시장보고서
상품코드
1918743

천장 복사 패널 시장 : 제품 유형별, 설치 유형별, 원재료별, 용도별, 최종 이용 산업별, 유통 채널별 - 세계 예측(2026-2032년)

Ceiling Radiation Board Market by Product Type, Installation Type, Raw Material, Application, End Use Industry, Distribution Channel - Global Forecast 2026-2032

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 184 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

천장 복사 패널 시장은 2025년에 8억 9,956만 달러로 평가되었으며, 2026년에는 9억 5,958만 달러로 성장하여 CAGR 6.47%를 기록하며 2032년까지 13억 9,548만 달러에 달할 것으로 예측됩니다.

주요 시장 통계
기준 연도 2025년 8억 9,956만 달러
추정 연도 2026년 9억 5,958만 달러
예측 연도 2032년 13억 9,548만 달러
CAGR(%) 6.47%

건축 환경 의사결정권자를 위한 천장 복사 패널의 기본 원리, 성능 향상 요인, 규제와의 연관성, 진화하는 사양 우선 순위에 대한 권위 있는 입문서

천장 복사 패널은 수동적 방화성능과 단열 및 방음성능을 겸비하여 현대 건축물의 안전대책 및 음향관리 전략에 필수적인 구성요소가 되고 있습니다. 이 제품군은 건축가, 시방서 작성자 및 시설 관리자의 진화하는 기대에 부응하기 위해 규정 기준 및 프로젝트별 내화 요구 사항을 충족하도록 설계된 다양한 엔지니어링 배합을 포함하고 있습니다. 건설의 우선순위가 거주자 안전, 지속가능성, 라이프사이클 비용 절감으로 이동함에 따라, 이 보드는 천장, 처마, 칸막이 시스템에서 점점 더 통합적인 역할을 하고 있습니다.

규제 현대화, 기술 혁신, 건설 납품 모델의 변화가 천장 복사 패널의 선택 기준, 성능 기대치, 조달 행동을 어떻게 재구성하고 있는가?

천장 복사 패널 시장 환경은 규제 현대화, 재료 과학의 발전, 건축 프로그램의 요구 사항의 변화로 인해 혁신적인 전환기를 맞이하고 있습니다. 규제 기관은 화재 안전 기준과 지속가능성 목표의 조화를 강화하고 있으며, 이에 따라 제조업체는 기존의 화재 테스트를 넘어 전 생애주기 성능 검증을 요구하고 있습니다. 그 결과, 방화성능과 저탄소화, 재활용성 향상, 휘발성 성분 감소를 동시에 만족시키는 배합기술이 혁신의 중심이 되고 있습니다.

2025년 미국에서 시행된 관세 조정이 공급망 탄력성, 조달 전략, 제조 현지화, 조달 관행에 미치는 영향에 대한 실증적 평가

2025년 미국에서 시행된 관세 정책의 변화는 공급망, 조달 전략, 공급업체 관계에 즉각적이고 복잡한 영향을 미쳤습니다. 특정 원자재 및 중간재에 대한 수입 관세 인상으로 인해 미국에 기반을 둔 제조업체와 사양가들은 공급의 연속성과 비용 변동성 완화에 중점을 두고 조달 발자국을 재평가해야 했습니다. 이에 따라 조달팀은 단일 지역에 대한 의존도를 줄이고 프로젝트 납품지와 가까운 대체 공급업체를 확보하기 위해 다각화 전략을 가속화했습니다.

제품 구성, 적용 환경, 설치 방법, 최종 용도 요구 사항, 유통 경로, 원자재 선택을 사양 결과와 연계하는 종합적인 세분화 해석

통찰력 있는 세분화 분석을 통해 제품군, 용도, 시공 방법, 최종 사용 산업, 유통 경로, 원자재 투입에 따라 성능 요구 사항과 조달 선택이 어떻게 달라지는지 파악할 수 있습니다. 제품 유형 측면에서 보면 규산칼슘, 석고, 광물 섬유의 차이가 명확합니다. 규산칼슘 제품은 일반적으로 고온 안정성과 치수 안정성을 중시하고, 석고계 보드는 비용 효율성과 내화 성능 및 마감재와의 적합성, 광물 섬유 솔루션은 내화성과 함께 방음성을 우선시하는 경우가 많습니다. 그 결과, 사양 문구 및 시공 공차는 선택한 기판에 따라 달라질 수 있습니다.

