시장보고서
상품코드
1923878

리튬이온 배터리 전해질 용매 시장 : 용매 유형별, 배터리 유형별, 최종사용자 산업별, 순도 등급별, 판매 채널별 - 세계 예측(2026-2032년)

Lithium-ion Battery Electrolyte Solvent Market by Solvent Type, Battery Type, End User Industry, Purity Grade, Sales Channel - Global Forecast 2026-2032

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 190 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

리튬이온 배터리 전해질 용매 시장은 2025년에 66억 3,000만 달러로 평가되며, 2026년에는 75억 6,000만 달러로 성장하며, CAGR 15.13%로 추이하며, 2032년까지 177억 8,000만 달러에 달할 것으로 예측됩니다.

주요 시장 통계
기준연도 2025 66억 3,000만 달러
추정연도 2026 75억 6,000만 달러
예측연도 2032 177억 8,000만 달러
CAGR(%) 15.13%

배터리 설계, 제조 및 최종사용자 성능의 모든 측면에서 용매 화학이 전략적 우위를 점하게된 이유에 대한 중요한 기본 지식

리튬이온 배터리 전해질 용매의 진화는 재료 과학, 산업 화학, 그리고 세계 에너지 전환의 우선 순위가 교차하는 지점에 위치하고 있습니다. 더 높은 에너지 밀도, 더 빠른 충전, 향상된 안전성, 더 긴 사이클 수명을 달성하기 위해 배터리의 화학적 구성이 다양해짐에 따라 용매의 혁신은 점진적인 배합 변경에서 배터리 제조업체 및 업스트림 화학 공급업체의 핵심 경쟁 차별화 요소로 전환되었습니다. 그 결과, 자동차, CE(Consumer Electronics), 에너지 저장 부문의 전략적 이해관계자들은 총소유비용과 규제 준수를 관리하면서 성능 향상을 실현하기 위해 조달, 인증, 공급업체 개발 프로세스를 재검토하고 있습니다.

화학 기술, 규제, 공급망 전략이 동시에 진행되어 용매를 범용 제품에서 성능 향상을 실현하는 엔지니어링 제품으로 승화시키는 메커니즘

화학 기술, 규제 및 최종 시장 수요의 역학이 동시에 발전함에 따라 용제 산업은 혁신적인 변화를 겪고 있습니다. 첫째, 저온 성능, 고전압 안정성, 가연성 감소의 트레이드오프를 목표로 하는 맞춤형 용매 블렌드로의 전환이 가속화되고 있습니다. 이러한 블렌드는 시스템 수준의 성능 향상을 위해 첨가제 화학 및 특정 전극 재료와 함께 공동 개발되고 있습니다. 다음으로, 규제 프레임워크와 지속가능성 기준은 용제 제조 공정에 대한 요구 수준을 높이고, 저배출 제조와 보다 투명한 공급망 추적성으로의 전환을 촉진하고 있습니다.

새로운 관세 조치가 리튬이온 배터리용제 공급망 전체에 미치는 영향, 공급망 복원력, 공급업체 협력에 미치는 종합적 영향

관세 부과 및 조정은 리튬이온 배터리 밸류체인 전반에 걸쳐 비용 역학, 공급망 경로, 전략적 조달 결정을 실질적으로 변화시킬 수 있습니다. 2025년 미국에서 시행된 관세 변경은 국경 간 조달에 대한 감시를 강화하고, 공급업체 다각화 전략의 재평가를 가속화했습니다. 이에 따라 많은 조직은 조달 전략을 재검토하고, 국내 인증 활동을 강화하고, 중요 화학제품의 니어쇼어링을 가속화하고, 국경 비용의 변동을 흡수하기 위해 재고 정책을 재조정했습니다.

