시장보고서
상품코드
1918424

비전식 픽 앤 플레이스 머신 시장 : 유형별, 구성부품별, 용도별, 최종사용자 산업별 - 세계 예측(2026-2032년)

Visional Pick & Place Machine Market by Type (Articulated, Cartesian, Delta), Component (Controller, End-Effector, Sensors), Application, End-User Industry - Global Forecast 2026-2032

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 198 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

비전식 픽 앤 플레이스 머신 시장은 2025년에 4억 9,567만 달러로 평가되며, 2026년에는 5억 3,862만 달러로 성장하며, CAGR 10.74%로 추이하며, 2032년까지 10억 1,234만 달러에 달할 것으로 예측됩니다.

주요 시장 통계
기준연도 2025 4억 9,567만 달러
추정연도 2026 5억 3,862만 달러
예측연도 2032 10억 1,234만 달러
CAGR(%) 10.74%

전략적인 도입: 비전 픽앤플레이스 기계가 로봇공학과 비전 기술을 결합하여 생산 정밀도와 운영 탄력성을 재구축하는 구조

비지오날의 픽앤플레이스 장비 분야는 첨단 로봇공학, 머신비전, 그리고 진화하는 산업 우선순위의 중요한 교차점에 위치하고 있습니다. 본 도입부에서는 단기적인 의사결정을 형성하는 핵심 테마를 설정합니다. 정밀 자동화에 대한 수요 증가, 자재관리 및 검사를 위한 비전 시스템의 통합 가속화, 그리고 강력한 공급망에 대한 전략적 요구가 그것입니다. 이러한 촉진요인을 전면에 내세워 제조업체, 통합업체 및 최종사용자에게 중요한 기술 벡터, 상업적 전략 및 경쟁 역학을 집중적으로 검토할 수 있는 토대를 마련합니다.

비전 인텔리전스, 모듈형 하드웨어, 시스템 레벨 오케스트레이션의 발전이 산업 자동화 전반에 걸쳐 경쟁 우위와 도입 속도를 재정의하고 있는 상황

지난 수년간 픽앤플레이스 자동화 영역은 컴포넌트 중심의 업그레이드에서 비전 인텔리전스, 모듈식 엔드 이펙터, 에지 지원 제어 아키텍처의 발전에 힘입어 종합적인 시스템 혁신으로 전환되었습니다. 이러한 혁신적 변화는 고립된 변화가 아니라 하드웨어 유연성, 소프트웨어 우선의 오케스트레이션, 통합 시간과 총소유비용을 절감하는 상호운용성 강화라는 수렴적인 추세로 나타나고 있습니다. 그 결과, 도입 기업은 다품종 소량 생산에서 신속한 전환을 지원할 수 있는 구성 가능한 플랫폼을 점점 더 선호하고 있습니다.

2025년 관세 정책이 가져온 동향 평가 및 무역 조치가 자동화 생태계 전반공급망 복원력 강화, 니어쇼어링, 공급처 다변화를 촉진한 방법

2025년에 시행된 정책 변경과 관세 조치는 픽앤플레이스 장비의 조달 및 도입 전략에 실질적인 누적 영향을 미쳤습니다. 관세 압력으로 인해 세계 부품 공급망에 대한 조사가 강화되어 설계 팀은 부품표 구성을 검토하고 국경 간 관세 위험을 줄이는 공급업체를 우선시하도록 촉구했습니다. 실제로, 조달 담당자들은 대체 공급업체, 현지 제조 파트너십, 관세 감면 조항을 포함한 벤더 계약으로 관심을 돌렸고, 이는 공급업체 선정 기준과 리드타임에 대한 기대치를 재구성했습니다.

종합적인 세분화 분석을 통해 로봇 유형, 모듈 부품, 용도 요구사항, 산업 이용 사례에 따라 기술 우선순위와 상업적 포지셔닝을 결정하는 메커니즘을 파악할 수 있습니다.

