½ÃÀ庸°í¼­
»óǰÄÚµå
1768846

¼¼°èÀÇ AI ¼­¹ö ½ÃÀå ±Ô¸ð, Á¡À¯À², ¾÷°è ºÐ¼® º¸°í¼­ : ÇÁ·Î¼¼¼­ À¯Çüº°, ³Ã°¢ ±â¼úº°, ÆûÆÑÅͺ°, ÃÖÁ¾ ¿ëµµº°, Áö¿ªº° Àü¸Á ¹× ¿¹Ãø(2025-2032³â)

Global AI Server Market Size, Share & Industry Analysis Report By Processor Type, By Cooling Technology, By Form Factor, By End Use, By Regional Outlook and Forecast, 2025 - 2032

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: KBV Research | ÆäÀÌÁö Á¤º¸: ¿µ¹® 553 Pages | ¹è¼Û¾È³» : Áï½Ã¹è¼Û

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

AI ¼­¹ö ½ÃÀå ±Ô¸ð´Â ¿¹Ãø ±â°£ µ¿¾È 37.5%ÀÇ CAGR·Î ¼ºÀåÇÏ¿© 2032³â±îÁö 1Á¶ 6,000¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ·¯ÇÑ ¼ºÀåÀº ´Ù¾çÇÑ ºÐ¾ß¿¡¼­ÀÇ AI È®»ê°ú ¹Ì±¹ ¿¡³ÊÁöºÎÀÇ AI ÀÎÇÁ¶ó ±â±Ý°ú °°Àº Á¤ºÎ ÅõÀÚ¿¡ ÈûÀÔ¾î Dell, HPE, Lenovo¿Í °°Àº ÁÖ¿ä ±â¾÷µéÀÌ Ã·´Ü ³Ã°¢ ±â¼ú°ú È®Àå °¡´ÉÇÑ ¼³°è¸¦ °®Ãá AI¿¡ ÃÖÀûÈ­µÈ ¼­¹ö¸¦ Ãâ½ÃÇϰí ÀÖ½À´Ï´Ù.

ÁÖ¿ä ÇÏÀ̶óÀÌÆ®:

  • ºÏ¹Ì ½ÃÀåÀº 2024³â ¼¼°è ½ÃÀåÀ» Àå¾ÇÇϰí, 2024³â 37.2%ÀÇ ¸ÅÃâ Á¡À¯À²À» Â÷ÁöÇß½À´Ï´Ù.
  • ¹Ì±¹ÀÇ AI ¼­¹ö ½ÃÀåÀº 2032³â±îÁö 4,671¾ï ´Þ·¯ ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, ºÏ¹Ì¿¡¼­ °è¼Ó ¿ìÀ§¸¦ Á¡ÇÒ °ÍÀ¸·Î Àü¸ÁµË´Ï´Ù.
  • ´Ù¾çÇÑ ÇÁ·Î¼¼¼­ À¯Çü Áß GPU ±â¹Ý ¼­¹ö´Â 2024³â 53.4%ÀÇ ¸ÅÃâ Á¡À¯À²À» Â÷ÁöÇÏ¸ç ¼¼°è ½ÃÀåÀ» Àå¾ÇÇß½À´Ï´Ù.
  • ³Ã°¢ À¯Çüº°·Î´Â °ø·©½Ä ºÎ¹®ÀÌ 2032³â 61.48%mÀÇ ¸ÅÃâ Á¡À¯À²·Î ¼¼°è ½ÃÀåÀ» Àå¾ÇÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
  • ·¢¸¶¿îÆ® ¼­¹ö´Â 2024³â ÆûÆÑÅÍ ºÎ¹®À» ¼±µµÇϸç 39.6%ÀÇ ¸ÅÃâ Á¡À¯À²À» Â÷ÁöÇßÀ¸¸ç, ¿¹Ãø ±â°£ µ¿¾È¿¡µµ ±× ¿ìÀ§¸¦ À¯ÁöÇÒ °ÍÀ¸·Î Àü¸ÁµË´Ï´Ù.
  • ´Ù¾çÇÑ ÃÖÁ¾»ç¿ëÀÚ ºÐ¾ß Áß IT ¹× Åë½Å ºÎ¹®ÀÌ 2024³â 331¾ï ´Þ·¯ÀÇ ¼öÀÍ ±â¿©¸¦ °¡Á®¿ÔÀ¸¸ç, IT ¹× Åë½Å ºÎ¹®ÀÌ °è¼ÓÇØ¼­ ¿ìÀ§¸¦ Á¡ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

AI ¼­¹öÀÇ µµÀÔÀº ¾÷°è¿¡ ¸Å¿ì Áß¿äÇÑ ÀüȯÀ» °¡Á®¿ÔÀ¸¸ç, NVIDIA¿Í °°Àº ±â¾÷Àº AI ÀÛ¾÷¿¡ ÇÊ¿äÇÑ Ã³¸® ´É·ÂÀ» Å©°Ô Çâ»ó½ÃŰ´Â GPU¸¦ Á¦°øÇÔÀ¸·Î½á Áß¿äÇÑ ¿ªÇÒÀ» ¼öÇàÇß½À´Ï´Ù. µ¿½Ã¿¡ Amazon Web Services, Microsoft Azure, Google Cloud¿Í °°Àº Ŭ¶ó¿ìµå ¼­ºñ½º Á¦°ø¾÷ü(CSP)°¡ AI¿¡ ƯȭµÈ ÀÎÇÁ¶ó¸¦ Á¦°øÇϱ⠽ÃÀÛÇϸ鼭 ¸ðµç ±Ô¸ðÀÇ ±â¾÷ÀÌ AI¸¦ º¸´Ù ½±°Ô ÀÌ¿ëÇÒ ¼ö Àִ ȯ°æÀ» Á¶¼ºÇß½À´Ï´Ù.

ÇコÄɾî, ±ÝÀ¶, ÀÚµ¿Â÷, Á¦Á¶ µî ´Ù¾çÇÑ ºÐ¾ß¿¡¼­ AI ¾ÖÇø®ÄÉÀ̼ÇÀÌ È®»êµÇ¸é¼­ AI ¼­¹ö¿¡ ´ëÇÑ ¼ö¿ä´Â ´õ¿í Áõ°¡Çß½À´Ï´Ù. ÀÌ·¯ÇÑ ¼­¹ö´Â ÀÚ¿¬¾î ó¸®, À̹ÌÁö ÀνÄ, ¿¹Ãø ºÐ¼®, ÀÚÀ²ÁÖÇà¿¡ À̸£±â±îÁö ´Ù¾çÇÑ ¾÷¹«¿¡ ÇʼöÀûÀÎ ¿ä¼Ò·Î ÀÚ¸® Àâ¾Ò½À´Ï´Ù.

Á¤ºÎÀÇ ³ë·Âµµ ½ÃÀå ¼ºÀå¿¡ ±â¿©Çß½À´Ï´Ù. ¿¹¸¦ µé¾î, ¹Ì±¹ ¿¡³ÊÁöºÎ´Â ±¹°¡ ¾Èº¸¿Í °æÁ¦ °æÀï·Â¿¡¼­ AIÀÇ Àü·«Àû Á߿伺À» ÀνÄÇϰí AI ¿¬±¸¿Í ÀÎÇÁ¶ó¿¡ ÅõÀÚÇß½À´Ï´Ù. ¸¶Âù°¡Áö·Î Áß±¹, ¿µ±¹ µîÀÇ ±¹°¡µéµµ ±¹°¡ AI Àü·«À» ¼ö¸³ÇÏ°í ¼­¹ö¸¦ Æ÷ÇÔÇÑ AI ÀÎÇÁ¶ó °³¹ß¿¡ ÁßÁ¡À» µÎ°í ÀÖ½À´Ï´Ù.

OEM(Original Equipment Manufacturers)Àº AI¿¡ ƯȭµÈ ¼­¹ö ¼Ö·ç¼ÇÀ» °³¹ßÇÏ¿© ÀÌ·¯ÇÑ ¼ö¿ä Áõ°¡¿¡ ´ëÀÀÇϰí ÀÖÀ¸¸ç, Dell Technologies, Hewlett Packard Enterprise(HPE), Dell Technologies, Hewlett Packard Enterprise, Lenovo µîÀÇ ±â¾÷µéÀº °í±Þ ³Ã°¢ ½Ã½ºÅÛ, °í¼Ó ÀÎÅÍÄ¿³ØÆ®, È®Àå °¡´ÉÇÑ ¾ÆÅ°ÅØÃ³¸¦ °®Ãá AI ¿öÅ©·Îµå¿¡ ÃÖÀûÈ­µÈ ¼­¹ö¸¦ Ãâ½ÃÇß½À´Ï´Ù.