용매 화학, 배터리 구조, 최종사용자용도, 순도 등급, 판매 채널을 차별화된 상업적 전략으로 연결하는 다차원적 세분화 프레임워크

미묘한 세분화 관점은 용매 유형, 배터리 아키텍처, 최종사용자용도, 순도 요구 사항, 판매 경로에 따라 수요 동인과 공급자의 가치 제안이 어떻게 달라지는지 보여줍니다. 용매 유형에 따라 시장 진출기업은 특정 셀 화학에 맞는 전해액을 설계할 때 점도, 유전율, 열 안정성의 균형을 맞추기 위해 디 에틸 카보네이트, 디메틸 카보네이트, 에틸 메틸 카보네이트, 에틸렌 카보네이트, 프로필렌 카보네이트 등을 평가합니다. 배터리 유형에 따라 제조업체는 리튬 코발트 산염, 리튬 인산철, 리튬 망간 산염, 리튬 니켈 망간 코발트 산염, 리튬 티타 네이트 등 화학 성분이 요구하는 성능 범위에 맞게 용매를 선택합니다. 각 전극 재료는 고유한 전해질 적합성 문제를 제시하며, 첨가제 선택 및 배합 허용 오차에 영향을 미친다는 것을 알고 있습니다.

지역 산업 정책, 규제의 엄격함, 제조 거점 분포가 세계 시장에서 용매 조달 전략과 혁신 우선순위를 형성하는 방법

지역별 동향은 용제 제조업체와 그 고객에 대한 공급망 구성, 혁신 생태계, 규제 요건에 강력한 영향을 미칩니다. 북미와 남미에서는 주요 자동차 및 에너지 저장 장치 제조업체(OEM)와 가까운 곳에서 생산 능력 확대에 집중하는 동시에 진화하는 화학물질 안전 및 배출 기준을 준수하기 위해 현지 정제 및 재활용 기술에 대한 투자를 촉진하고 있습니다. 유럽, 중동 및 아프리카에서는 화학물질 관리, 지속가능성 보고, 확대된 생산자 책임에 대한 규제 강화, 용매 추적성, 친환경 제조 공정, 공급업체의 수명주기 영향 감소를 입증하는 파트너십에 대한 수요가 증가하고 있습니다. 아시아태평양에서는 배터리 셀 제조의 집중화, 촘촘한 공급업체 네트워크, 빠른 상용화 경로로 인해 기술 도입이 가속화되고 있으며, 특정 용매 화학 분야에서 강력한 지역적 특화가 이루어지고 있습니다.

용제 공급업체 간 경쟁 우위를 주도하는 주요 요인으로는 기술적 차별화, 공급 연속성 보장, 협업 개발 모델을 들 수 있습니다.

용제 제조업체와 업스트림 화학물질 공급업체 간의 경쟁은 기술적 차별화와 운영상의 우수성 사이의 균형을 반영합니다. 주요 상업적 전략은 고순도 용매 등급 생산 능력 입증, 대규모 반복 가능한 품질 제공, 배터리 제조업체의 인증 기간 단축을 위한 지원적 검증 서비스 제공에 초점을 맞추었습니다. 용매 배합업체와 셀 제조업체 간의 전략적 제휴는 점점 더 보편화되어 맞춤형 전해질 시스템의 공동 개발을 가능하게 하고, 특정 수명, 안전 및 성능 목표에 대응하는 첨가제 화학의 통합을 가속화하고 있습니다.

지속가능한 경쟁 우위를 확립하기 위해 공급업체와 OEM을 위한 실질적인 전략적 우선순위를 정립하여 용매의 혁신성, 공급의 탄력성, 고객 중심의 서비스를 조화시키는 것

업계 리더는 기술 혁신, 공급 탄력성, 상업적 참여를 통합하는 세 가지 기둥 접근 방식을 추구하여 장기적인 우위를 확보해야 합니다. 첫째, 셀 제조업체 및 재료 혁신 기업과의 공동 개발 프로그램을 우선시하고 특정 전극 및 분리막 요구 사항을 충족하는 용매 혼합 및 첨가제 패키지를 사용자 정의합니다. 공동 검증 로드맵을 공식화하여 인증 주기를 단축하고, 공급업체의 전문성을 셀 개발 일정에 반영하여 셀 개발 일정에 반영합니다. 다음으로, 지역별 생산 능력과 전략적 재고, 장기 공급 계약을 결합하여 공급 기반을 다변화하고, 용제 재생 및 폐쇄 루프 정제에 대한 투자를 가속화하여 국경 간 비용 변동과 원자재 부족의 영향을 줄일 수 있습니다.