의미 있는 세분화 프레임워크는 픽앤플레이스 시스템에서 기술적 차별화와 상업적 기회가 교차하는 영역을 명확히 합니다. 시장에서는 유형에 따라 관절식, 직교 좌표계, 델타, 스칼라 구조로 구분되며, 각기 다른 동작 특성, 설치 공간 제약, 사이클 시간 요구 사항에 최적화되어 있습니다. 관절형 로봇은 복잡한 형상에 대한 도달 범위와 유연성을 제공하며, 직교 좌표계 시스템은 반복성이 높은 작업을 위한 예측 가능한 직선 운동을 실현합니다. 델타 구성은 3축 평면에서 고속 픽앤플레이스에 탁월하며, 스칼라 설계는 중하중 조립에서 속도와 수직 도달 범위의 균형을 맞출 수 있습니다.

아메리카, 유럽, 중동 및 아프리카, 아시아태평양에서의 운영 및 도입의 지역적 차이는 공급업체 전략과 고객 우선순위를 형성

지역별 동향은 픽앤플레이스 시스템의 기술 도입, 공급업체 전략, 도입 모델에 실질적인 영향을 미칩니다. 아메리카 지역에서는 첨단 제조 클러스터와 물류 현대화의 균형 잡힌 투자 활동이 다양한 제품 구성과 창고 자동화 구상에 대응할 수 있는 유연한 시스템에 대한 수요를 주도하고 있습니다. 북미의 최종사용자는 신속한 통합, 애프터 서비스 네트워크, 기존 자동화 스택과의 상호 운용성을 특히 중요하게 여기고 있으며, 공급업체는 현지 지원 및 개조 역량을 강화해야 합니다.

업계 주요 기업이 모듈형 하드웨어, 소프트웨어 생태계, 서비스 중심 비즈니스 모델을 결합하여 지속가능한 경쟁 우위를 확보하는 방법

픽앤플레이스 분야의 주요 기업은 제품 모듈성, 소프트웨어 생태계, 종합적인 서비스 포트폴리오를 통해 차별화를 꾀하고 있습니다. 시장 리더는 도입 기간을 단축하는 비전 통합, 직관적인 프로그래밍 인터페이스, 확장 가능한 제어 플랫폼에 많은 투자를 해왔습니다. 많은 성공 기업은 표준화된 하드웨어 포트폴리오와 구성 가능한 엔드 이펙터 및 비전 패키지를 결합하여 업계 전반의 요구를 충족하고, 판매 주기를 간소화하며, 개념 증명을 신속하게 실현할 수 있도록 돕고 있습니다.

공급업체와 통합업체가 도입을 가속화하고, 마진을 안정화하며, 다양한 운영 환경에서 신속하게 배포할 수 있도록 우선순위를 정하고 실행 가능한 조치를 제공

업계 리더는 도입 촉진, 운영상의 마찰 감소, 이익률 보호를 위한 실용적인 제안을 우선시해야 합니다. 첫째, 제품군 간 신속한 재구성이 가능한 모듈형 엔드 이펙터 및 비전 에코시스템에 대한 투자를 통해 전환 시간을 단축하고 가동률을 향상시킬 수 있습니다. 이러한 접근 방식은 타사 제어 시스템 및 창고 관리 플랫폼과의 통합을 용이하게 하는 표준화된 통신 프로토콜과 오픈 API의 도입과 함께 이루어져야 합니다.

주요 이해관계자 인터뷰, 기술적 검증, 삼각측량을 통한 2차 분석을 결합한 엄격한 혼합 방법론 연구 접근법을 통해 실행 가능한 결과를 확보

본 조사는 정성적 인터뷰, 기술 검증, 업계 전반의 이차 분석을 통합한 혼합 방법론 접근법을 채택하여 확고한 실무적 지식을 확보하기 위해 노력하고 있습니다. 1차 조사에서는 시스템 통합사업자, OEM 조달 책임자, 자동화 엔지니어, 다양한 산업 분야의 최종사용자를 대상으로 구조화된 인터뷰를 실시하여 실제 운영 환경에서의 과제와 성공 요인을 파악했습니다. 이러한 인터뷰 결과를 바탕으로 제품 아키텍처와 소프트웨어 플랫폼을 평가하기 위한 이용 사례 시나리오와 운영 성능 기준을 수립했습니다.