아메리카, 유럽, 중동 및 아프리카, 아시아태평양의 지역적 동향과 규제 다양성은 제품 가용성, 규정 준수 요건, 조달 전략을 결정합니다.

지역별 동향은 아메리카, 유럽, 중동 및 아프리카, 아시아태평양의 제품 가용성, 규제 요건, 조달 관행을 형성하는 데 있어 핵심적인 역할을 합니다. 아메리카에서는 법규에 따른 방화성능과 노후화된 상업시설 포트폴리오의 개보수 수요가 주를 이루며, 검증된 적합성과 신뢰성 높은 유통망의 중요성이 커지고 있습니다. 이 지역에서 사업을 운영하는 공급업체들은 개보수 일정과 복잡한 거주자 안전 요구사항에 대응하기 위해 현지 시험 지원, 인증 서류의 용이성, 신속한 대응 채널 제공에 초점을 맞추고 있습니다.

제품 혁신, 시스템 통합, 공급망 투명성, 첨단 기술 서비스 강화에 중점을 둔 기업 전략이 업계에서 경쟁 우위를 재정의하는 방법

천장 복사 패널 분야의 기업 간 경쟁 행동은 제품의 지속적인 개선, 지속가능성 속성의 통합, 유통망 확대, 기술 지원 서비스 강화에 중점을 두고 있습니다. 주요 기업들은 방화성능과 환경 부하 감소, 취급 특성 개선을 위한 배합 개발을 위해 연구개발에 투자하고 있으며, 주요 사양 결정자 및 시공업체를 위한 사전 인증 프로그램을 확대하고 있습니다. 이러한 노력은 종종 현장의 변동성과 인도 시 분쟁을 최소화하기 위해 강화된 테스트 프로그램과 명확한 설치 가이드라인을 수반하는 경우가 많습니다.

제조업체와 유통업체가 탄력성을 강화하고, 사양 채택을 가속화하며, 기술적 성능을 상업적 우위로 전환할 수 있는 실행 가능한 전략 과제

업계 리더는 기술적 강점을 상업적 차별화와 장기적인 회복탄력성으로 전환하기 위해 일련의 실천적 행동을 취해야 합니다. 먼저, 제품 성능 데이터를 디지털 설계 생태계에 통합하는 것을 우선시하고, 사양 의도를 조기에 파악하여 다운스트림 공정의 충돌을 줄입니다. 검증된 BIM 지원 데이터와 명확한 시공 절차를 통합하여 건축가, 엔지니어, 시공업체가 예측 가능한 결과를 달성할 수 있도록 지원하여 비용이 많이 드는 현장 조정을 줄일 수 있습니다.

실무자 인터뷰, 규제 검토, 기술 통합을 결합한 투명하고 다각적인 조사 접근법을 통해 사양 개발 및 조달 결정에 대한 실질적인 가이드를 제공합니다.

이러한 연구 결과를 뒷받침하는 조사 방법은 다각적인 기술 검토, 이해관계자 인터뷰, 규제 동향과 업계 관행의 통합을 통해 의사결정자를 위한 실용적인 지침을 도출했습니다. 주요 입력 정보로는 다양한 제품 유형의 제품 엔지니어, 사양서 작성자, 조달 책임자와의 심층적인 논의를 통해 실제 성능 우선순위와 설치 제약조건을 파악했습니다. 이러한 질적 노력은 배합 기술, 고정 방법, 문서화 관행의 진보를 탐구하고, 개보수 및 신축 공사의 맥락에서 반복적으로 발생하는 문제점을 파악하기 위해 고안되었습니다.

천장 복사 패널을 조기 사양 조정, 공급망 복원력, 엄격한 문서화가 필요한 통합된 안전 및 성능 요소로 자리매김하는 결정적 통합

천장 복사 패널은 안전, 거주자의 쾌적성, 시공성의 교차점에서 매우 중요한 역할을 담당하고 있습니다. 설계팀과 조달 조직이 보다 엄격한 규제 요건, 공급망 변동성, 환경적 성능에 대한 기대치가 높아짐에 따라, 이러한 판재의 선택과 도입에는 보다 포괄적이고 시스템 지향적인 접근이 요구됩니다. 성능은 더 이상 단일 파라미터가 아니라 재료 배합, 설치 방법, 프로젝트 제약 조건의 상호 작용으로 만들어집니다.