전문가 인터뷰, 기술 검증, 상호 검증된 문서 증거를 결합한 엄격한 혼합 방법론 조사 프레임 워크를 통해 확고한 업계 지식을 보장

이 조사는 기술적, 상업적, 규제적 관찰 사항을 검증하기 위해 설계된 혼합 방법론 접근법을 사용하여 정성적 및 정량적 인풋을 통합합니다. 주요 결과는 용제 제조업체, 셀 제조업체, 조달 책임자, R&D 전문가를 포함한 업계 이해관계자와의 구조화된 인터뷰를 통해 얻어지며, 가능한 경우 현장 방문 및 기술 샘플 평가로 보완됩니다. 2차적 정보원으로는 심사숙고된 문헌, 특허 출원 서류, 기술 데이터 시트, 규제 문서, 공개 문서 등을 활용하여 공정 혁신, 순도 기준, 신흥 첨가제 화학에 대한 배경 정보를 제공합니다.

용매 혁신, 공급망 복원력, 규제 요인이 어떻게 수렴하고 미래 배터리 성능과 상업적 성과를 결정하는지에 대한 간결한 통합 분석

요약하면, 전해질 용매는 리튬이온 배터리 기술 개발 및 배치에서 보조적인 역할에서 전략적 전환점으로 전환되었습니다. 용매 화학 및 첨가제의 시너지 효과에 대한 혁신은 성능과 안전성을 크게 향상시킬 수 있습니다. 한편, 규제와 관세의 압력으로 인해 시장 진출기업은 조달, 인증, 지속가능성 전략을 재검토해야 하는 상황에 처해 있습니다. 그 결과, 고순도 제조와 신속한 기술 지원, 지역적 공급 보장을 결합한 공급업체는 자동차, CE(Consumer Electronics), 에너지 저장 분야 고객의 진화하는 요구에 부응할 수 있는 최적의 위치에 서게 될 것입니다.

자주 묻는 질문

  • 리튬이온 배터리 전해질 용매 시장 규모는 어떻게 예측되나요?
  • 리튬이온 배터리 전해질 용매의 혁신이 중요한 이유는 무엇인가요?
  • 관세 조정이 리튬이온 배터리 공급망에 미치는 영향은 무엇인가요?
  • 리튬이온 배터리 전해질 용매 시장에서 공급업체 간 경쟁 우위를 주도하는 요인은 무엇인가요?
  • 리튬이온 배터리 전해질 용매의 세분화는 어떻게 이루어지나요?

목차

제1장 서문

제2장 조사 방법

제3장 개요

제4장 시장 개요

제5장 시장 인사이트

제6장 미국 관세의 누적 영향, 2025

제7장 AI의 누적 영향, 2025

제8장 리튬이온 배터리 전해질 용매 시장 : 용제 유형별

제9장 리튬이온 배터리 전해질 용매 시장 : 배터리 유형별

제10장 리튬이온 배터리 전해질 용매 시장 : 최종사용자 산업별

제11장 리튬이온 배터리 전해질 용매 시장 : 순도 등급별

제12장 리튬이온 배터리 전해질 용매 시장 : 판매 채널별

제13장 리튬이온 배터리 전해질 용매 시장 : 지역별

제14장 리튬이온 배터리 전해질 용매 시장 : 그룹별

제15장 리튬이온 배터리 전해질 용매 시장 : 국가별

제16장 미국 리튬이온 배터리 전해질 용매 시장

제17장 중국 리튬이온 배터리 전해질 용매 시장

제18장 경쟁 구도

KSA

The Lithium-ion Battery Electrolyte Solvent Market was valued at USD 6.63 billion in 2025 and is projected to grow to USD 7.56 billion in 2026, with a CAGR of 15.13%, reaching USD 17.78 billion by 2032.

KEY MARKET STATISTICS
Base Year [2025] USD 6.63 billion
Estimated Year [2026] USD 7.56 billion
Forecast Year [2032] USD 17.78 billion
CAGR (%) 15.13%

An essential primer on why solvent chemistry has become a strategic leverage point across battery design, manufacturing, and end-user performance

The evolution of lithium-ion battery electrolyte solvents sits at the intersection of materials science, industrial chemistry, and global energy transition priorities. As battery chemistries diversify to meet higher energy density, faster charging, enhanced safety, and longer cycle life, solvent innovation has moved from incremental formulation changes to a core competitive differentiator for battery manufacturers and upstream chemical suppliers. Consequently, strategic stakeholders across automotive, consumer electronics, and energy storage sectors are recalibrating procurement, qualification, and supplier development processes to capture performance gains while managing total cost of ownership and regulatory compliance.