기술적 진화, 정책적 압력, 서비스 모델을 통합한 결론적 통합: 업무 혁신을 추구하는 이해관계자들을 위한 일관된 로드맵으로

결론적으로 비디오 픽앤플레이스 시스템은 단일 솔루션의 자동화에서 비전, 적응형 엔드 이펙터, 소프트웨어 기반 오케스트레이션을 통합한 플랫폼으로 진화했습니다. 이러한 진화로 인해 경쟁의 초점은 강력한 서비스 모델과 유연한 상업적 조건으로 지원되는 모듈식 및 상호 운용 가능한 시스템을 제공할 수 있는 공급업체로 옮겨가고 있습니다. 동시에 정책 전환과 관세 동향은 공급망 분산을 가속화하고 지역적 입지와 현지화 능력의 전략적 가치를 높이고 있습니다.

자주 묻는 질문

  • 비전식 픽 앤 플레이스 머신 시장 규모는 어떻게 되며, 향후 성장 전망은 어떤가요?
  • 비전식 픽 앤 플레이스 머신의 주요 기술적 발전은 무엇인가요?
  • 2025년 관세 정책이 비전식 픽 앤 플레이스 머신 시장에 미친 영향은 무엇인가요?
  • 비전식 픽 앤 플레이스 머신의 세분화 분석은 어떻게 이루어지나요?
  • 비전식 픽 앤 플레이스 머신 시장의 지역별 동향은 어떤가요?
  • 픽앤플레이스 분야의 주요 기업들은 어떤 전략을 통해 경쟁 우위를 확보하고 있나요?

목차

제1장 서문

제2장 조사 방법

  • 조사 디자인
  • 조사 프레임워크
  • 시장 규모 예측
  • 데이터·삼각측정
  • 조사 결과
  • 조사의 전제
  • 조사의 제약

제3장 개요

  • CXO 시점
  • 시장 규모와 성장 동향
  • 시장 점유율 분석, 2025
  • FPNV 포지셔닝 매트릭스, 2025
  • 새로운 매출 기회
  • 차세대 비즈니스 모델
  • 업계 로드맵

제4장 시장 개요

  • 업계 에코시스템과 밸류체인 분석
  • Porter's Five Forces 분석
  • PESTEL 분석
  • 시장 전망
  • GTM 전략

제5장 시장 인사이트

  • 소비자 인사이트와 최종사용자 시점
  • 소비자 체험 벤치마킹
  • 기회 지도제작
  • 유통 채널 분석
  • 가격 동향 분석
  • 규제 컴플라이언스와 표준 프레임워크
  • ESG와 지속가능성 분석
  • 파괴적 변화와 리스크 시나리오
  • ROI와 CBA

제6장 미국 관세의 누적 영향, 2025

제7장 AI의 누적 영향, 2025

제8장 비전식 픽 앤 플레이스 머신 시장 : 유형별

  • 관절식
  • 직교형
  • 델타
  • 스카라

제9장 비전식 픽 앤 플레이스 머신 시장 : 컴포넌트별

  • 컨트롤러
    • 모션 컨트롤러
    • PLC
    • 로봇 컨트롤러
  • 엔드 이펙터
    • 그리퍼
    • 흡착 컵
  • 센서
    • 힘 센서
    • 근접 센서
    • 비전 센서
  • 소프트웨어
    • 프로그래밍 소프트웨어
    • 시뮬레이션 소프트웨어

제10장 비전식 픽 앤 플레이스 머신 시장 : 용도별

  • 조립
    • 자동차 조립
    • 전자기기 조립
    • 의약품 조립
  • 검사
    • 품질관리
    • 비전 검사
  • 자재관리
    • 디팔레타이징
    • 오더 피킹
    • 팔레타이징
  • 포장
    • 보틀 포장
    • 식품 및 음료 포장
    • 의료 포장
  • 분류
    • 빈 분류
    • 소포 분류

제11장 비전식 픽 앤 플레이스 머신 시장 : 최종사용자 업계별

  • 자동차
    • 애프터마켓
    • OEM 제조
    • 파워트레인 조립
  • 전자기기
    • 회로 기판
    • 가전제품
    • 반도체
  • 식품 및 음료
    • 보트링
    • 포장
    • 분류
  • 물류·창고
    • 오더 피킹
    • 팔레타이징
    • 소포 분류
  • 의약품
    • 의약품 포장
    • 실험실 자동화