자주 묻는 질문

  • 천장 복사 패널 시장 규모는 어떻게 변동하나요?
  • 천장 복사 패널의 주요 성능 향상 요인은 무엇인가요?
  • 천장 복사 패널 시장의 규제 현대화가 미치는 영향은 무엇인가요?
  • 2025년 미국에서 시행된 관세 조정의 영향은 무엇인가요?
  • 천장 복사 패널의 제품 구성에 따른 성능 요구 사항은 어떻게 달라지나요?
  • 천장 복사 패널 시장의 지역별 동향은 어떻게 되나요?

목차

제1장 서문

제2장 조사 방법

  • 조사 설계
  • 조사 프레임워크
  • 시장 규모 예측
  • 데이터 삼각측량
  • 조사 결과
  • 조사 가정
  • 조사의 제약

제3장 주요 요약

  • CXO 관점
  • 시장 규모와 성장 동향
  • 시장 점유율 분석, 2025
  • FPNV 포지셔닝 매트릭스, 2025
  • 새로운 수익 기회
  • 차세대 비즈니스 모델
  • 업계 로드맵

제4장 시장 개요

  • 업계 생태계와 밸류체인 분석
  • Porter's Five Forces 분석
  • PESTEL 분석
  • 시장 전망
  • GTM 전략

제5장 시장 인사이트

  • 소비자 인사이트와 최종사용자 관점
  • 소비자 경험 벤치마크
  • 기회 매핑
  • 유통 채널 분석
  • 가격 동향 분석
  • 규제 준수와 표준 프레임워크
  • ESG와 지속가능성 분석
  • 디스럽션과 리스크 시나리오
  • ROI와 CBA

제6장 미국 관세의 누적 영향, 2025

제7장 AI의 누적 영향, 2025

제8장 천장 복사 패널 시장 : 제품 유형별

  • 규산칼슘
  • 석고
  • 광물 섬유

제9장 천장 복사 패널 시장 : 설치 유형별

  • 신축
    • 접착 시공
    • 기계적 고정
  • 교체·개선
    • 접착 시공
    • 기계적 고정

제10장 천장 복사 패널 시장 : 원재료별

  • 유리섬유
  • 석고 원료
  • 펄라이트
  • 포틀랜드 시멘트
  • 실리카모래

제11장 천장 복사 패널 시장 : 용도별

  • 상업용
  • 산업용
  • 주거용

제12장 천장 복사 패널 시장 : 최종 이용 산업별

  • 상업 빌딩
  • 산업 시설
  • 인프라 프로젝트
  • 주택 건축

제13장 천장 복사 패널 시장 : 유통 채널별

  • 직접 판매
    • OEM 계약
    • 프로젝트 기반 계약
  • 판매대리점 및 딜러
    • 소매점
    • 도매업체
  • 온라인 플랫폼
    • E-Commerce 마켓플레이스
    • 제조업체 공식 사이트

제14장 천장 복사 패널 시장 : 지역별

  • 아메리카
    • 북미
    • 라틴아메리카
  • 유럽, 중동 및 아프리카
    • 유럽
    • 중동
    • 아프리카
  • 아시아태평양

제15장 천장 복사 패널 시장 : 그룹별

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

제16장 천장 복사 패널 시장 : 국가별

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 중국
  • 인도
  • 일본
  • 호주
  • 한국