Importantly, the introduction of next-generation solvents and additive packages complements electrode and separator advancements, creating compound effects on overall cell performance. For corporate decision-makers, this means that solvent choices no longer sit solely within chemistry labs; they influence manufacturing throughput, quality control frameworks, and warranty exposure. Transitioning from legacy carbonate systems toward optimized blends requires rigorous validation across cell formats and duty cycles, and it requires suppliers to demonstrate reproducible supply and purity consistency. Therefore, understanding the solvent landscape is essential for risk mitigation and for unlocking the performance attributes that will define the next wave of battery-enabled products.

How simultaneous advances in chemistry, regulation, and supply chain strategy are elevating solvents from commodities to engineered performance enablers

The solvent landscape is undergoing transformative shifts driven by simultaneous advances in chemistry, regulation, and end-market demand dynamics. First, there is an accelerating push toward tailored solvent blends that target trade-offs between low-temperature performance, high-voltage stability, and flammability reduction. These blends are increasingly co-developed with additive chemistries and specific electrode materials to achieve system-level gains. Second, regulatory frameworks and sustainability standards are raising the bar for solvent production pathways, prompting a move toward lower-emission manufacturing and more transparent supply chain traceability.

Moreover, supply chain reconfiguration is shifting procurement strategies: firms are investing in geographic redundancy, vertical integration, and long-term supplier partnerships to lock in critical raw materials and high-purity intermediates. Concurrently, battery manufacturers are reshaping qualification protocols to accelerate adoption of novel solvent systems while controlling warranty risk, which necessitates deeper collaboration with solvent suppliers during early-stage validation. Taken together, these shifts are transforming solvents from commodity items into engineered performance enablers, and they demand integrated commercial and technical strategies to capture the full value of emerging formulations.

The aggregate effects of new tariff measures on procurement tactics, supply resilience, and supplier collaboration across the lithium-ion solvent supply chain

The imposition and adjustment of tariffs can materially alter cost dynamics, supply chain routing, and strategic sourcing decisions across the lithium-ion battery value chain. Tariff changes implemented in the United States in 2025 intensified scrutiny of cross-border procurement and accelerated the re-evaluation of supplier diversification strategies. In response, many organisations recalibrated their sourcing by increasing domestic qualification activities, accelerating nearshoring of critical chemical production, and re-balancing inventory policies to absorb border cost volatility.

Consequently, purchasers adopted multi-tiered approaches that combine long-term purchase agreements, targeted local capacity development, and strategic inventory buffers for high-purity solvents. These actions, in turn, influenced negotiation leverage between buyers and suppliers, with value increasingly derived from guarantees around lead times, quality consistency, and process transparency rather than solely from price. Furthermore, the tariff environment encouraged investment in downstream process efficiencies and solvent recycling initiatives as companies sought to reduce exposure to import cost fluctuations. Overall, the cumulative effects of tariff shifts catalysed practical restructuring across sourcing, production location strategy, and cost-management practices in the solvent supply ecosystem.

A multidimensional segmentation framework tying solvent chemistry, battery architectures, end-user applications, purity grades, and sales channels to differentiated commercial strategies

A nuanced segmentation view reveals how demand drivers and supplier value propositions diverge across solvent type, battery architecture, end-user applications, purity expectations, and sales pathways. Based on Solvent Type, market participants evaluate Diethyl Carbonate, Dimethyl Carbonate, Ethyl Methyl Carbonate, Ethylene Carbonate, and Propylene Carbonate to balance viscosity, dielectric constant, and thermal stability when tailoring electrolytes for specific cell chemistries. Based on Battery Type, manufacturers align solvent choices with the performance envelope required by chemistries such as Lithium Cobalt Oxide, Lithium Iron Phosphate, Lithium Manganese Oxide, Lithium Nickel Manganese Cobalt Oxide, and Lithium Titanate, recognizing that each electrode material presents unique electrolyte compatibility challenges that influence additive selection and formulation tolerances.