Microsoft, Google, Amazon°ú °°Àº ÁÖ¿ä Ŭ¶ó¿ìµå ¼­ºñ½º Á¦°ø¾÷üµéÀº AI ¿öÅ©·Îµå¸¦ ÃÖÀûÈ­Çϱâ À§ÇØ ÀÚü ÁÖ¹®Çü AI Ĩ °³¹ß ¹× µµÀÔ¿¡ ÅõÀÚÇϰí ÀÖÀ¸¸ç, ÀÚü ÁÖ¹®Çü ÁÖ¹®Çü ÁýÀûȸ·Î(ASIC) ¼³°è¿¡ ÅõÀÚÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¿§Áö ÄÄÇ»ÆÃ ȯ°æ¿¡ AI ¼­¹öÀÇ ÅëÇÕÀ» °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù. ¿§Áö AI ¼­¹ö´Â µ¥ÀÌÅÍ ¼Ò½º¿Í °¡±î¿î °÷¿¡¼­ ½Ç½Ã°£ µ¥ÀÌÅÍ Ã³¸®¸¦ °¡´ÉÇÏ°Ô ÇÏ¿© Áö¿¬½Ã°£°ú ´ë¿ªÆø »ç¿ë·®À» ÁÙ¿©ÁÝ´Ï´Ù.

KBV Cardinal Matrix - AI ¼­¹ö ½ÃÀå °æÀï ºÐ¼®

KBV Cardinal MatrixÀÇ ºÐ¼®¿¡ µû¸£¸é, AI ¼­¹ö ½ÃÀåÀº Microsoft Corporation°ú NVIDIA CorporationÀÌ ¼±±¸ÀÚÀ̸ç, 2025³â 5¿ù, NVIDIA¿Í HUMAINÀÌ Á¦ÈÞÇÏ¿© »ç¿ìµð¾Æ¶óºñ¾Æ¿¡ NVIDIAÀÇ GPU¿Í ½´ÆÛÄÄÇ»Å͸¦ žÀçÇÑ AI ÆÑÅ丮¸¦ °Ç¼³Çß½À´Ï´Ù. ÀÌ °øÀåÀº ÁÖ±Ç AI ¸ðµ¨ ÈÆ·Ã°ú ¿È´Ï¹ö½º(Omniverse)¸¦ ÀÌ¿ëÇÑ µðÁöÅÐ Æ®À©À» ±¸ÃàÇÏ¿© »ç¿ìµð¾Æ¶óºñ¾Æ¸¦ AI ¹× µ¥ÀÌÅÍ ÀÎÇÁ¶ó ºÐ¾ßÀÇ ¼¼°è ¸®´õ·Î ÀÚ¸®¸Å±èÇϰí ÀÖÀ¸¸ç, Cisco Systems, Inc.¿Í Salesforce, Inc.¿Í °°Àº ±â¾÷µéÀº AI ¼­¹ö ½ÃÀåÀÇ ÁÖ¿ä Çõ½Å°¡µéÀÔ´Ï´Ù.

½ÃÀå ÅëÇÕ ºÐ¼®:

ÀΰøÁö´É(AI)ÀÇ Àü·Ê ¾ø´Â ¹ßÀüÀº Àü ¼¼°è ÄÄÇ»ÆÃ ȯ°æÀ» ±Ùº»ÀûÀ¸·Î ÀçÁ¤ÀÇÇϰí, AI ¼­¹ö¸¦ Çö´ë µðÁöÅÐ ÀÎÇÁ¶óÀÇ ÇÙ½ÉÀ¸·Î ÀÚ¸® Àâ°Ô Çß½À´Ï´Ù. ±â¾÷ ¹× Á¤ºÎ ±â°üÀÌ ´ë±Ô¸ð ¾ð¾î ¸ðµ¨¿¡¼­ ÀÚÀ² ½Ã½ºÅÛ¿¡ À̸£±â±îÁö AI ±â¹Ý ¾ÖÇø®ÄÉÀ̼ÇÀÇ µµÀÔÀ» ´Ã¸®¸é¼­ °í¼º´É, È®Àå °¡´ÉÇÑ ¼­¹ö ¾ÆÅ°ÅØÃ³¿¡ ´ëÇÑ ¼ö¿ä°¡ ±ÞÁõÇϰí ÀÖ½À´Ï´Ù.

ÀÌ Àå¿¡¼­´Â AI ¼­¹ö ºÎ¹®ÀÇ ½ÃÀå ÅëÇÕ ¿ªÇп¡ ´ëÇØ ÀÚ¼¼È÷ ºÐ¼®ÇÕ´Ï´Ù. °æÀïÀÇ Ä¡¿­ÇÔ, Çõ½Å À庮, º¥´õÀÇ ¿ìÀ§¸¦ Çü¼ºÇÏ´Â ±¸Á¶Àû ¹× Àü·«Àû ¸Å°³º¯¼ö¸¦ Æò°¡ÇÕ´Ï´Ù. Á¤ºÎ °£Ç๰, OEM °ø°³ Á¤º¸, ºñÁî´Ï½º ±â¼ú °ü·Ã Áö½Ä µî °ø°³µÈ Á¤º¸ ¼Ò½º¸¦ ±â¹ÝÀ¸·Î ±â¼ú Çõ½Å, ±ÔÁ¦ ȯ°æ, ÁöÁ¤ÇÐÀû ¿µÇâ, °ø±Þ¸Á ÀÇÁ¸µµ, ÁøÀÔ À庮°ú °°Àº ÁÖ¿ä ÁöÇ¥¸¦ »ç¿ëÇÏ¿© ÅëÇÕ ¼öÁØÀ» Á¤·®È­ÇÕ´Ï´Ù.

Çõ½ÅÀº ¼öÁ÷ÀûÀ¸·Î ÅëÇÕµÈ »ýŰ迡 °¤Çô Àֱ⠶§¹®¿¡ ¼Ò±Ô¸ð ±â¾÷Àº ±Ô¸ð, R&D ºñ¿ë, ±³À° µ¥ÀÌÅÍ¿¡ ´ëÇÑ Á¢±Ù¼º¿¡¼­ °æÀï»ç¿Í °æÀïÇÒ ¼ö ÀÖ´Â ±â¾÷À» ã±â°¡ ½±Áö ¾Ê½À´Ï´Ù. ÀÌ·¯ÇÑ ºÒ±ÕÇüÀÌ ÅëÇÕ Á¡¼ö¸¦ ÃÖ´ë·Î ²ø¾î¿Ã¸®°í ÀÖ½À´Ï´Ù.

Á¦Ç° ¼ö¸íÁֱ⠺м®:

AI ¼­¹ö ½ÃÀåÀº ºü¸¥ Á¦Ç° Çõ½Å, ±¤¹üÀ§ÇÑ µµÀÔ, ±â¼ú ´ë±â¾÷°ú Á¤ºÎ ±â°üÀÇ ´ë±Ô¸ð ÅõÀÚ¿¡ ÈûÀÔ¾î ²ÙÁØÈ÷ ¼ºÀåÇϰí ÀÖÀ¸¸ç, NVIDIA, AMD, Intel, Google, AWS, Microsoft¿Í °°Àº ÁÖ¿ä ±â¾÷ÀÌ ½ÃÀåÀ» ÁÖµµÇϰí ÀÖ½À´Ï´Ù. ÇâÈÄ 10³â°£ ¼º¼÷±â¸¦ ¸ÂÀÌÇÒ °ÍÀ¸·Î ¿¹»óµÇÁö¸¸, ¼èÅðÀÇ Á¶ÁüÀº º¸ÀÌÁö ¾Ê½À´Ï´Ù. ÇâÈÄ °æÀï·ÂÀº ĨÀÇ Àü¹®È­, ³Ã°¢ È¿À², AI ½ºÅà ÅëÇÕÀÇ Áøº¸¿¡ ´Þ·Á ÀÖ½À´Ï´Ù.