제17장 미국 천장 복사 패널 시장

제18장 중국 천장 복사 패널 시장

제19장 경쟁 구도

  • 시장 집중도 분석, 2025
    • 집중 비율(CR)
    • 허핀달-허쉬만 지수(HHI)
  • 최근 동향과 영향 분석, 2025
  • 제품 포트폴리오 분석, 2025
  • 벤치마킹 분석, 2025
  • American Gypsum Company LLC
  • Booth Felt Company
  • BPB United States Inc.
  • Celotex Corporation
  • CertainTeed Corporation
  • Collins & Aikman Corporation
  • Conwed Corporation
  • Domtar Corporation
  • Georgia-Pacific Gypsum LLC
  • Homasote Company
  • Illinois Tool Works Inc.
  • Johns Manville Corporation
  • Kaiser Gypsum Company Inc.
  • Kemlite Company
  • Lafarge North America Inc.
  • Louisiana-Pacific Corporation
  • National Gypsum Company
  • Owens Corning
  • PABCO Building Products LLC
  • Panel Rey S.A.
  • Plastic Components, Inc.
  • Roxul Inc.
  • Saint-Gobain North America, Inc.
  • Temple-Inland Inc.
  • Trim-Tex, Inc.
  • USG Corporation
  • Verco Manufacturing Company
  • Worthington Industries, Inc.
KSM 26.02.05

The Ceiling Radiation Board Market was valued at USD 899.56 million in 2025 and is projected to grow to USD 959.58 million in 2026, with a CAGR of 6.47%, reaching USD 1,395.48 million by 2032.

KEY MARKET STATISTICS
Base Year [2025] USD 899.56 million
Estimated Year [2026] USD 959.58 million
Forecast Year [2032] USD 1,395.48 million
CAGR (%) 6.47%

An authoritative primer on ceiling radiation board fundamentals, performance drivers, regulatory intersection, and evolving specification priorities for built environment decision-makers

Ceiling radiation boards have become an essential component in contemporary building safety and acoustic management strategies, combining passive fire protection with thermal and acoustic performance. The product family spans a variety of engineered formulations designed to satisfy prescriptive codes, project-specific fire-resistance requirements, and the evolving expectations of architects, specifiers, and facility managers. As construction priorities shift toward occupant safety, sustainability, and lifecycle cost reduction, these boards play an increasingly integrated role in ceilings, soffits, and compartmentation systems.

Over the past decade, material innovation and stricter regulatory frameworks have pushed performance standards higher, prompting manufacturers and installers to refine formulations and fastening systems. Consequently, product choice is no longer governed solely by fire rating; designers now weigh moisture resistance, acoustic attenuation, ease of installation, and compatibility with finishing systems. These multidimensional requirements have elevated the role of the ceiling radiation board from a relatively niche safety product to a mainstream architectural and engineering consideration, demanding clearer specification language and tighter coordination among stakeholders during design and procurement phases.

In response, industry participants have invested in demonstrable third-party testing, improved installation guides, and enhanced documentation to support compliance and reduce onsite variability. As a result, procurement teams and design professionals are demanding more transparent performance data and installation protocols to ensure consistent outcomes across varied project types and environments.

How regulatory modernization, technological innovation, and shifting construction delivery models are reshaping ceiling radiation board selection, performance expectations, and procurement behaviors

The ceiling radiation board landscape is undergoing transformative shifts driven by regulatory modernization, material science advances, and changing building program imperatives. Regulatory bodies are increasingly harmonizing fire-safety criteria with sustainability goals, which in turn compels manufacturers to demonstrate full lifecycle performance beyond conventional fire testing. As a result, innovation now centers on formulations that balance fire resistance with lower embodied carbon, improved recyclability, and reduced volatile content.

Simultaneously, the industry is experiencing a push for installation efficiency and prefabrication. Modular construction trends and tighter labor markets have accelerated adoption of mechanical fastening systems and pre-finished assemblies that reduce onsite labor and variability. This trend interacts with digital design workflows; product data integration into BIM platforms enables earlier coordination of ceiling radiation board performance requirements in project lifecycles, thereby minimizing change orders and installation rework.

In addition, the demand for multi-functional building elements is changing procurement criteria. Stakeholders expect ceiling solutions to contribute to acoustic comfort, thermal management, and cleanability in high-traffic spaces. Consequently, manufacturers and suppliers are responding with hybrid products and enhanced documentation packages that help specifiers evaluate trade-offs. Taken together, these shifts underline a strategic evolution from single-purpose safety materials to integrated ceiling systems that align with broader performance and sustainability objectives.

