiness. In the Americas, market momentum is driven by a combination of corporate offtake demand, state-level policy instruments, and diverse resource endowments that enable both utility-scale and distributed deployments. This environment favors flexible procurement strategies and competitive supply chains that can service heterogeneous project profiles across geographies and regulatory regimes.

In Europe, the Middle East and Africa, policy ambition and energy security considerations are converging to accelerate renewables deployment and supportive grid investments, while financing models are adapting to local currency and sovereign risk realities. The region also presents opportunities for large-scale green hydrogen and integrated systems where natural resource profiles and industrial decarbonization needs align. In the Asia Pacific, rapid electrification and industrial growth combine with significant manufacturing capacity for key components, creating both demand and supply-side advantages. However, infrastructure constraints and varying market reforms mean that project structuring, localization strategies, and public-private collaboration are essential to unlocking scalable outcomes. Across all regions, investors and developers benefit from aligning strategy to regional policy signals, grid modernization timelines, and local industrial capabilities.

Competitive landscape and corporate strategies that illustrate how leading developers, technology providers, and financiers are adapting to decarbonization imperatives and market disruption

Leading companies across the green power ecosystem are reconfiguring strategies to capture value from technology advances, regulatory shifts, and changing customer expectations. Developers are integrating more sophisticated risk management into contract structures, including flexible delivery timelines, indexed pricing mechanisms, and manufacturing partnerships that shore up supply. Technology providers are investing in modular designs and digital operations capabilities to reduce lifecycle costs and to improve predictability for asset owners. Financial institutions and project investors are adopting more nuanced underwriting frameworks that incorporate supply chain resilience, carbon footprint considerations, and revenue diversification strategies.

Collaborations between complementary players-such as equipment manufacturers partnering with utilities or financiers-are becoming more common, and corporate deal-making increasingly focuses on long-term service agreements and performance-based compensation models. Moreover, strategic differentiation is emerging through vertical integration for some incumbents and through specialization in niche value propositions for new entrants. As competition intensifies, companies that combine technical excellence with deep market understanding and adaptive commercial models will be best positioned to win contracts and secure durable cash flows.

Actionable recommendations for industry leaders to accelerate deployment, de-risk projects, optimize supply chains, and align commercial strategy with evolving policy frameworks

Industry leaders should pursue a set of actionable steps that balance near-term delivery with long-term resilience. First, strengthen supply chain resilience by diversifying vendor relationships, qualifying backup suppliers across geographies, and negotiating flexible terms that accommodate tariff and trade policy volatility. This reduces single-point exposure and provides tactical options when disruptions occur. Second, prioritize modular and standardized designs that shorten permitting and construction cycles while enabling repeatable commercial models across markets. Standardization improves cost transparency and supports scalable deployment.

Third, align financial structures with operational risk by incorporating mechanisms such as price collars, performance guarantees, and blended finance to attract a broader set of investors. Fourth, proactively engage with regulators and grid operators to influence interconnection processes and to secure visibility on long-term system needs; early engagement often accelerates permitting and reduces unforeseen integration costs. Fifth, invest in workforce development and digital tools that optimize asset operations and extend equipment life; these investments can materially improve returns and reduce outage risk. By implementing these recommendations in sequence and in tandem, organizations can accelerate deployment, reduce cost uncertainty, and create durable competitive advantage in a rapidly evolving market.

Transparent research methodology describing data collection, validation, stakeholder interviews, and analytical frameworks used to synthesize insights and support strategic decisions

This research synthesizes primary and secondary evidence using a transparent and rigorous methodology designed to support strategic decision-making. Primary inputs include structured interviews with developers, technology vendors, financiers, and grid operators to capture first-hand perspectives on operational challenges, contractual norms, and regional regulatory nuances. These insights are triangulated with publicly available policy documents, technical standards, and company disclosures to ensure robustness and to identify consistent themes across stakeholder groups.

Analytical frameworks include scenario-based sensitivity analysis to explore the implications of key variables such as component availability, interconnection timelines, and tariff changes. Qualitative assessments focus on governance, permitting complexity, and partnership models that influence project delivery. Throughout the research process, data validation steps-such as cross-checking interview findings against multiple independent sources and applying peer review by domain experts-were applied to enhance credibility. Taken together, the methodology prioritizes practical relevance and reproducibility so that users of the research can apply findings with confidence to their strategic and operational planning.

Concluding perspectives that synthesize core findings, strategic orientations, remaining challenges, and priority areas for collaboration across public and private stakeholders

In conclusion, the transition to green power requires integrated strategies that combine technological selection, supply chain design, and commercial innovation. The sector is shaped by shifting policy levers, evolving financing practices, and trade policy dynamics that collectively reframe risk and opportunity. Therefore, organizations that proactively adapt-by strengthening supply chain resilience, embracing modularization, refining financing structures, and engaging constructively with regulators-will be better positioned to capitalize on emerging demand and to mitigate downside exposure.