AI ¼­¹ö ½ÃÀåÀº ÇöÀç ¼ºÀå±â¿¡ ÀÖÀ¸¸ç, »ý¼ºÇü AI, ´ë±Ô¸ð ¾ð¾î ¸ðµ¨(LLM), ¼­ºñ½ºÇü AI(AI-as-a-Service)ÀÇ ºÎ»óÀ¸·Î ¼ö¿ä°¡ ±ÞÁõÇϰí ÀÖ½À´Ï´Ù. Á¤ºÎ ±â°ü°ú ±â¾÷µéÀº AI Àü¿ë ÀÎÇÁ¶ó¸¦ ±¸ÃàÇϰí ÀÖÀ¸¸ç, Çõ½ÅÀº Ÿ´ç¼º °ËÁõ¿¡¼­ ¼º´É ÃÖÀûÈ­·Î ¿Å°Ü°¡°í ÀÖ½À´Ï´Ù.

  • Microsoft Azure¿Í OpenAI´Â Æ®·¹ÀÌ´×À» À§ÇØ Ä¿½ºÅÒ Å¬·¯½ºÅÍ¿¡ ¼ö¸¸ °³ÀÇ NVIDIA H100 GPU¸¦ µµÀÔÇß½À´Ï´Ù.
  • Amazon Web Services´Â NVIDIA¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ÁÙÀ̱â À§ÇØ ÀÚü Trainium ¹× Inferentia ASIC ĨÀ» °³¹ßÇÏ¿© AnthropicÀÇ Claude¿Í °°Àº »ç³» ¹× Ÿ»ç ¿öÅ©·Îµå¸¦ °­È­Çß½À´Ï´Ù.
  • ±¸±ÛÀº Gemini ¸ðµ¨¿¡ »ç¿ëµÇ¸ç ±¸±Û Ŭ¶ó¿ìµå¸¦ ÅëÇØ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â Cloud TPU v5p¸¦ Ãâ½ÃÇß½À´Ï´Ù.

½ÃÀå ¼ºÀå¿äÀÎ

ÀΰøÁö´É(AI)ÀÌ ´Ù¾çÇÑ ºÐ¾ß¿¡ ºü¸£°Ô ÅëÇյǰí ÀÖ´Â °ÍÀÌ AI ¼­¹ö ¼ö¿ä ±ÞÁõÀÇ ÁÖ¿ä ¿äÀÎÀ¸·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù. ÇコÄɾî, ±ÝÀ¶, ÀÚµ¿Â÷, ¼Ò¸Å, Á¦Á¶ µîÀÇ »ê¾÷¿¡¼­ ¾÷¹« È¿À²¼º, ÀÇ»ç°áÁ¤, °í°´ °æÇè Çâ»óÀ» À§ÇØ AI¸¦ µµÀÔÇϰí ÀÖ½À´Ï´Ù. ÇコÄÉ¾î ºÐ¾ß¿¡¼­´Â AI ¼­¹ö°¡ ¹æ´ëÇÑ ÀÇ·á µ¥ÀÌÅ͸¦ ó¸®ÇÏ¿© °íµµÈ­µÈ Áø´Ü, ¿¹Ãø ºÐ¼®, °³ÀÎÈ­µÈ Ä¡·á °èȹ ¼ö¸³À» µ½°í ÀÖ½À´Ï´Ù. ±ÝÀ¶±â°üÀº »ç±â ŽÁö, À§Çè Æò°¡, ¾Ë°í¸®Áò °Å·¡¿¡ AI¸¦ Ȱ¿ëÇϰí ÀÖÀ¸¸ç, º¹ÀâÇÑ °è»ê 󸮸¦ ó¸®ÇÒ ¼ö ÀÖ´Â °­·ÂÇÑ ¼­¹ö ÀÎÇÁ¶ó¸¦ ÇÊ¿ä·Î ÇÕ´Ï´Ù. ÀÌ¿¡ µû¶ó ÁÖ¿ä »ê¾÷¿¡¼­ AI¿¡ ´ëÇÑ ÀÇÁ¸µµ°¡ ³ô¾ÆÁö¸é¼­ °í¼º´É AI ¼­¹ö¿¡ ´ëÇÑ ¼ö¿ä°¡ Å©°Ô Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¶ÇÇÑ, AI Àü¿ë Çϵå¿þ¾î ±¸¼º¿ä¼ÒÀÇ ±â¼ú Çõ½ÅÀº AI ¼­¹öÀÇ ¼º´É°ú È¿À²¼ºÀ» Å©°Ô Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù. ±×·¡ÇÈ Ã³¸® ÀåÄ¡(GPU), ÅÙ¼­ ó¸® ÀåÄ¡(TPU), ÁÖ¹®Çü ÁýÀûȸ·Î(ASIC), Çʵå ÇÁ·Î±×·¡¸Óºí °ÔÀÌÆ® ¾î·¹ÀÌ(FPGA)ÀÇ ¹ßÀüÀº AI ¼­¹öÀÇ ±â´ÉÀ» Çõ½ÅÀûÀ¸·Î º¯È­½ÃÄ×À¸¸ç, GPU¿Í TPU´Â º´·Ä 󸮸¦ À§ÇØ ¼³°èµÇ¾î º¹ÀâÇÑ AI ¸ðµ¨ ÈÆ·Ã°ú ´ë±Ô¸ð µ¥ÀÌÅͼ¼Æ® 󸮿¡ ÀûÇÕÇÕ´Ï´Ù. ¼³°èµÇ¾î º¹ÀâÇÑ AI ¸ðµ¨ ÇнÀ ¹× ´ë±Ô¸ð µ¥ÀÌÅͼ¼Æ® 󸮿¡ ÀûÇÕÇÕ´Ï´Ù. ¿ä¾àÇϸé, AI Àü¿ë Çϵå¿þ¾îÀÇ ¹ßÀüÀº Àü·Ê ¾ø´Â ¼º´É, È¿À²¼º, Á¢±Ù¼ºÀ» Á¦°øÇϸç AI ¼­¹ö ½ÃÀåÀÇ ºü¸¥ ¼ºÀåÀ» ÁÖµµÇϰí ÀÖ½À´Ï´Ù.

½ÃÀå ¾ïÁ¦¿äÀÎ

AI ¾ÖÇø®ÄÉÀ̼ÇÀÇ ±Þ¼ÓÇÑ È®ÀåÀº µ¥ÀÌÅͼ¾ÅÍÀÇ ¿¡³ÊÁö ¼Òºñ¸¦ Å©°Ô Áõ°¡½Ã۰í ÀÖÀ¸¸ç, AI ¼­¹ö, ƯÈ÷ ´ë±Ô¸ð ¸ðµ¨ ÈÆ·Ã¿¡ »ç¿ëµÇ´Â ¼­¹ö´Â »ó´çÇÑ °è»ê ´É·ÂÀ» ÇÊ¿ä·Î Çϱ⠶§¹®¿¡ Àü·Â »ç¿ë·®ÀÌ Áõ°¡ÇÕ´Ï´Ù. ¿¹¸¦ µé¾î, ÇÑ ¹øÀÇ Äõ¸®´Â ¾à 2.9 ¿ÍÆ®½ÃÀÇ Àü·ÂÀ» ¼ÒºñÇÏÁö¸¸, Ç¥ÁØ Google °Ë»öÀº 0.3 ¿ÍÆ®½ÃÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ¿¡³ÊÁö ¼ö¿äÀÇ ±ÞÁõÀº ¿î¿µ ºñ¿ëÀ» »ó½Â½Ãų »Ó¸¸ ¾Æ´Ï¶ó ÀÌ»êȭź¼Ò ¹èÃâ·® Áõ°¡¿¡µµ ±â¿©Çϰí ÀÖ½À´Ï´Ù. À¯¿£ º¸°í¼­´Â Amazon, Microsoft, Alphabet, Meta µî ÁÖ¿ä ±â¼ú ±â¾÷ÀÇ °£Á¢ ź¼Ò ¹èÃâ·®ÀÌ 2020-2023³â »çÀÌ Æò±Õ 150% Áõ°¡ÇßÀ¸¸ç, ÀÌ´Â ÁÖ·Î ¿¡³ÊÁö Áý¾àÀûÀÎ AI µ¥ÀÌÅͼ¾ÅÍ·Î ÀÎÇØ ¹ß»ýÇß´Ù°í °­Á¶Çß½À´Ï´Ù. ÀÌ·¯ÇÑ ¹®Á¦¸¦ °í·ÁÇÒ ¶§, AI ±â¼úÀÇ Ã¥ÀÓ ÀÖ´Â ¼ºÀåÀ» º¸ÀåÇϱâ À§Çؼ­´Â ¿¡³ÊÁö È¿À²ÀûÀÎ Çõ½Å°ú Áö¼Ó°¡´ÉÇÑ °üÇàÀ» ¿ì¼±½ÃÇÏ´Â °ÍÀÌ ÇʼöÀûÀÔ´Ï´Ù.