An evidence-based assessment of how United States tariff adjustments in 2025 influenced supply chain resilience, sourcing strategies, manufacturing localization, and procurement practices

Tariff policy changes instituted in the United States in 2025 have had immediate and nuanced effects across supply chains, procurement strategies, and supplier relationships. Increased import duties on certain raw materials and intermediate products prompted U.S.-based manufacturers and specifiers to reassess sourcing footprints, with an emphasis on supply continuity and cost volatility mitigation. In response, procurement teams accelerated diversification strategies to reduce exposure to a single geography and to secure alternative suppliers closer to project delivery locations.

As tariffs altered landed costs, some manufacturers prioritized localization of critical production steps, shifting from reliance on imported components to increased domestic processing and assembly. This reorientation required short-term capital allocation toward equipment and qualification testing, and longer-term adjustments in procurement contracts to accommodate altered lead times and payment terms. These developments also influenced distribution strategies: channel partners and dealers restructured inventory practices to buffer project pipelines against price fluctuations while maintaining contractual commitments to project schedules.

Moreover, tariff-driven cost pressures intensified value-engineering exercises on both new construction and renovation projects. Design teams worked more closely with manufacturers to assess alternate raw material blends, fastening approaches, and installation sequences that preserve performance while controlling total installed cost. In parallel, the heightened focus on supply chain resilience spurred greater transparency in supplier qualification and traceability practices, which will influence procurement governance and specification documentation going forward.

Comprehensive segmentation interpretation linking product formulations, application contexts, installation approaches, end-use requirements, distribution channels, and raw material choices to specification outcomes

Insightful segmentation analysis reveals how performance requirements and procurement choices vary across product families, applications, installation methodologies, end-use industries, distribution paths, and raw material inputs. When viewed through the lens of product type, distinctions among Calcium Silicate, Gypsum, and Mineral Fiber become clear: Calcium Silicate products typically emphasize high-temperature stability and dimensional integrity, Gypsum-based boards balance cost-effectiveness with fire performance and finishing compatibility, and Mineral Fiber solutions often prioritize acoustic attenuation alongside fire resistance. Consequently, specification language and installation tolerances shift depending on the chosen base material.

Application context further refines selection: commercial projects frequently prioritize a combination of fire rating, acoustic comfort, and aesthetic finish; industrial settings emphasize durability, moisture and impact resistance, and ease of maintenance; residential work focuses on occupant safety, cost sensitivity, and compatibility with HVAC and lighting integration. Installation type also affects product and procurement choices. New construction scenarios often prefer adhesive installation or mechanical fastening options optimized for speed and reduced labor variability, while replacement and renovation projects must balance adhesion and fastening strategies against substrate conditions, access constraints, and minimization of occupant disruption.

End-use industry distinctions drive performance trade-offs. Commercial buildings demand integrated ceiling systems that meet stringent fire compartmentation and acoustic standards, industrial facilities require boards that withstand harsh environments and occasional mechanical stresses, infrastructure projects prioritize longevity and regulatory compliance, and residential buildings seek solutions that combine safety with finishes that align with interior design goals. Distribution channels shape buying behavior: direct sales channels, via OEM contracts or project-based agreements, typically suit large-volume, specification-driven buyers; distributors and dealers, operating through retail outlets or wholesale networks, address contractors and smaller projects; online platforms, including e-commerce marketplaces and manufacturer websites, deliver convenience and rapid product comparison to smaller buyers and renovation specialists. Raw material choice-glass fiber, gypsum raw, perlite, Portland cement, and silica sand-affects not only board performance but also supply chain dynamics, processing requirements, and sustainability considerations, requiring procurement to weigh availability, environmental footprint, and performance metrics together.

Regional dynamics and regulatory diversity across the Americas, Europe Middle East & Africa, and Asia-Pacific that determine product availability, compliance needs, and procurement strategies

Regional dynamics play a central role in shaping product availability, regulatory expectations, and procurement practices across the Americas, Europe Middle East & Africa, and Asia-Pacific. In the Americas, demand leans heavily on code-driven fire performance and retrofit activity in aging commercial portfolios, which elevates the importance of demonstrated compliance and reliable distribution networks. Suppliers operating in this region focus on supporting local testing, accessible certification documentation, and responsive channels to meet renovation timelines and complex occupant-safety requirements.