제12장 비전식 픽 앤 플레이스 머신 시장 : 지역별

  • 아메리카
    • 북미
    • 라틴아메리카
  • 유럽, 중동 및 아프리카
    • 유럽
    • 중동
    • 아프리카
  • 아시아태평양

제13장 비전식 픽 앤 플레이스 머신 시장 : 그룹별

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

제14장 비전식 픽 앤 플레이스 머신 시장 : 국가별

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 중국
  • 인도
  • 일본
  • 호주
  • 한국

제15장 미국 비전식 픽 앤 플레이스 머신 시장

제16장 중국 비전식 픽 앤 플레이스 머신 시장

제17장 경쟁 구도

  • 시장 집중도 분석, 2025
    • 집중 비율(CR)
    • 허핀달-허쉬만 지수(HHI)
  • 최근 동향과 영향 분석, 2025
  • 제품 포트폴리오 분석, 2025
  • 벤치마킹 분석, 2025
  • ASM Assembly Systems GmbH & Co. KG
  • Cognex Corporation
  • CyberOptics Corporation
  • Essemtec AG
  • Europlacer Group
  • Fuji Machine Manufacturing Co., Ltd.
  • Hanwha Corporation
  • Hitachi High-Tech Instruments
  • JUKI Corporation
  • Keyence Corporation
  • Koh Young Technology Inc.
  • Mycronic AB
  • Nordson Corporation
  • Omron Corporation
  • Panasonic Corporation
  • Speedline Technologies, Inc.
  • TRIOPTICS GmbH
  • Universal Instruments Corporation
  • Viscom AG
  • Yamaha Motor Co., Ltd.
KSA

The Visional Pick & Place Machine Market was valued at USD 495.67 million in 2025 and is projected to grow to USD 538.62 million in 2026, with a CAGR of 10.74%, reaching USD 1,012.34 million by 2032.

KEY MARKET STATISTICS
Base Year [2025] USD 495.67 million
Estimated Year [2026] USD 538.62 million
Forecast Year [2032] USD 1,012.34 million
CAGR (%) 10.74%

A strategic introduction framing how Visional pick and place machines converge robotics and vision to reshape production precision and operational resilience

The Visional pick and place machine sector stands at a pivotal intersection between advanced robotics, machine vision, and evolving industrial priorities. This introduction establishes the core themes that shape near-term decision-making: rising demand for precision automation, the accelerating integration of vision systems for material handling and inspection, and the strategic imperative for resilient supply chains. By foregrounding these drivers, we set the stage for a focused examination of technological vectors, commercial tactics, and competitive dynamics that matter to manufacturers, integrators, and end users.

Moving beyond generic automation narratives, this introduction clarifies how pick and place systems are redefining throughput and quality control across discrete manufacturing and logistics operations. It outlines the essential framework used in subsequent sections: an emphasis on product architectures, component ecosystems, application-specific deployment patterns, regional operational nuance, and the competitive behaviors of leading suppliers. In doing so, it arms readers with a clear mental model for interpreting the more detailed insights that follow and for prioritizing strategic actions in procurement, R&D, and go-to-market planning.

How advances in vision intelligence, modular hardware, and systems-level orchestration are redefining competitive advantage and deployment velocity across industrial automation

Over the past several years the landscape for pick and place automation has shifted from component-centered upgrades to holistic system transformation, driven by advances in vision intelligence, modular end-effectors, and edge-enabled control architectures. These transformative shifts are not isolated; they manifest as convergent trends in hardware flexibility, software-first orchestration, and a stronger emphasis on interoperability that reduces integration time and total cost of ownership. As a result, adopters increasingly prioritize configurable platforms that can support rapid changeovers across high-mix, low-volume production runs.

Concurrently, the maturation of vision-based inspection and adaptive gripping techniques has expanded the range of feasible applications, enabling systems to handle delicate or irregular items with higher yield. This technical progress sits alongside operational trends: a heightened focus on sustainability, a preference for local or regionalized supply networks, and an appetite for outcome-based procurement models. Taken together, these shifts reframe competitive advantage around speed of deployment, software sophistication, and the supplier's ability to provide ongoing services, rather than purely on unit price or nominal throughput specifications.