°¡Ä¡»ç½½ ºÐ¼®

AI ¼­¹ö ½ÃÀåÀÇ °¡Ä¡»ç½½Àº Çϵå¿þ¾î¿Í ¼ÒÇÁÆ®¿þ¾î ±â´ÉÀÇ Çõ½ÅÀ» ÃßÁøÇϱâ À§ÇÑ ¿¬±¸°³¹ß(R&D)¿¡¼­ ½ÃÀ۵˴ϴÙ. ´ÙÀ½À¸·Î ºÎǰ Á¶´Þ ¹× Á¦Á¶°¡ ÁøÇàµÇ¾î ÇÁ·Î¼¼¼­, GPU, ¸Þ¸ð¸® ¸ðµâ µî ¼­¹ö¿¡ ÇʼöÀûÀÎ ºÎǰÀÌ Á¶´Þ ¹× Á¦Á¶µË´Ï´Ù. ½Ã½ºÅÛ ÅëÇÕ ¹× Á¶¸³À» ÅëÇØ ÀÌ·¯ÇÑ ±¸¼º¿ä¼Ò°¡ ÅëÇÕµÇ¾î ¿ÏÀüÇÑ ±â´ÉÀ» °®Ãá AI ¼­¹ö°¡ ¿Ï¼ºµË´Ï´Ù. ¼ÒÇÁÆ®¿þ¾î »ýŰè¿Í ÃÖÀûÈ­ °èÃþÀº ¸ÂÃãÇü ¼ÒÇÁÆ®¿þ¾î¸¦ ÅëÇØ AI ¿öÅ©·Îµå¸¦ °­È­ÇÕ´Ï´Ù. ±× ´ÙÀ½ ´Ü°è´Â ¼º´É Ç¥ÁØÀ» º¸ÀåÇϱâ À§ÇÑ Å×½ºÆ® ¹× ǰÁú º¸Áõ, ±×¸®°í ÃÖÁ¾»ç¿ëÀÚ¿¡ ´ëÇÑ ¸¶ÄÉÆÃ ¹× ¹èÆ÷°¡ Æ÷ÇԵ˴ϴÙ. µµÀÔ ÈÄ¿¡´Â °í°´ ȯ°æ ÅëÇÕ, ¾ÖÇÁÅ͸¶ÄÏ ¼­ºñ½º ¹× Áö¿ø, ±×¸®°í Áö¼ÓÀûÀÎ °í°´ Çǵå¹éÀ» ÅëÇØ R&D ÇÁ·Î¼¼½º¿¡ Çǵå¹éÇÏ¿© Á¦Ç° °³¼±°ú Çõ½ÅÀ» ÃËÁøÇÏ´Â ´Ü°è°¡ Æ÷ÇԵ˴ϴÙ.

Áö¿ª Àü¸Á

Áö¿ªº°·Î´Â ºÏ¹Ì, À¯·´, ¾Æ½Ã¾ÆÅÂÆò¾ç, ¶óƾ¾Æ¸Þ¸®Ä«, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«·Î ±¸ºÐµË´Ï´Ù. ºÏ¹Ì´Â AIÀÇ Á¶±â µµÀÔ, °­·ÂÇÑ Å¬¶ó¿ìµå ÀÎÇÁ¶ó, AI Àü¿ë ¼­¹ö ÆÊ¿¡ ´ëÇÑ ´ë±Ô¸ð ÅõÀÚ¿¡ ÈûÀÔ¾î 2024³â 37.20%ÀÇ Á¡À¯À²·Î 1À§¸¦ Â÷ÁöÇß½À´Ï´Ù. ¹Ì±¹Àº ÁÖ¿ä ±â¼ú ±â¾÷, ÇÏÀÌÆÛ½ºÄÉÀÏ·¯, AI Ĩ Á¦Á¶¾÷üÀÇ Á¸Àç·Î ÀÎÇØ °è¼ÓÇØ¼­ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.

½ÃÀå °æÀï°ú Ư¼º

AI ¼­¹ö ½ÃÀåÀº Áö¿ª Á¦Á¶¾÷ü, ½ºÅ¸Æ®¾÷, Æ´»õ ±â¼ú Á¦°ø¾÷üµéÀÇ ÁøÀÔÀ¸·Î ¿©ÀüÈ÷ Ä¡¿­ÇÑ °æÀïÀÌ °è¼ÓµÇ°í ÀÖ½À´Ï´Ù. ÀÌµé ¾÷üµéÀº Ư¼öÇÑ AI ¿öÅ©·Îµå, ¿¡³ÊÁö È¿À²ÀûÀÎ ¼³°è, ÇÕ¸®ÀûÀÎ °¡°ÝÀÇ ¼Ö·ç¼Ç¿¡ ÃÊÁ¡À» ¸ÂÃß°í ÀÖ½À´Ï´Ù. Áö¹èÀûÀÎ ºê·£µåÀÇ ºÎÀç´Â Çõ½Å°ú ½ÃÀå ÁøÀÔÀÇ ±âȸ¸¦ Á¦°øÇÏÁö¸¸, Á¦ÇÑµÈ ¸®¼Ò½º¿Í È®À强 ¹®Á¦·Î ÀÎÇØ ¼Ò±Ô¸ð ±â¾÷ÀÌ Å« ½ÃÀå Á¡À¯À²À» È®º¸ÇÏ´Â °ÍÀº ½±Áö ¾Ê½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå ½ÃÀå ¹üÀ§¿Í Á¶»ç ¹æ¹ý

  • ½ÃÀå Á¤ÀÇ
  • ¸ñÀû
  • ½ÃÀå ¹üÀ§
  • ¼¼ºÐÈ­
  • Á¶»ç ¹æ¹ý

Á¦2Àå ½ÃÀå ¿ä¶÷

  • ÁÖ¿ä ÇÏÀ̶óÀÌÆ®

Á¦3Àå ½ÃÀå °³¿ä

  • ¼Ò°³
    • °³¿ä
      • ½ÃÀå ±¸¼º°ú ½Ã³ª¸®¿À
  • ½ÃÀå¿¡ ¿µÇâÀ» ¹ÌÄ¡´Â ÁÖ¿ä ¿äÀÎ
    • ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
    • ½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ
    • ½ÃÀå ±âȸ
    • ½ÃÀå °úÁ¦

Á¦4Àå ½ÃÀå µ¿Çâ : AI ¼­¹ö ½ÃÀå

Á¦5Àå °æÀï ÇöȲ : AI ¼­¹ö ½ÃÀå

Á¦6Àå AI ¼­¹ö ½ÃÀå : ÅëÇÕ ºÐ¼®

Á¦7Àå Á¦Ç°¼ö¸íÁֱ⠺м® : AI ¼­¹ö ½ÃÀå

Á¦8Àå °æÀï ºÐ¼® : ¼¼°è

  • KBV Cardinal Matrix
  • ÃÖ±Ù ¾÷°è ÀüüÀÇ Àü·«Àû Àü°³
    • ÆÄÆ®³Ê½Ê, Çù¾÷ ¹× °è¾à
    • Á¦Ç° ¹ß¸Å¿Í Á¦Ç° È®´ë
    • Àμö¿Í ÇÕº´
  • ½ÃÀå Á¡À¯À² ºÐ¼®, 2024³â
  • ÁÖ¿ä ¼º°ø Àü·«
    • ÁÖ¿ä Àü·«
    • ÁÖ¿ä Àü·«Àû Ȱµ¿
  • Porter¡¯s Five Forces ºÐ¼®

Á¦9Àå AI ¼­¹ö ½ÃÀå ¹ë·ùüÀÎ ºÐ¼®

Á¦10Àå ÁÖ¿ä °í°´ ±âÁØ : AI ¼­¹ö ½ÃÀå

  • ÆÛÆ÷¸Õ½º¿Í ÄÄÇ»ÆÃ ´É·Â
  • È®À强°ú ¹Ðµµ ÃÖÀûÈ­
  • ÇÏÀ̺긮µå Ŭ¶ó¿ìµå¿Í ¿§Áö ÅëÇÕ
  • º¥´õ »ýŰè¿Í ¼­Æ÷Æ®