Based on End User Industry, solvent demand patterns diverge across Automotive, Consumer Electronics, and Energy Storage Systems, where Automotive applications are further differentiated into Commercial Vehicle and Passenger Vehicle segments that impose different duty cycles, safety expectations, and longevity requirements, and where Energy Storage Systems further split into Industrial Storage, Residential Energy Storage, and Utility Scale Storage each with distinct lifecycle and cost thresholds. Based on Purity Grade, producers and purchasers distinguish between Battery Grade and Industrial Grade specifications, with battery-grade solvents commanding rigorous impurity controls, traceability, and qualification documentation. Based on Sales Channel, market access and service models vary between Direct Sales and Distributors, which affects qualification timelines, technical support intensity, and price negotiation dynamics. This segmentation matrix illuminates how supplier capabilities, technical service offerings, and contractual structures must adapt to the specific demands of each cross-section of the market.

How regional industrial policies, regulatory rigor, and manufacturing footprints shape solvent sourcing strategies and innovation priorities across global markets

Regional dynamics exert powerful influence over supply chain configuration, innovation ecosystems, and regulatory expectations for solvent producers and their customers. In the Americas, stakeholders focus on scaling manufacturing capacity close to major automotive and energy storage OEMs while ensuring compliance with evolving chemical safety and emissions standards, which in turn fuels investments in local purification and recycling technologies. In Europe, Middle East & Africa, regulatory rigor around chemical stewardship, sustainability reporting, and extended producer responsibility drives demand for solvent traceability, eco-conscious manufacturing pathways, and partnerships that help suppliers demonstrate lower lifecycle impacts. In Asia-Pacific, the concentration of battery cell manufacturing, dense supplier networks, and rapid commercialization pathways accelerates technology adoption and creates strong regional specialization in certain solvent chemistries.

Across these geographies, companies adopt region-specific commercial tactics: supply chain localization and long-term supplier collaborations in the Americas, high-touch compliance and sustainability reporting in Europe, Middle East & Africa, and fast qualification cycles combined with scale-driven cost optimization in Asia-Pacific. These regional patterns inform investment choices for manufacturing footprint expansion, R&D collaborations, and joint ventures that link solvent innovation directly to the pace of battery deployment in each market.

Why technical differentiation, supply continuity assurances, and collaborative development models are the primary drivers of competitive advantage among solvent providers

Competitive dynamics among solvent producers and upstream chemical suppliers reflect a balance between technical differentiation and operational excellence. Leading commercial strategies emphasize demonstrated capability in producing high-purity solvent grades, delivering reproducible quality at scale, and offering supportive validation services that reduce time-to-qualification for battery manufacturers. Strategic partnerships between solvent formulators and cell makers are increasingly common, enabling co-development of bespoke electrolyte systems and accelerating integration of additive chemistries that address specific lifetime, safety, and performance targets.

Consolidation and partnerships are also informing the landscape: companies with integrated supply chains can offer stronger assurances on raw material continuity and trace impurities, while specialised chemical firms provide agility in formulation and rapid iteration. Across the competitive set, investment priorities include enhancing analytical capabilities for trace impurity detection, scaling low-emission production processes, and expanding regional manufacturing to meet localized demand. Finally, firms that couple technical service teams with commercial responsiveness typically win multi-year qualification programs, as customers reward suppliers who reduce technical risk and provide transparent quality documentation throughout product lifecycles.

Actionable strategic priorities for suppliers and OEMs to align solvent innovation, supply resilience, and customer-focused service for sustainable competitive advantage

Industry leaders should pursue a three-pronged approach that aligns technical innovation, supply resilience, and commercial engagement to secure long-term advantage. First, prioritise co-development programs with cell manufacturers and material innovators to tailor solvent blends and additive packages that meet specific electrode and separator requirements; formalise joint validation roadmaps to shorten qualification cycles and to embed supplier expertise into cell development timelines. Second, diversify supply footprints by combining regional production capacity with strategic inventory and long-term supply agreements, while accelerating investments in solvent reclamation and closed-loop purification to reduce exposure to cross-border cost volatility and raw material tightness.

Third, strengthen commercial differentiation by offering enhanced technical services, transparent quality documentation, and customizable packaging and logistics solutions that reduce customer onboarding friction. Complement these actions with targeted investments in analytical infrastructure and regulatory intelligence to ensure rapid adaptation to new safety and sustainability standards. By executing these interlocking measures, companies can transform solvent offerings into value-adding platforms that support higher-value battery applications and lock in multi-year commercial partnerships.