Assessment of 2025 tariff-driven dynamics and how trade measures catalyzed supply chain resilience, nearshoring, and sourcing diversification across automation ecosystems

Policy changes and tariff measures enacted in 2025 have exerted a substantive cumulative influence on the sourcing and deployment strategies for pick and place machines. Tariff pressures intensified scrutiny of global component supply chains, prompting design teams to reevaluate bill of materials composition and to prioritize suppliers that reduce exposure to cross-border duties. In practice, procurement professionals shifted attention to alternative suppliers, local manufacturing partnerships, and vendor agreements that encapsulate tariff mitigation clauses, thereby reshaping supplier selection criteria and lead-time expectations.

Beyond supplier selection, tariffs catalyzed nearshoring and regional assembly strategies that reduce landed costs and cycle times. System integrators and original equipment manufacturers responded by building more flexible manufacturing footprints and by developing modular subassembly kits that can be localized without extensive redesign. Operationally, this has increased the value of software portability and standardized interfaces, as firms seek to minimize redesign effort when substituting components. Ultimately, the tariff environment accelerated existing trends toward supply chain resilience and localization, encouraging stakeholders to invest in supplier diversification, dual-sourcing arrangements, and stronger contractual protections against future policy volatility.

Comprehensive segmentation analysis revealing how robot type, modular components, application requirements, and industry use cases determine technical priorities and commercial positioning

A meaningful segmentation framework reveals where technical differentiation and commercial opportunity intersect for pick and place systems. Based on type, the market distinguishes between articulated, Cartesian, delta, and SCARA architectures, each optimized for different motion profiles, footprint constraints, and cycle-time requirements; articulated robots deliver reach and flexibility for complex geometries, Cartesian systems provide predictable linear motion for high-repeatability tasks, delta configurations excel in high-speed pick-and-place on three-axis planes, and SCARA designs strike a balance between speed and vertical reach for medium-duty assembly.

Component-level segmentation further clarifies value creation across controllers, end-effectors, sensors, and software. Controllers encompass motion controllers, PLCs, and robot controllers that govern kinematics and safety logic; end-effectors include grippers and suction cups designed to interface with product form factors; sensors span force sensors, proximity sensors, and vision sensors that enable closed-loop control and quality verification; and software portfolios range from programming software for task sequencing to simulation software used in offline programming and layout verification. Application segmentation highlights where these types and components combine to deliver operational value in assembly, inspection, material handling, packaging, and sorting. Assembly applications include automotive assembly, electronics assembly, and pharmaceutical assembly that demand precision and repeatability; inspection covers quality control and vision inspection for defect detection; material handling includes depalletizing, order picking, and palletizing functions that prioritize throughput and ergonomic reduction; packaging spans bottle packaging, food and beverage packaging, and medical packaging with strict hygiene and regulatory considerations; and sorting covers bin sorting and parcel sorting where throughput and accurate routing are paramount.

End-user industry segmentation exposes demand-side elasticity and the specific design requirements that follow. Automotive applications encompass aftermarket services, OEM manufacturing, and powertrain assembly where robustness and integration with production lines are essential. Electronics demand centers on circuit boards, consumer electronics, and semiconductors where miniaturization and cleanroom compatibility are critical. Food and beverage applications prioritize bottling, packaging, and sorting processes that balance sanitary design with speed. Logistics and warehousing emphasize order picking, palletizing, and parcel sorting to support high-throughput operations and seasonal variability. Pharmaceuticals demand features for drug packaging and lab automation that meet stringent regulatory and traceability requirements. Integrating these segmentation dimensions enables suppliers and buyers to align product roadmaps, prioritize R&D investments, and tailor service offerings to distinct operational realities.

Regional operational and adoption nuances across the Americas, Europe Middle East & Africa, and Asia-Pacific that shape supplier strategies and customer priorities

Regional dynamics materially influence technology adoption, supplier strategies, and deployment models for pick and place systems. In the Americas, investment behavior reflects a balance between advanced manufacturing clusters and logistics modernization, driving demand for flexible systems that can accommodate varied product mixes and warehouse automation initiatives. North American end users place premium value on rapid integration, after-sales service networks, and systems that can interoperate with existing automation stacks, prompting suppliers to emphasize local support and retrofit capabilities.