Á¦11Àå ¼¼°è ½ÃÀå : ÇÁ·Î¼¼¼­ À¯Çüº°

  • ¼¼°èÀÇ GPU ±â¹Ý ¼­¹ö ½ÃÀå : Áö¿ªº°
  • ¼¼°èÀÇ FPGA ±â¹Ý ¼­¹ö ½ÃÀå : Áö¿ªº°
  • ¼¼°èÀÇ ASIC ±â¹Ý ¼­¹ö ½ÃÀå : Áö¿ªº°

Á¦12Àå ¼¼°è ½ÃÀå : ³Ã°¢ ±â¼úº°

  • ¼¼°èÀÇ °ø±â ³Ã°¢ ½ÃÀå : Áö¿ªº°
  • ¼¼°èÀÇ ¾×ü ³Ã°¢ ½ÃÀå : Áö¿ªº°
  • ¼¼°èÀÇ ÇÏÀ̺긮µå ³Ã°¢ ½ÃÀå : Áö¿ªº°

Á¦13Àå ¼¼°è ½ÃÀå : ÆûÆÑÅͺ°

  • ¼¼°èÀÇ ·¢ ¸¶¿îÆ®Çü ¼­¹ö ½ÃÀå : Áö¿ªº°
  • ¼¼°èÀÇ ºí·¹ÀÌµå ¼­¹ö ½ÃÀå : Áö¿ªº°
  • ¼¼°èÀÇ Å¸¿ö ¼­¹ö ½ÃÀå : Áö¿ªº°

Á¦14Àå ¼¼°è ½ÃÀå : ÃÖÁ¾ ¿ëµµº°

  • ¼¼°èÀÇ IT¡¤Åë½Å ½ÃÀå : Áö¿ªº°
  • ¼¼°èÀÇ BFSI ½ÃÀå : Áö¿ªº°
  • ¼¼°èÀÇ ¼Ò¸Å¡¤E-Commerce ½ÃÀå : Áö¿ªº°
  • ¼¼°èÀÇ ÇコÄɾÀǾàǰ ½ÃÀå : Áö¿ªº°
  • ¼¼°èÀÇ ÀÚµ¿Â÷ ½ÃÀå : Áö¿ªº°
  • ¼¼°èÀÇ ±âŸ ÃÖÁ¾ ¿ëµµ ½ÃÀå : Áö¿ªº°

Á¦15Àå ¼¼°è ½ÃÀå : Áö¿ªº°

  • ºÏ¹Ì
  • ÁÖ¿ä ¿µÇâ¿äÀÎ
  • ºÏ¹Ì ½ÃÀå µ¿Çâ
  • ºÏ¹ÌÀÇ °æÀï ÇöȲ
    • ºÏ¹ÌÀÇ ½ÃÀå : ±¹°¡º°
      • ¹Ì±¹
      • ij³ª´Ù
      • ¸ß½ÃÄÚ
      • ±âŸ ºÏ¹Ì
  • À¯·´
  • ÁÖ¿ä ¿µÇâ¿äÀÎ
  • À¯·´ ½ÃÀå µ¿Çâ
  • À¯·´ÀÇ °æÀï ÇöȲ
    • À¯·´ÀÇ ½ÃÀå : ±¹°¡º°
      • µ¶ÀÏ
      • ¿µ±¹
      • ÇÁ¶û½º
      • ·¯½Ã¾Æ
      • ½ºÆäÀÎ
      • ÀÌÅ»¸®¾Æ
      • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ÁÖ¿ä ¿µÇâ¿äÀÎ
  • ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ½ÃÀå µ¿Çâ
  • ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ °æÀï »óȲ
    • ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ½ÃÀå : ±¹°¡º°
      • Áß±¹
      • ÀϺ»
      • Àεµ
      • Çѱ¹
      • ½Ì°¡Æ÷¸£
      • ¸»·¹À̽þÆ
      • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ¶óƾ¾Æ¸Þ¸®Ä«, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
  • ÁÖ¿ä ¿µÇâ¿äÀÎ
  • ¶óƾ¾Æ¸Þ¸®Ä«, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä« ½ÃÀå µ¿Çâ
  • LAMEAÀÇ °æÀï ÇöȲ
    • ¶óƾ¾Æ¸Þ¸®Ä«, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä« ½ÃÀå : ±¹°¡º°
      • ºê¶óÁú
      • ¾Æ¸£ÇîÆ¼³ª
      • ¾Æ¶ø¿¡¹Ì¸®Æ®
      • »ç¿ìµð¾Æ¶óºñ¾Æ
      • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
      • ³ªÀÌÁö¸®¾Æ
      • ±âŸ ¶óƾ¾Æ¸Þ¸®Ä«, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦16Àå ±â¾÷ °³¿ä

  • Dell Technologies, Inc
  • Cisco Systems, Inc
  • IBM Corporation
  • HP, Inc
  • Huawei Technologies Co, Ltd.(Huawei Investment & Holding Co., Ltd.)
  • NVIDIA Corporation
  • Fujitsu Limited
  • Intel Corporation
  • Microsoft Corporation
  • Salesforce, Inc

Á¦17Àå AI ¼­¹ö ½ÃÀå ¼º°ø Çʼö Á¶°Ç

ksm 25.07.23

The Global AI Server Market size is expected to reach $1.6 trillion by 2032, rising at a market growth of 37.5% CAGR during the forecast period. Growth is driven by widespread AI adoption across sectors and government investments like the U.S. Department of Energy's AI infrastructure funding. Leading firms such as Dell, HPE, and Lenovo are launching AI-optimized servers with advanced cooling and scalable designs.

Key Highlights:

  • The North America market dominated the Global Market in 2024, accounting for a 37.2% revenue share in 2024.
  • The US AI server market is expected to continue its dominance in North America region thereby reaching a market size of 467.1 billion by 2032.
  • Among the various Processor type segments, the GPU-based Servers dominated the global market contributing a revenue share of 53.4% in 2024.
  • In terms of the cooling type segmentation, the Air cooling segment is projected to dominate the global market with the projected revenue share of 61.48%m in 2032.
  • Rack-mounted servers led the form factor segments in 2024, capturing a 39.6% revenue share and is projected to continue its dominance during projected period.
  • Among different end user verticals, IT & Telecommunication sector with a revenue contribution of 33.1 billion in 2024 is projected to continue its dominance.

The introduction of AI servers marked a pivotal shift in the industry. Companies like NVIDIA played a crucial role by providing GPUs that significantly enhanced the processing capabilities required for AI tasks. Simultaneously, cloud service providers (CSPs) such as Amazon Web Services, Microsoft Azure, and Google Cloud began offering AI-specific infrastructure, making AI more accessible to businesses of all sizes.

The proliferation of AI applications across various sectors-including healthcare, finance, automotive, and manufacturing-further fueled the demand for AI servers. These servers became essential for tasks ranging from natural language processing and image recognition to predictive analytics and autonomous driving.

Government initiatives also contributed to the market's growth. For instance, the U.S. Department of Energy invested in AI research and infrastructure, recognizing the strategic importance of AI in national security and economic competitiveness. Similarly, countries like China and the United Kingdom launched national AI strategies, emphasizing the development of AI infrastructure, including servers.

Original Equipment Manufacturers (OEMs) responded to this growing demand by developing AI-specific server solutions. Companies like Dell Technologies, Hewlett Packard Enterprise (HPE), and Lenovo introduced servers optimized for AI workloads, featuring advanced cooling systems, high-speed interconnects, and scalable architectures.

There is a significant shift towards the development and adoption of custom AI chips. Major cloud service providers like Microsoft, Google, and Amazon are investing in designing their own application-specific integrated circuits (ASICs) to optimize AI workloads. Secondly, the integration of AI servers into edge computing environments is gaining momentum. Edge AI servers enable real-time data processing closer to the data source, reducing latency and bandwidth usage.

The major strategies followed by the market participants are Partnerships as the key developmental strategy to keep pace with the changing demands of end users. For instance, In May, 2025, Cisco joined the AI Infrastructure Partnership with BlackRock, Microsoft, NVIDIA, and others to accelerate innovation and scale secure, efficient AI data center infrastructure, enhancing AI servers and supporting technologies to meet the growing demands of AI workloads. Moreover, In May, 2025, Cisco partnered with Saudi Arabia's HUMAIN AI enterprise to build scalable, secure AI infrastructure, supporting the Kingdom's Vision 2030 goals. This collaboration aims to advance digital innovation by deploying cloud-based AI servers and technologies for large-scale AI development.