Across Europe, Middle East & Africa, the regulatory landscape is patchwork but increasingly aligned with sustainability and fire-safety harmonization initiatives, prompting manufacturers to provide robust environmental declarations and a clear chain of custody for raw materials. The region's diversity in construction typologies-from dense urban redevelopment to large-scale infrastructure build-outs-requires versatile product portfolios that can adapt to different installation practices and climatic exposures. Meanwhile, suppliers must navigate certification regimes and provide localized technical support to ensure consistent installation outcomes.

In the Asia-Pacific region, rapid urbanization and extensive new construction activities create strong demand for installation efficiency and cost-effective performance. Manufacturers and distributors in this region emphasize scalable production capabilities, modular solutions, and simplified installation protocols to meet tight construction schedules. Moreover, accelerating regulatory sophistication in several jurisdictions means that international-grade testing and documentation are increasingly table stakes for projects serving multinational clients. Collectively, these regional distinctions inform how product innovation, logistics strategies, and compliance services are prioritized by suppliers and procurers alike.

How company strategies emphasizing product innovation, system integration, supply chain transparency, and enhanced technical services are redefining competitive advantage in the industry

Competitive behavior among companies in the ceiling radiation board space has centered on continuing product refinement, integration of sustainability attributes, expansion of distribution reach, and enhancement of technical support services. Leading firms invest in R&D to develop formulations that reconcile fire performance with reduced environmental impact and improved handling characteristics, while also expanding pre-qualification programs for major specifiers and contractors. These efforts are frequently accompanied by strengthened testing programs and clearer installation guidelines to minimize field variability and disputes during handover.

Strategic partnerships and channel development have also become essential. Manufacturers increasingly collaborate with fastening system providers, insulation suppliers, and prefabrication specialists to deliver system-level solutions that shorten installation time and improve predictability. Additionally, several companies are investing in digital assets-product data templates for BIM, downloadable performance documents, and online training platforms-to support early-stage design integration and contractor education.

On the procurement side, many organizations are seeking suppliers that can demonstrate transparent sourcing of raw materials, articulate lifecycle considerations, and offer flexible fulfillment models, including project-based contracts and OEM arrangements. Distributors and dealers that provide technical advice, localized inventory, and convenient online procurement options are increasingly valued, especially for renovation and smaller-scale projects. Taken together, these competitive approaches emphasize service, documentation, and system compatibility as differentiators in a mature yet evolving industry.

Actionable strategic imperatives for manufacturers and distributors to strengthen resilience, accelerate specification adoption, and convert technical performance into commercial advantage

Industry leaders should adopt a set of pragmatic actions to convert technical strengths into commercial differentiation and long-term resilience. First, prioritize integration of product performance data into digital design ecosystems to capture specification intent early and reduce downstream conflicts. Embedding validated BIM-ready data and clear installation sequences supports architects, engineers, and contractors in achieving predictable outcomes and reduces costly on-site adjustments.

Second, accelerate initiatives to diversify supply chains for critical raw materials and intermediate components, focusing on near-shore partners and flexible sourcing agreements to mitigate tariff exposure and shipping disruptions. This shift should be paired with increased investment in traceability and supplier qualification so that procurement teams can verify continuity and conformity quickly. Third, enhance post-sale services: provide on-demand technical training, pre-installation mock-ups, and expanded warranty or performance assurance packages that reduce project risk and strengthen long-term customer relationships.

Fourth, align product development with demonstrable environmental metrics, such as embodied carbon and recyclability, and ensure transparent documentation to meet evolving regulatory and client sustainability criteria. Finally, invest in channel enablement by equipping distributors and online platforms with technical collateral, specification guides, and fulfillment flexibility to capture projects across new construction and renovation segments. Taken together, these actions create a more resilient, specification-driven business model that balances performance, cost, and compliance.

A transparent, multi-source research approach combining practitioner interviews, regulatory review, and technical synthesis to produce practical guidance for specification and procurement decisions

The research methodology underpinning these insights combined multi-source technical review, stakeholder interviews, and synthesis of regulatory and industry practice trends to produce actionable guidance for decision-makers. Primary inputs included in-depth discussions with product engineers, specification writers, and procurement leads across diverse project types to capture real-world performance priorities and installation constraints. These qualitative engagements were structured to explore advances in formulations, fastening approaches, and documentation practices, and to identify recurring pain points in retrofit and new construction contexts.