In Europe, Middle East & Africa, regulatory stringency, labor-market tightness, and the proliferation of specialized manufacturing hubs shape adoption trajectories. European manufacturers often prioritize energy efficiency, modular compliance, and interoperability with Industry 4.0 platforms, while Middle Eastern and African markets show selective growth driven by logistics and high-value industrial investments. Across this region, suppliers that combine localized engineering services with proven standards compliance gain distinct competitive advantage. In the Asia-Pacific, dense manufacturing clusters, particularly in electronics and consumer goods, sustain demand for high-speed delta and SCARA solutions, and for vision-integrated inspection systems. Strong supplier ecosystems and proximity to component manufacturers enable rapid iteration, while regional customers increasingly demand integrated solutions that reduce integration overhead and support high-mix production environments. Each region presents different imperatives for localization, service architecture, and partnership models that suppliers must address to scale effectively.

How industry-leading companies combine modular hardware, software ecosystems, and service-driven business models to secure sustainable competitive advantage

Leading companies in the pick and place ecosystem differentiate themselves through product modularity, software ecosystems, and comprehensive service portfolios. Market leaders have invested heavily in vision integration, intuitive programming interfaces, and scalable control platforms that reduce deployment timelines. Many successful firms pair standardized hardware portfolios with configurable end-effectors and vision packages to serve cross-industry needs, thereby simplifying sales cycles and enabling faster proof-of-concept demonstrations.

Competitive advantage increasingly flows from after-sales capabilities: predictive maintenance, remote diagnostics, and training services that shorten downtime and increase throughput. Strategic partnerships between robot manufacturers, vision providers, and software firms are common, enabling richer out-of-the-box functionality while preserving independent innovation. Additionally, firms that offer consultative pre-sales assessment and system-level integration services secure larger, longer-term contracts by reducing buyer risk. As the ecosystem evolves, the most resilient companies are those that balance hardware excellence with software subscription models and ecosystem partnerships that deliver repeatable implementation success for complex production environments.

Practical and prioritized actions for suppliers and integrators to accelerate adoption, stabilize margins, and enable rapid deployment across diverse operational environments

Industry leaders should prioritize a set of actionable recommendations designed to accelerate adoption, reduce operational friction, and protect margins. First, invest in modular end-effector and vision ecosystems that allow rapid reconfiguration across product families, thereby shortening changeover times and increasing utilization. This approach should be accompanied by standardized communication protocols and open APIs to facilitate integration with third-party control systems and warehouse management platforms.

Second, develop commercial models that couple capital equipment sales with software subscriptions and outcome-based service agreements, aligning incentives with customer uptime and continuous improvement. Third, strengthen regional service footprints through localized assembly, rapid parts distribution, and certified partner networks to mitigate tariff impacts and reduce lead times. Fourth, accelerate R&D in adaptive gripping and machine vision algorithms that broaden the range of handled payloads and support robust defect detection under variable lighting and surface conditions. Finally, prioritize workforce enablement by offering comprehensive operator training and low-code programming tools that democratize automation, enabling faster scaling across plants and distribution centers. Implementing these recommendations will improve time-to-value for customers while creating recurring revenue streams for suppliers.

A rigorous mixed-methods research approach combining primary stakeholder interviews, technical validation, and triangulated secondary analysis to ensure actionable insights

This research relies on a mixed-methods approach that integrates qualitative interviews, technical validation, and cross-industry secondary analysis to ensure robust and actionable findings. Primary research included structured interviews with system integrators, OEM procurement leads, automation engineers, and end users across a range of industries to capture real-world deployment challenges and success factors. These interviews informed a set of use-case scenarios and operational performance criteria against which product architectures and software platforms were evaluated.

Secondary analysis comprised technical literature, vendor documentation, and publicly available industry reporting to validate component-level capabilities and common integration patterns. To maintain rigor, triangulation techniques reconciled discrepancies between reported performance and observed operational outcomes. The methodology emphasized reproducibility: where feasible, technical assessments were benchmarked using standardized metrics for cycle time, repeatability, and inspection accuracy, and case examples were anonymized to preserve commercial sensitivity while illustrating practical deployment lessons.