KBV Cardinal Matrix - AI Server Market Competition Analysis

Based on the Analysis presented in the KBV Cardinal matrix; Microsoft Corporation and NVIDIA Corporation are the forerunners in the AI Server Market. In May, 2025, NVIDIA and HUMAIN partnered to build AI factories in Saudi Arabia powered by NVIDIA GPUs and supercomputers, aiming to train sovereign AI models and deploy digital twins using Omniverse, positioning the Kingdom as a global leader in AI and data infrastructure. Companies such as Cisco Systems, Inc. and Salesforce, Inc. are the key innovators in AI Server Market.

Market Consolidation Analysis:

The unprecedented rise of artificial intelligence has fundamentally redefined the global computing landscape, placing AI servers at the heart of modern digital infrastructure. As enterprises and governments increasingly deploy AI-driven applications-from large language models to autonomous systems-the demand for high-performance, scalable server architectures has surged.

This chapter presents a detailed analysis of market consolidation dynamics within the global AI server sector. It evaluates the structural and strategic parameters shaping competitive intensity, innovation barriers, and vendor dominance. Drawing from publicly accessible sources such as government publications, OEM disclosures, and business technology insights, the analysis quantifies consolidation levels across key indicators-ranging from technological innovation, regulatory environments, and geopolitical influence, to supply chain dependencies and entry barriers.

Because the innovation is locked within vertically integrated ecosystems, smaller firms struggle to match the scale, R&D spend, and access to training data. This imbalance pushes the consolidation score to its maximum.

Product Life Cycle Analysis:

The AI Server Market is firmly in the growth stage, marked by rapid product innovation, widespread deployment, and major investment from both tech giants and governments. With key players such as NVIDIA, AMD, Intel, Google, AWS, and Microsoft leading the charge, the market is poised to enter maturity in the coming decade-but shows no signs of decline. Future competitiveness will rely on advancements in chip specialization, cooling efficiency, and AI stack integration.

The AI server market is currently in the growth phase, experiencing exponential demand due to the rise of generative AI, large language models (LLMs), and AI-as-a-Service offerings. Governments and corporations alike are building dedicated AI infrastructure, and innovation is shifting from feasibility to performance optimization.

  • Microsoft Azure and OpenAI deployed tens of thousands of NVIDIA H100 GPUs in custom clusters to train.
  • Amazon Web Services developed its own Trainium and Inferentia ASIC chips to reduce dependency on NVIDIA, powering internal and third-party workloads like Anthropic's Claude.
  • Google launched the Cloud TPU v5p, used in their Gemini models and made available through Google Cloud.

Market Growth Factors

The rapid integration of artificial intelligence (AI) across various sectors is a primary catalyst for the burgeoning demand for AI servers. Industries such as healthcare, finance, automotive, retail, and manufacturing are increasingly adopting AI to enhance operational efficiency, decision-making, and customer experiences. In healthcare, AI servers facilitate advanced diagnostics, predictive analytics, and personalized treatment plans by processing vast amounts of medical data. Financial institutions leverage AI for fraud detection, risk assessment, and algorithmic trading, necessitating robust server infrastructures to handle complex computations. Consequently, the rising reliance on AI across key industries is set to significantly propel the demand for high-performance AI servers.

Additionally, Technological innovations in AI-specific hardware components are significantly enhancing the performance and efficiency of AI servers. Developments in Graphics Processing Units (GPUs), Tensor Processing Units (TPUs), Application-Specific Integrated Circuits (ASICs), and Field-Programmable Gate Arrays (FPGAs) have revolutionized the capabilities of AI servers. GPUs and TPUs are designed for parallel processing, making them ideal for training complex AI models and handling large datasets. In summary, advancements in AI-specific hardware are driving unprecedented performance, efficiency, and accessibility, fueling the rapid growth of the AI server market.

Market Restraining Factors

The rapid expansion of AI applications has led to a significant increase in energy consumption by data centers. AI servers, particularly those used for training large models, require substantial computational power, resulting in higher electricity usage. For instance, a single query consumes approximately 2.9 watt-hours of electricity, compared to 0.3 watt-hours for a standard Google search. This surge in energy demand not only raises operational costs but also contributes to increased carbon emissions. A United Nations report highlighted that indirect carbon emissions from major tech companies like Amazon, Microsoft, Alphabet, and Meta rose by an average of 150% between 2020 and 2023, largely due to energy-intensive AI data centers. In light of these challenges, prioritizing energy-efficient innovations and sustainable practices is essential to ensure the responsible growth of AI technologies.

Value Chain Analysis

The value chain of the AI Server Market begins with research and development (R&D) to drive innovation in hardware and software capabilities. This is followed by component sourcing and fabrication, where essential server parts such as processors, GPUs, and memory modules are procured and manufactured. System integration and assembly combines these components into fully functional AI servers. The software ecosystem and optimization layer enhances AI workloads through tailored software. Subsequent stages include testing and quality assurance to ensure performance standards, and marketing and distribution to reach end-users. Post-deployment involves integration in customer environments, aftermarket services and support, and continuous customer feedback, which feeds back into the R&D process, fostering product improvement and innovation.

Regional Outlook

Based on the Region, the market is segmented into North America, Europe, Asia Pacific, and LAMEA. North America leads with a 37.20% share in 2024, propelled by early AI adoption, robust cloud infrastructure, and heavy investment in AI-specific server farms. The U.S. remains the largest contributor due to the presence of major technology firms, hyperscalers, and AI chip manufacturers.

Market Competition and Attributes

The AI Server Market remains Highly competitive, driven by regional manufacturers, startups, and niche technology providers. These companies focus on specialized AI workloads, energy-efficient designs, and affordable solutions. The absence of dominant brands creates opportunities for innovation and market entry, though limited resources and scalability challenges constrain the ability of smaller firms to capture significant market share.

Recent Strategies Deployed in the Market

  • May-2025: Salesforce acquired UK-based AI firm Convergence to boost the development of next-gen AI agents and expand its AI research presence in London. The acquisition supports autonomous workflows and strengthens Salesforce's commitment to advancing innovation in enterprise AI solutions.
  • May-2025: Huawei introduced its RASTM framework to develop next-generation AI data centers in Uzbekistan, emphasizing reliability, modular construction for quicker deployment, and energy efficiency through AI-driven optimization, supporting the nation's AI development strategy and sustainable digital transformation.
  • May-2025: NVIDIA launched DGX Spark and DGX Station with partners like Dell, HP, and Acer, offering desktop AI systems delivering server-grade performance. Powered by Grace Blackwell chips, they support advanced AI workloads, bridging local development with cloud and data center scalability.
  • May-2025: IBM launched LinuxONE 5, a secure, high-performance AI server platform processing 450 billion AI inferences daily. Combined with advanced AI accelerators and hybrid cloud tools, it supports scalable, cost-efficient enterprise AI workloads, driving growth in the AI server market.Apr-2025: HP and Reincubate formed a multi-year partnership to enhance on-device AI video conferencing using neural processing units (NPUs). This collaboration delivers secure, low-latency, and efficient video experiences on next-gen AI PCs, boosting digital collaboration, creativity, and performance for hybrid work.
  • Apr-2025: Fujitsu and Supermicro expanded their collaboration to launch PRIMERGY GX2570 M8s GPU servers with advanced cooling options, integrated management tools, and maintenance services, enabling enterprises to deploy generative AI infrastructure securely and efficiently without owning physical server assets.

List of Key Companies Profiled

  • Dell Technologies, Inc.
  • Cisco Systems, Inc.
  • IBM Corporation
  • HP Inc.
  • Huawei Technologies Co., Ltd. (Huawei Investment & Holding Co., Ltd.)
  • NVIDIA Corporation
  • Fujitsu Limited
  • Intel Corporation
  • Microsoft Corporation
  • Salesforce, Inc.