Secondary inputs comprised a careful review of publicly available regulatory updates, industry standards, and testing protocols to ground analysis in current compliance realities. Comparative evaluation of product literature and published test reports helped clarify differences among material families and installation systems without relying on proprietary or restricted datasets. Throughout the process, cross-validation techniques were applied: claims from manufacturer literature were juxtaposed with independent third-party testing references and practitioner perspectives to ensure balanced interpretation.

Finally, synthesis prioritized practical implications for specification, procurement, and installation, translating technical differentiation into procurement questions and contract considerations that owners, contractors, and specifiers can apply. This approach emphasizes transparency, reproducibility, and direct applicability to project decision-making.

A decisive synthesis that positions ceiling radiation boards as integrated safety and performance elements requiring early specification alignment, supply chain resilience, and documentation rigor

Ceiling radiation boards occupy a pivotal role at the intersection of safety, occupant comfort, and constructability. As design teams and procurement organizations confront tighter regulatory requirements, supply chain volatility, and elevated expectations for environmental performance, the selection and deployment of these boards demand a more holistic, system-oriented approach. Performance is no longer a single-dimensional parameter; instead, it emerges from the interplay among material formulation, installation method, and project constraints.

Consequently, stakeholders benefit from early integration of product data into design workflows, closer collaboration with suppliers on pre-qualification and mock-up validation, and adoption of procurement structures that favor transparency and service continuity. Building owners and contractors who prioritize these practices will reduce installation risk, achieve more predictable handover outcomes, and better align ceiling solutions with broader sustainability and lifecycle goals. In sum, the industry is moving toward integrated solutions supported by enhanced documentation, better digital integration, and stronger supply chain resilience, enabling safer, more efficient, and more sustainable building outcomes.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Definition
  • 1.3. Market Segmentation & Coverage
  • 1.4. Years Considered for the Study
  • 1.5. Currency Considered for the Study
  • 1.6. Language Considered for the Study
  • 1.7. Key Stakeholders

2. Research Methodology

  • 2.1. Introduction
  • 2.2. Research Design
    • 2.2.1. Primary Research
    • 2.2.2. Secondary Research
  • 2.3. Research Framework
    • 2.3.1. Qualitative Analysis
    • 2.3.2. Quantitative Analysis
  • 2.4. Market Size Estimation
    • 2.4.1. Top-Down Approach
    • 2.4.2. Bottom-Up Approach
  • 2.5. Data Triangulation
  • 2.6. Research Outcomes
  • 2.7. Research Assumptions
  • 2.8. Research Limitations

3. Executive Summary

  • 3.1. Introduction
  • 3.2. CXO Perspective
  • 3.3. Market Size & Growth Trends
  • 3.4. Market Share Analysis, 2025
  • 3.5. FPNV Positioning Matrix, 2025
  • 3.6. New Revenue Opportunities
  • 3.7. Next-Generation Business Models
  • 3.8. Industry Roadmap

4. Market Overview

  • 4.1. Introduction
  • 4.2. Industry Ecosystem & Value Chain Analysis
    • 4.2.1. Supply-Side Analysis
    • 4.2.2. Demand-Side Analysis
    • 4.2.3. Stakeholder Analysis
  • 4.3. Porter's Five Forces Analysis
  • 4.4. PESTLE Analysis
  • 4.5. Market Outlook
    • 4.5.1. Near-Term Market Outlook (0-2 Years)
    • 4.5.2. Medium-Term Market Outlook (3-5 Years)
    • 4.5.3. Long-Term Market Outlook (5-10 Years)
  • 4.6. Go-to-Market Strategy

5. Market Insights

  • 5.1. Consumer Insights & End-User Perspective
  • 5.2. Consumer Experience Benchmarking
  • 5.3. Opportunity Mapping
  • 5.4. Distribution Channel Analysis
  • 5.5. Pricing Trend Analysis
  • 5.6. Regulatory Compliance & Standards Framework
  • 5.7. ESG & Sustainability Analysis
  • 5.8. Disruption & Risk Scenarios
  • 5.9. Return on Investment & Cost-Benefit Analysis

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Ceiling Radiation Board Market, by Product Type