A rigorous mixed-methods research framework combining expert interviews, technical validation, and cross-checked documentary evidence to ensure robust industry insights

This research synthesises qualitative and quantitative inputs using a mixed-methods approach designed to validate technical, commercial, and regulatory observations. Primary insights derive from structured interviews with industry stakeholders including solvent manufacturers, cell makers, procurement leads, and R&D specialists, complemented by site-level visits and technical sample evaluations where possible. Secondary inputs include peer-reviewed literature, patent filings, technical datasheets, regulatory documents, and public filings that provide context around process innovations, purity standards, and emerging additive chemistries.

Analytical methods included cross-validation of technical claims through independent laboratory data where available, triangulation of procurement and supplier strategies using multiple respondent types, and scenario analysis to assess sensitivity of supply chain responses to policy shifts and cost pressures. Quality control steps comprised consistency checks on terminology, verification of supplier capabilities against certification records, and iterative review cycles with subject-matter experts to ensure interpretive accuracy. Together, these methods produce defensible insights that align technical nuance with strategic implications for stakeholders across the value chain.

A concise synthesis of how solvent innovation, supply chain resilience, and regulatory drivers converge to determine future battery performance and commercial outcomes

In summary, electrolyte solvents have moved from a supporting role to a strategic inflection point in the development and deployment of lithium-ion battery technologies. Innovations in solvent chemistry and additive synergies are enabling meaningful performance and safety improvements, while regulatory and tariff pressures compel market participants to rethink sourcing, qualification, and sustainability strategies. As a result, suppliers that pair high-purity manufacturing with responsive technical support and regional supply assurance will be best positioned to meet the evolving needs of automotive, consumer electronics, and energy storage customers.

Looking ahead, the interplay between formulation innovation, supply chain redesign, and regulatory compliance will determine which solvent solutions become the default for next-generation cells. Companies that proactively invest in co-development, analytical capabilities, and circular process improvements will both reduce commercial risk and capture differentiated value. For decision-makers, the imperative is clear: integrate solvent strategy into broader product, procurement, and sustainability roadmaps to unlock performance gains while managing operational and regulatory exposure.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Definition
  • 1.3. Market Segmentation & Coverage
  • 1.4. Years Considered for the Study
  • 1.5. Currency Considered for the Study
  • 1.6. Language Considered for the Study
  • 1.7. Key Stakeholders

2. Research Methodology

  • 2.1. Introduction
  • 2.2. Research Design
    • 2.2.1. Primary Research
    • 2.2.2. Secondary Research
  • 2.3. Research Framework
    • 2.3.1. Qualitative Analysis
    • 2.3.2. Quantitative Analysis
  • 2.4. Market Size Estimation
    • 2.4.1. Top-Down Approach
    • 2.4.2. Bottom-Up Approach
  • 2.5. Data Triangulation
  • 2.6. Research Outcomes
  • 2.7. Research Assumptions
  • 2.8. Research Limitations

3. Executive Summary

  • 3.1. Introduction
  • 3.2. CXO Perspective
  • 3.3. Market Size & Growth Trends
  • 3.4. Market Share Analysis, 2025
  • 3.5. FPNV Positioning Matrix, 2025
  • 3.6. New Revenue Opportunities
  • 3.7. Next-Generation Business Models
  • 3.8. Industry Roadmap

4. Market Overview

  • 4.1. Introduction
  • 4.2. Industry Ecosystem & Value Chain Analysis
    • 4.2.1. Supply-Side Analysis
    • 4.2.2. Demand-Side Analysis
    • 4.2.3. Stakeholder Analysis
  • 4.3. Porter's Five Forces Analysis
  • 4.4. PESTLE Analysis
  • 4.5. Market Outlook
    • 4.5.1. Near-Term Market Outlook (0-2 Years)
    • 4.5.2. Medium-Term Market Outlook (3-5 Years)
    • 4.5.3. Long-Term Market Outlook (5-10 Years)
  • 4.6. Go-to-Market Strategy