Global AI Server Market Report Segmentation

By Processor Type

  • GPU-based Servers
  • FPGA-based Servers
  • ASIC-based Servers

By Cooling Technology

  • Air Cooling
  • Liquid Cooling
  • Hybrid Cooling

By Form Factor

  • Rack-mounted Servers
  • Blade Servers
  • Tower Servers

By End Use

  • IT & Telecommunication
  • BFSI
  • Retail & E-commerce
  • Healthcare & Pharmaceutical
  • Automotive
  • Other End Use

By Geography

  • North America
    • US
    • Canada
    • Mexico
    • Rest of North America
  • Europe
    • Germany
    • UK
    • France
    • Russia
    • Spain
    • Italy
    • Rest of Europe
  • Asia Pacific
    • China
    • Japan
    • India
    • South Korea
    • Singapore
    • Malaysia
    • Rest of Asia Pacific
  • LAMEA
    • Brazil
    • Argentina
    • UAE
    • Saudi Arabia
    • South Africa
    • Nigeria
  • Rest of LAMEA

Table of Contents

Chapter 1. Market Scope & Methodology

  • 1.1 Market Definition
  • 1.2 Objectives
  • 1.3 Market Scope
  • 1.4 Segmentation
    • 1.4.1 Global AI Server Market, by Processor Type
    • 1.4.2 Global AI Server Market, by Cooling Technology
    • 1.4.3 Global AI Server Market, by Form Factor
    • 1.4.4 Global AI Server Market, by End Use
    • 1.4.5 Global AI Server Market, by Geography
  • 1.5 Methodology for the research

Chapter 2. Market at a Glance

  • 2.1 Key Highlights

Chapter 3. Market Overview

  • 3.1 Introduction
    • 3.1.1 Overview
      • 3.1.1.1 Market Composition and Scenario
  • 3.2 Key Factors Impacting the Market
    • 3.2.1 Market Drivers
    • 3.2.2 Market Restraints
    • 3.2.3 Market Opportunities
    • 3.2.4 Market Challenges

Chapter 4. Market Trends: AI Server Market

Chapter 5. State of Competition - AI Server Market

Chapter 6. AI Server Market - Consolidation Analysis

Chapter 7. Product Life Cycle Analysis: AI Server Market

Chapter 8. Competition Analysis - Global

  • 8.1 KBV Cardinal Matrix
  • 8.2 Recent Industry Wide Strategic Developments
    • 8.2.1 Partnerships, Collaborations and Agreements
    • 8.2.2 Product Launches and Product Expansions
    • 8.2.3 Acquisition and Mergers
  • 8.3 Market Share Analysis, 2024
  • 8.4 Top Winning Strategies
    • 8.4.1 Key Leading Strategies: Percentage Distribution (2021-2025)
    • 8.4.2 Key Strategic Move: (Partnerships, Collaborations & Agreements: 2024, Mar - 2025, May) Leading Players
  • 8.5 Porter Five Forces Analysis

Chapter 9. Value Chain Analysis of AI Server Market

Chapter 10. Key Customer Criteria: AI Server Market

  • 10.1 Performance and Compute Capability
  • 10.2 Scalability and Density Optimization
  • 10.3 Hybrid Cloud and Edge Integration
  • 10.4 Vendor Ecosystem and Support

Chapter 11. Global AI Server Market by Processor Type

  • 11.1 Global GPU-based Servers Market by Region
  • 11.2 Global FPGA-based Servers Market by Region
  • 11.3 Global ASIC-based Servers Market by Region

Chapter 12. Global AI Server Market by Cooling Technology

  • 12.1 Global Air Cooling Market by Region
  • 12.2 Global Liquid Cooling Market by Region
  • 12.3 Global Hybrid Cooling Market by Region

Chapter 13. Global AI Server Market by Form Factor

  • 13.1 Global Rack-mounted Servers Market by Region
  • 13.2 Global Blade Servers Market by Region
  • 13.3 Global Tower Servers Market by Region

Chapter 14. Global AI Server Market by End Use

  • 14.1 Global IT & Telecommunication Market by Region
  • 14.2 Global BFSI Market by Region
  • 14.3 Global Retail & E-commerce Market by Region
  • 14.4 Global Healthcare & Pharmaceutical Market by Region
  • 14.5 Global Automotive Market by Region
  • 14.6 Global Other End Use Market by Region