  • 8.1. Calcium Silicate
  • 8.2. Gypsum
  • 8.3. Mineral Fiber

9. Ceiling Radiation Board Market, by Installation Type

  • 9.1. New Construction
    • 9.1.1. Adhesive Installation
    • 9.1.2. Mechanical Fastening
  • 9.2. Replacement And Renovation
    • 9.2.1. Adhesive Installation
    • 9.2.2. Mechanical Fastening

10. Ceiling Radiation Board Market, by Raw Material

  • 10.1. Glass Fiber
  • 10.2. Gypsum Raw
  • 10.3. Perlite
  • 10.4. Portland Cement
  • 10.5. Silica Sand

11. Ceiling Radiation Board Market, by Application

  • 11.1. Commercial
  • 11.2. Industrial
  • 11.3. Residential

12. Ceiling Radiation Board Market, by End Use Industry

  • 12.1. Commercial Buildings
  • 12.2. Industrial Facilities
  • 12.3. Infrastructure Projects
  • 12.4. Residential Buildings

13. Ceiling Radiation Board Market, by Distribution Channel

  • 13.1. Direct Sales
    • 13.1.1. OEM Contracts
    • 13.1.2. Project Based Contracts
  • 13.2. Distributors And Dealers
    • 13.2.1. Retail Outlets
    • 13.2.2. Wholesale Distributors
  • 13.3. Online Platforms
    • 13.3.1. E Commerce Marketplaces
    • 13.3.2. Manufacturer Websites

14. Ceiling Radiation Board Market, by Region

  • 14.1. Americas
    • 14.1.1. North America
    • 14.1.2. Latin America
  • 14.2. Europe, Middle East & Africa
    • 14.2.1. Europe
    • 14.2.2. Middle East
    • 14.2.3. Africa
  • 14.3. Asia-Pacific

15. Ceiling Radiation Board Market, by Group

  • 15.1. ASEAN
  • 15.2. GCC
  • 15.3. European Union
  • 15.4. BRICS
  • 15.5. G7
  • 15.6. NATO

16. Ceiling Radiation Board Market, by Country

  • 16.1. United States
  • 16.2. Canada
  • 16.3. Mexico
  • 16.4. Brazil
  • 16.5. United Kingdom
  • 16.6. Germany
  • 16.7. France
  • 16.8. Russia
  • 16.9. Italy
  • 16.10. Spain
  • 16.11. China
  • 16.12. India
  • 16.13. Japan
  • 16.14. Australia
  • 16.15. South Korea

17. United States Ceiling Radiation Board Market

18. China Ceiling Radiation Board Market

19. Competitive Landscape

  • 19.1. Market Concentration Analysis, 2025
    • 19.1.1. Concentration Ratio (CR)
    • 19.1.2. Herfindahl Hirschman Index (HHI)
  • 19.2. Recent Developments & Impact Analysis, 2025
  • 19.3. Product Portfolio Analysis, 2025
  • 19.4. Benchmarking Analysis, 2025
  • 19.5. American Gypsum Company LLC
  • 19.6. Booth Felt Company
  • 19.7. BPB United States Inc.
  • 19.8. Celotex Corporation
  • 19.9. CertainTeed Corporation
  • 19.10. Collins & Aikman Corporation
  • 19.11. Conwed Corporation
  • 19.12. Domtar Corporation
  • 19.13. Georgia-Pacific Gypsum LLC
  • 19.14. Homasote Company
  • 19.15. Illinois Tool Works Inc.
  • 19.16. Johns Manville Corporation
  • 19.17. Kaiser Gypsum Company Inc.
  • 19.18. Kemlite Company
  • 19.19. Lafarge North America Inc.
  • 19.20. Louisiana-Pacific Corporation
  • 19.21. National Gypsum Company
  • 19.22. Owens Corning
  • 19.23. PABCO Building Products LLC
  • 19.24. Panel Rey S.A.
  • 19.25. Plastic Components, Inc.
  • 19.26. Roxul Inc.
  • 19.27. Saint-Gobain North America, Inc.
  • 19.28. Temple-Inland Inc.
  • 19.29. Trim-Tex, Inc.
  • 19.30. USG Corporation
  • 19.31. Verco Manufacturing Company
  • 19.32. Worthington Industries, Inc.
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제