5. Market Insights

  • 5.1. Consumer Insights & End-User Perspective
  • 5.2. Consumer Experience Benchmarking
  • 5.3. Opportunity Mapping
  • 5.4. Distribution Channel Analysis
  • 5.5. Pricing Trend Analysis
  • 5.6. Regulatory Compliance & Standards Framework
  • 5.7. ESG & Sustainability Analysis
  • 5.8. Disruption & Risk Scenarios
  • 5.9. Return on Investment & Cost-Benefit Analysis

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Lithium-ion Battery Electrolyte Solvent Market, by Solvent Type

  • 8.1. Diethyl Carbonate
  • 8.2. Dimethyl Carbonate
  • 8.3. Ethyl Methyl Carbonate
  • 8.4. Ethylene Carbonate
  • 8.5. Propylene Carbonate

9. Lithium-ion Battery Electrolyte Solvent Market, by Battery Type

  • 9.1. Lithium Cobalt Oxide
  • 9.2. Lithium Iron Phosphate
  • 9.3. Lithium Manganese Oxide
  • 9.4. Lithium Nickel Manganese Cobalt Oxide
  • 9.5. Lithium Titanate

10. Lithium-ion Battery Electrolyte Solvent Market, by End User Industry

  • 10.1. Automotive
    • 10.1.1. Commercial Vehicle
    • 10.1.2. Passenger Vehicle
  • 10.2. Consumer Electronics
  • 10.3. Energy Storage Systems
    • 10.3.1. Industrial Storage
    • 10.3.2. Residential Energy Storage
    • 10.3.3. Utility Scale Storage

11. Lithium-ion Battery Electrolyte Solvent Market, by Purity Grade

  • 11.1. Battery Grade
  • 11.2. Industrial Grade

12. Lithium-ion Battery Electrolyte Solvent Market, by Sales Channel

  • 12.1. Online
  • 12.2. Offline

13. Lithium-ion Battery Electrolyte Solvent Market, by Region

  • 13.1. Americas
    • 13.1.1. North America
    • 13.1.2. Latin America
  • 13.2. Europe, Middle East & Africa
    • 13.2.1. Europe
    • 13.2.2. Middle East
    • 13.2.3. Africa
  • 13.3. Asia-Pacific

14. Lithium-ion Battery Electrolyte Solvent Market, by Group

  • 14.1. ASEAN
  • 14.2. GCC
  • 14.3. European Union
  • 14.4. BRICS
  • 14.5. G7
  • 14.6. NATO

15. Lithium-ion Battery Electrolyte Solvent Market, by Country

  • 15.1. United States
  • 15.2. Canada
  • 15.3. Mexico
  • 15.4. Brazil
  • 15.5. United Kingdom
  • 15.6. Germany
  • 15.7. France
  • 15.8. Russia
  • 15.9. Italy
  • 15.10. Spain
  • 15.11. China
  • 15.12. India
  • 15.13. Japan
  • 15.14. Australia
  • 15.15. South Korea

16. United States Lithium-ion Battery Electrolyte Solvent Market

17. China Lithium-ion Battery Electrolyte Solvent Market

18. Competitive Landscape

  • 18.1. Market Concentration Analysis, 2025
    • 18.1.1. Concentration Ratio (CR)
    • 18.1.2. Herfindahl Hirschman Index (HHI)
  • 18.2. Recent Developments & Impact Analysis, 2025
  • 18.3. Product Portfolio Analysis, 2025
  • 18.4. Benchmarking Analysis, 2025
  • 18.5. BASF SE
  • 18.6. Do-Fluoride New Materials Co., Ltd.
  • 18.7. Guangzhou Tinci Materials Technology Co., Ltd.
  • 18.8. Jiangsu Guotai International Group Co., Ltd.
  • 18.9. Jiangsu HSC New Energy Materials Co., Ltd.
  • 18.10. Liaoning Oxiranchem Inc.
  • 18.11. Mitsubishi Chemical Corporation
  • 18.12. Mitsui Chemicals, Inc.
  • 18.13. Ningbo Shanshan Co., Ltd.
  • 18.14. Shandong Shida Shenghua Chemical Group Co., Ltd.
  • 18.15. Shenzhen Capchem Technology Co., Ltd.
  • 18.16. Ube Industries, Ltd.
  • 18.17. Zhangjiagang Guotai-Huarong New Chemical Materials Co., Ltd.
  • 18.18. Zhuhai Smoothway Electronic Materials Co., Ltd.
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제