Looking forward, collaboration across public and private actors will remain essential to address systemic challenges such as grid modernization, workforce development, and financing for nascent technologies. The pathway to scalable clean power deployment is not singular; it requires tailored approaches informed by technology choice, end-use characteristics, connection models, capacity scale, ownership arrangements, and regional dynamics. Ultimately, strategic clarity, operational discipline, and partnership-oriented execution will determine which organizations emerge as long-term leaders in this transformative period.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Definition
  • 1.3. Market Segmentation & Coverage
  • 1.4. Years Considered for the Study
  • 1.5. Currency Considered for the Study
  • 1.6. Language Considered for the Study
  • 1.7. Key Stakeholders

2. Research Methodology

  • 2.1. Introduction
  • 2.2. Research Design
    • 2.2.1. Primary Research
    • 2.2.2. Secondary Research
  • 2.3. Research Framework
    • 2.3.1. Qualitative Analysis
    • 2.3.2. Quantitative Analysis
  • 2.4. Market Size Estimation
    • 2.4.1. Top-Down Approach
    • 2.4.2. Bottom-Up Approach
  • 2.5. Data Triangulation
  • 2.6. Research Outcomes
  • 2.7. Research Assumptions
  • 2.8. Research Limitations

3. Executive Summary

  • 3.1. Introduction
  • 3.2. CXO Perspective
  • 3.3. Market Size & Growth Trends
  • 3.4. Market Share Analysis, 2025
  • 3.5. FPNV Positioning Matrix, 2025
  • 3.6. New Revenue Opportunities
  • 3.7. Next-Generation Business Models
  • 3.8. Industry Roadmap

4. Market Overview

  • 4.1. Introduction
  • 4.2. Industry Ecosystem & Value Chain Analysis
    • 4.2.1. Supply-Side Analysis
    • 4.2.2. Demand-Side Analysis
    • 4.2.3. Stakeholder Analysis
  • 4.3. Porter's Five Forces Analysis
  • 4.4. PESTLE Analysis
  • 4.5. Market Outlook
    • 4.5.1. Near-Term Market Outlook (0-2 Years)
    • 4.5.2. Medium-Term Market Outlook (3-5 Years)
    • 4.5.3. Long-Term Market Outlook (5-10 Years)
  • 4.6. Go-to-Market Strategy

5. Market Insights

  • 5.1. Consumer Insights & End-User Perspective
  • 5.2. Consumer Experience Benchmarking
  • 5.3. Opportunity Mapping
  • 5.4. Distribution Channel Analysis
  • 5.5. Pricing Trend Analysis
  • 5.6. Regulatory Compliance & Standards Framework
  • 5.7. ESG & Sustainability Analysis
  • 5.8. Disruption & Risk Scenarios
  • 5.9. Return on Investment & Cost-Benefit Analysis

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Green Power Generation Market, by Technology

  • 8.1. Bioenergy
    • 8.1.1. Biofuel
    • 8.1.2. Biogas
    • 8.1.3. Biomass
  • 8.2. Geothermal
    • 8.2.1. Binary Cycle
    • 8.2.2. Dry Steam
    • 8.2.3. Flash Steam
  • 8.3. Hydro
    • 8.3.1. Pumped Storage
    • 8.3.2. Reservoir
    • 8.3.3. Run Of River
  • 8.4. Solar
    • 8.4.1. Concentrated Solar Power
    • 8.4.2. Photovoltaic
  • 8.5. Wind
    • 8.5.1. Offshore
    • 8.5.2. Onshore

9. Green Power Generation Market, by Connection Type

  • 9.1. Off Grid
  • 9.2. On Grid

10. Green Power Generation Market, by Capacity Range

  • 10.1. Large
  • 10.2. Medium
  • 10.3. Small

11. Green Power Generation Market, by Ownership Model

  • 11.1. Independent Power Producer
  • 11.2. Public Private Partnership
  • 11.3. Utility

12. Green Power Generation Market, by End Use

  • 12.1. Commercial
  • 12.2. Industrial
  • 12.3. Residential
  • 12.4. Utility

13. Green Power Generation Market, by Region

  • 13.1. Americas
    • 13.1.1. North America
    • 13.1.2. Latin America
  • 13.2. Europe, Middle East & Africa
    • 13.2.1. Europe
    • 13.2.2. Middle East
    • 13.2.3. Africa
  • 13.3. Asia-Pacific

14. Green Power Generation Market, by Group

  • 14.1. ASEAN
  • 14.2. GCC
  • 14.3. European Union
  • 14.4. BRICS
  • 14.5. G7
  • 14.6. NATO

15. Green Power Generation Market, by Country

  • 15.1. United States
  • 15.2. Canada
  • 15.3. Mexico
  • 15.4. Brazil
  • 15.5. United Kingdom
  • 15.6. Germany
  • 15.7. France
  • 15.8. Russia
  • 15.9. Italy
  • 15.10. Spain
  • 15.11. China
  • 15.12. India
  • 15.13. Japan
  • 15.14. Australia
  • 15.15. South Korea

16. United States Green Power Generation Market

17. China Green Power Generation Market

18. Competitive Landscape

  • 18.1. Market Concentration Analysis, 2025
    • 18.1.1. Concentration Ratio (CR)
    • 18.1.2. Herfindahl Hirschman Index (HHI)
  • 18.2. Recent Developments & Impact Analysis, 2025
  • 18.3. Product Portfolio Analysis, 2025
  • 18.4. Benchmarking Analysis, 2025
  • 18.5. China Datang Corporation Renewable Power Co., Ltd.
  • 18.6. China Huaneng Group Co., Ltd.
  • 18.7. China Longyuan Power Group Corporation Limited
  • 18.8. Enel S.p.A.
  • 18.9. Engie S.A.
  • 18.10. Iberdrola, S.A.
  • 18.11. NextEra Energy, Inc.
  • 18.12. RWE AG
  • 18.13. Siemens Energy AG
  • 18.14. Trina Solar Co., Ltd.
  • 18.15. Electricite de France S.A.
  • 18.16. Orsted A/S
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제