Concluding synthesis that ties technological evolution, policy pressures, and service models into a coherent roadmap for stakeholders seeking operational transformation

In conclusion, Visional pick and place systems have evolved from point-solution automation to integrated platforms that combine vision, adaptable end-effectors, and software-driven orchestration. This evolution shifts the locus of competition toward suppliers that can deliver modular, interoperable systems supported by robust service models and flexible commercial terms. At the same time, policy shifts and tariff dynamics have accelerated the decentralization of supply chains and increased the strategic value of regional presence and localization capabilities.

For end users, the practical implication is a heightened opportunity to achieve productivity gains while reducing operational risk, provided that procurement and engineering teams prioritize flexible architectures, supplier service depth, and software portability. For suppliers, success will come from investing in vision-software integration, standardizing interfaces, and building service-oriented revenue streams. The combined effect of these forces points to an industry that rewards agility, software excellence, and supply chain foresight, creating pathways for both incremental improvement and transformative operational redesign.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Definition
  • 1.3. Market Segmentation & Coverage
  • 1.4. Years Considered for the Study
  • 1.5. Currency Considered for the Study
  • 1.6. Language Considered for the Study
  • 1.7. Key Stakeholders

2. Research Methodology

  • 2.1. Introduction
  • 2.2. Research Design
    • 2.2.1. Primary Research
    • 2.2.2. Secondary Research
  • 2.3. Research Framework
    • 2.3.1. Qualitative Analysis
    • 2.3.2. Quantitative Analysis
  • 2.4. Market Size Estimation
    • 2.4.1. Top-Down Approach
    • 2.4.2. Bottom-Up Approach
  • 2.5. Data Triangulation
  • 2.6. Research Outcomes
  • 2.7. Research Assumptions
  • 2.8. Research Limitations

3. Executive Summary

  • 3.1. Introduction
  • 3.2. CXO Perspective
  • 3.3. Market Size & Growth Trends
  • 3.4. Market Share Analysis, 2025
  • 3.5. FPNV Positioning Matrix, 2025
  • 3.6. New Revenue Opportunities
  • 3.7. Next-Generation Business Models
  • 3.8. Industry Roadmap

4. Market Overview

  • 4.1. Introduction
  • 4.2. Industry Ecosystem & Value Chain Analysis
    • 4.2.1. Supply-Side Analysis
    • 4.2.2. Demand-Side Analysis
    • 4.2.3. Stakeholder Analysis
  • 4.3. Porter's Five Forces Analysis
  • 4.4. PESTLE Analysis
  • 4.5. Market Outlook
    • 4.5.1. Near-Term Market Outlook (0-2 Years)
    • 4.5.2. Medium-Term Market Outlook (3-5 Years)
    • 4.5.3. Long-Term Market Outlook (5-10 Years)
  • 4.6. Go-to-Market Strategy

5. Market Insights

  • 5.1. Consumer Insights & End-User Perspective
  • 5.2. Consumer Experience Benchmarking
  • 5.3. Opportunity Mapping
  • 5.4. Distribution Channel Analysis
  • 5.5. Pricing Trend Analysis
  • 5.6. Regulatory Compliance & Standards Framework
  • 5.7. ESG & Sustainability Analysis
  • 5.8. Disruption & Risk Scenarios
  • 5.9. Return on Investment & Cost-Benefit Analysis

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Visional Pick & Place Machine Market, by Type

  • 8.1. Articulated
  • 8.2. Cartesian
  • 8.3. Delta
  • 8.4. SCARA

9. Visional Pick & Place Machine Market, by Component

  • 9.1. Controller
    • 9.1.1. Motion Controllers
    • 9.1.2. PLC
    • 9.1.3. Robot Controllers
  • 9.2. End-Effector
    • 9.2.1. Grippers
    • 9.2.2. Suction Cups
  • 9.3. Sensors
    • 9.3.1. Force Sensors
    • 9.3.2. Proximity Sensors
    • 9.3.3. Vision Sensors
  • 9.4. Software
    • 9.4.1. Programming Software
    • 9.4.2. Simulation Software

10. Visional Pick & Place Machine Market, by Application

  • 10.1. Assembly
    • 10.1.1. Automotive Assembly
    • 10.1.2. Electronics Assembly
    • 10.1.3. Pharmaceutical Assembly
  • 10.2. Inspection
    • 10.2.1. Quality Control
    • 10.2.2. Vision Inspection
  • 10.3. Material Handling
    • 10.3.1. Depalletizing
    • 10.3.2. Order Picking
    • 10.3.3. Palletizing
  • 10.4. Packaging
    • 10.4.1. Bottle Packaging
    • 10.4.2. Food & Beverage Packaging
    • 10.4.3. Medical Packaging
  • 10.5. Sorting
    • 10.5.1. Bin Sorting
    • 10.5.2. Parcel Sorting

11. Visional Pick & Place Machine Market, by End-User Industry

  • 11.1. Automotive
    • 11.1.1. Aftermarket
    • 11.1.2. OEM Manufacturing
    • 11.1.3. Powertrain Assembly
  • 11.2. Electronics
    • 11.2.1. Circuit Boards
    • 11.2.2. Consumer Electronics
    • 11.2.3. Semiconductors
  • 11.3. Food & Beverage
    • 11.3.1. Bottling
    • 11.3.2. Packaging
    • 11.3.3. Sorting
  • 11.4. Logistics & Warehousing
    • 11.4.1. Order Picking
    • 11.4.2. Palletizing
    • 11.4.3. Parcel Sorting
  • 11.5. Pharmaceuticals
    • 11.5.1. Drug Packaging
    • 11.5.2. Lab Automation

12. Visional Pick & Place Machine Market, by Region

  • 12.1. Americas
    • 12.1.1. North America
    • 12.1.2. Latin America
  • 12.2. Europe, Middle East & Africa
    • 12.2.1. Europe
    • 12.2.2. Middle East
    • 12.2.3. Africa
  • 12.3. Asia-Pacific

13. Visional Pick & Place Machine Market, by Group

  • 13.1. ASEAN
  • 13.2. GCC
  • 13.3. European Union
  • 13.4. BRICS
  • 13.5. G7
  • 13.6. NATO

14. Visional Pick & Place Machine Market, by Country

  • 14.1. United States
  • 14.2. Canada
  • 14.3. Mexico
  • 14.4. Brazil
  • 14.5. United Kingdom
  • 14.6. Germany
  • 14.7. France
  • 14.8. Russia
  • 14.9. Italy
  • 14.10. Spain
  • 14.11. China
  • 14.12. India
  • 14.13. Japan
  • 14.14. Australia
  • 14.15. South Korea

15. United States Visional Pick & Place Machine Market

16. China Visional Pick & Place Machine Market

17. Competitive Landscape

  • 17.1. Market Concentration Analysis, 2025
    • 17.1.1. Concentration Ratio (CR)
    • 17.1.2. Herfindahl Hirschman Index (HHI)
  • 17.2. Recent Developments & Impact Analysis, 2025
  • 17.3. Product Portfolio Analysis, 2025
  • 17.4. Benchmarking Analysis, 2025
  • 17.5. ASM Assembly Systems GmbH & Co. KG
  • 17.6. Cognex Corporation
  • 17.7. CyberOptics Corporation
  • 17.8. Essemtec AG
  • 17.9. Europlacer Group
  • 17.10. Fuji Machine Manufacturing Co., Ltd.
  • 17.11. Hanwha Corporation
  • 17.12. Hitachi High-Tech Instruments
  • 17.13. JUKI Corporation
  • 17.14. Keyence Corporation
  • 17.15. Koh Young Technology Inc.
  • 17.16. Mycronic AB
  • 17.17. Nordson Corporation
  • 17.18. Omron Corporation
  • 17.19. Panasonic Corporation
  • 17.20. Speedline Technologies, Inc.
  • 17.21. TRIOPTICS GmbH
  • 17.22. Universal Instruments Corporation
  • 17.23. Viscom AG
  • 17.24. Yamaha Motor Co., Ltd.
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제