Chapter 15. Global AI Server Market by Region

  • 15.1 North America AI Server Market
  • 15.2 Key Influencing Factors
    • 15.2.1 Market Drivers
    • 15.2.2 Market Restraints
    • 15.2.3 Market Opportunities
    • 15.2.4 Market Challenges
  • 15.3 North America Market Trends
  • 15.4 State of Competition in the North America AI Server Market
    • 15.4.1 North America AI Server Market by Processor Type
      • 15.4.1.1 North America GPU-based Servers Market by Country
      • 15.4.1.2 North America FPGA-based Servers Market by Country
      • 15.4.1.3 North America ASIC-based Servers Market by Country
    • 15.4.2 North America AI Server Market by Cooling Technology
      • 15.4.2.1 North America Air Cooling Market by Country
      • 15.4.2.2 North America Liquid Cooling Market by Country
      • 15.4.2.3 North America Hybrid Cooling Market by Country
    • 15.4.3 North America AI Server Market by Form Factor
      • 15.4.3.1 North America Rack-mounted Servers Market by Country
      • 15.4.3.2 North America Blade Servers Market by Country
      • 15.4.3.3 North America Tower Servers Market by Country
    • 15.4.4 North America AI Server Market by End Use
      • 15.4.4.1 North America IT & Telecommunication Market by Country
      • 15.4.4.2 North America BFSI Market by Country
      • 15.4.4.3 North America Retail & E-commerce Market by Country
      • 15.4.4.4 North America Healthcare & Pharmaceutical Market by Country
      • 15.4.4.5 North America Automotive Market by Country
      • 15.4.4.6 North America Other End Use Market by Country
    • 15.4.5 North America AI Server Market by Country
      • 15.4.5.1 US AI Server Market
        • 15.4.5.1.1 US AI Server Market by Processor Type
        • 15.4.5.1.2 US AI Server Market by Cooling Technology
        • 15.4.5.1.3 US AI Server Market by Form Factor
        • 15.4.5.1.4 US AI Server Market by End Use
      • 15.4.5.2 Canada AI Server Market
        • 15.4.5.2.1 Canada AI Server Market by Processor Type
        • 15.4.5.2.2 Canada AI Server Market by Cooling Technology
        • 15.4.5.2.3 Canada AI Server Market by Form Factor
        • 15.4.5.2.4 Canada AI Server Market by End Use
      • 15.4.5.3 Mexico AI Server Market
        • 15.4.5.3.1 Mexico AI Server Market by Processor Type
        • 15.4.5.3.2 Mexico AI Server Market by Cooling Technology
        • 15.4.5.3.3 Mexico AI Server Market by Form Factor
        • 15.4.5.3.4 Mexico AI Server Market by End Use
      • 15.4.5.4 Rest of North America AI Server Market
        • 15.4.5.4.1 Rest of North America AI Server Market by Processor Type
        • 15.4.5.4.2 Rest of North America AI Server Market by Cooling Technology
        • 15.4.5.4.3 Rest of North America AI Server Market by Form Factor
        • 15.4.5.4.4 Rest of North America AI Server Market by End Use
  • 15.5 Europe AI Server Market
  • 15.6 Key Influencing Factors
    • 15.6.1 Market Drivers
    • 15.6.2 Market Restraints
    • 15.6.3 Market Opportunities
    • 15.6.4 Market Challenges
  • 15.7 Europe Market Trends
  • 15.8 State of Competition in the Europe AI Server Market
    • 15.8.1 Europe AI Server Market by Processor Type
      • 15.8.1.1 Europe GPU-based Servers Market by Country
      • 15.8.1.2 Europe FPGA-based Servers Market by Country
      • 15.8.1.3 Europe ASIC-based Servers Market by Country
    • 15.8.2 Europe AI Server Market by Cooling Technology
      • 15.8.2.1 Europe Air Cooling Market by Country
      • 15.8.2.2 Europe Liquid Cooling Market by Country
      • 15.8.2.3 Europe Hybrid Cooling Market by Country
    • 15.8.3 Europe AI Server Market by Form Factor
      • 15.8.3.1 Europe Rack-mounted Servers Market by Country
      • 15.8.3.2 Europe Blade Servers Market by Country
      • 15.8.3.3 Europe Tower Servers Market by Country
    • 15.8.4 Europe AI Server Market by End Use
      • 15.8.4.1 Europe IT & Telecommunication Market by Country
      • 15.8.4.2 Europe BFSI Market by Country
      • 15.8.4.3 Europe Retail & E-commerce Market by Country
      • 15.8.4.4 Europe Healthcare & Pharmaceutical Market by Country
      • 15.8.4.5 Europe Automotive Market by Country
      • 15.8.4.6 Europe Other End Use Market by Country
    • 15.8.5 Europe AI Server Market by Country
      • 15.8.5.1 Germany AI Server Market
        • 15.8.5.1.1 Germany AI Server Market by Processor Type
        • 15.8.5.1.2 Germany AI Server Market by Cooling Technology
        • 15.8.5.1.3 Germany AI Server Market by Form Factor
        • 15.8.5.1.4 Germany AI Server Market by End Use
      • 15.8.5.2 UK AI Server Market
        • 15.8.5.2.1 UK AI Server Market by Processor Type
        • 15.8.5.2.2 UK AI Server Market by Cooling Technology
        • 15.8.5.2.3 UK AI Server Market by Form Factor
        • 15.8.5.2.4 UK AI Server Market by End Use
      • 15.8.5.3 France AI Server Market
        • 15.8.5.3.1 France AI Server Market by Processor Type
        • 15.8.5.3.2 France AI Server Market by Cooling Technology
        • 15.8.5.3.3 France AI Server Market by Form Factor
        • 15.8.5.3.4 France AI Server Market by End Use
      • 15.8.5.4 Russia AI Server Market
        • 15.8.5.4.1 Russia AI Server Market by Processor Type
        • 15.8.5.4.2 Russia AI Server Market by Cooling Technology
        • 15.8.5.4.3 Russia AI Server Market by Form Factor
        • 15.8.5.4.4 Russia AI Server Market by End Use
      • 15.8.5.5 Spain AI Server Market
        • 15.8.5.5.1 Spain AI Server Market by Processor Type
        • 15.8.5.5.2 Spain AI Server Market by Cooling Technology
        • 15.8.5.5.3 Spain AI Server Market by Form Factor
        • 15.8.5.5.4 Spain AI Server Market by End Use
      • 15.8.5.6 Italy AI Server Market
        • 15.8.5.6.1 Italy AI Server Market by Processor Type
        • 15.8.5.6.2 Italy AI Server Market by Cooling Technology
        • 15.8.5.6.3 Italy AI Server Market by Form Factor
        • 15.8.5.6.4 Italy AI Server Market by End Use
      • 15.8.5.7 Rest of Europe AI Server Market
        • 15.8.5.7.1 Rest of Europe AI Server Market by Processor Type
        • 15.8.5.7.2 Rest of Europe AI Server Market by Cooling Technology
        • 15.8.5.7.3 Rest of Europe AI Server Market by Form Factor
        • 15.8.5.7.4 Rest of Europe AI Server Market by End Use
  • 15.9 Asia Pacific AI Server Market
  • 15.1 Key Influencing Factors
    • 15.10.1 Drivers
    • 15.10.2 Market Restraints
    • 15.10.3 Market Opportunities
    • 15.10.4 Market Challenges
  • 15.11 Asia Pacific Market Trends
  • 15.12 State of Competition in the Asia Pacific AI Server Market
    • 15.12.1 Asia Pacific AI Server Market by Processor Type
      • 15.12.1.1 Asia Pacific GPU-based Servers Market by Country
      • 15.12.1.2 Asia Pacific FPGA-based Servers Market by Country
      • 15.12.1.3 Asia Pacific ASIC-based Servers Market by Country
    • 15.12.2 Asia Pacific AI Server Market by Cooling Technology
      • 15.12.2.1 Asia Pacific Air Cooling Market by Country
      • 15.12.2.2 Asia Pacific Liquid Cooling Market by Country
      • 15.12.2.3 Asia Pacific Hybrid Cooling Market by Country
    • 15.12.3 Asia Pacific AI Server Market by Form Factor
      • 15.12.3.1 Asia Pacific Rack-mounted Servers Market by Country
      • 15.12.3.2 Asia Pacific Blade Servers Market by Country
      • 15.12.3.3 Asia Pacific Tower Servers Market by Country
    • 15.12.4 Asia Pacific AI Server Market by End Use
      • 15.12.4.1 Asia Pacific IT & Telecommunication Market by Country
      • 15.12.4.2 Asia Pacific BFSI Market by Country
      • 15.12.4.3 Asia Pacific Retail & E-commerce Market by Country
      • 15.12.4.4 Asia Pacific Healthcare & Pharmaceutical Market by Country
      • 15.12.4.5 Asia Pacific Automotive Market by Country
      • 15.12.4.6 Asia Pacific Other End Use Market by Country
    • 15.12.5 Asia Pacific AI Server Market by Country
      • 15.12.5.1 China AI Server Market
        • 15.12.5.1.1 China AI Server Market by Processor Type
        • 15.12.5.1.2 China AI Server Market by Cooling Technology
        • 15.12.5.1.3 China AI Server Market by Form Factor
        • 15.12.5.1.4 China AI Server Market by End Use
      • 15.12.5.2 Japan AI Server Market
        • 15.12.5.2.1 Japan AI Server Market by Processor Type
        • 15.12.5.2.2 Japan AI Server Market by Cooling Technology
        • 15.12.5.2.3 Japan AI Server Market by Form Factor
        • 15.12.5.2.4 Japan AI Server Market by End Use
      • 15.12.5.3 India AI Server Market
        • 15.12.5.3.1 India AI Server Market by Processor Type
        • 15.12.5.3.2 India AI Server Market by Cooling Technology
        • 15.12.5.3.3 India AI Server Market by Form Factor
        • 15.12.5.3.4 India AI Server Market by End Use
      • 15.12.5.4 South Korea AI Server Market
        • 15.12.5.4.1 South Korea AI Server Market by Processor Type
        • 15.12.5.4.2 South Korea AI Server Market by Cooling Technology
        • 15.12.5.4.3 South Korea AI Server Market by Form Factor
        • 15.12.5.4.4 South Korea AI Server Market by End Use
      • 15.12.5.5 Singapore AI Server Market
        • 15.12.5.5.1 Singapore AI Server Market by Processor Type
        • 15.12.5.5.2 Singapore AI Server Market by Cooling Technology
        • 15.12.5.5.3 Singapore AI Server Market by Form Factor
        • 15.12.5.5.4 Singapore AI Server Market by End Use
      • 15.12.5.6 Malaysia AI Server Market
        • 15.12.5.6.1 Malaysia AI Server Market by Processor Type
        • 15.12.5.6.2 Malaysia AI Server Market by Cooling Technology
        • 15.12.5.6.3 Malaysia AI Server Market by Form Factor
        • 15.12.5.6.4 Malaysia AI Server Market by End Use
      • 15.12.5.7 Rest of Asia Pacific AI Server Market
        • 15.12.5.7.1 Rest of Asia Pacific AI Server Market by Processor Type
        • 15.12.5.7.2 Rest of Asia Pacific AI Server Market by Cooling Technology
        • 15.12.5.7.3 Rest of Asia Pacific AI Server Market by Form Factor
        • 15.12.5.7.4 Rest of Asia Pacific AI Server Market by End Use
  • 15.13 LAMEA AI Server Market
  • 15.14 Key Influencing Factors
    • 15.14.1 Market Drivers
    • 15.14.2 Market Restraints
    • 15.14.3 Market Opportunities
    • 15.14.4 Market Challenges
  • 15.15 LAMEA AI Server Market Trends
  • 15.16 State of Competition in the LAMEA AI Server Market
    • 15.16.1 LAMEA AI Server Market by Processor Type
      • 15.16.1.1 LAMEA GPU-based Servers Market by Country
      • 15.16.1.2 LAMEA FPGA-based Servers Market by Country
      • 15.16.1.3 LAMEA ASIC-based Servers Market by Country
    • 15.16.2 LAMEA AI Server Market by Cooling Technology
      • 15.16.2.1 LAMEA Air Cooling Market by Country
      • 15.16.2.2 LAMEA Liquid Cooling Market by Country
      • 15.16.2.3 LAMEA Hybrid Cooling Market by Country
    • 15.16.3 LAMEA AI Server Market by Form Factor
      • 15.16.3.1 LAMEA Rack-mounted Servers Market by Country
      • 15.16.3.2 LAMEA Blade Servers Market by Country
      • 15.16.3.3 LAMEA Tower Servers Market by Country
    • 15.16.4 LAMEA AI Server Market by End Use
      • 15.16.4.1 LAMEA IT & Telecommunication Market by Country
      • 15.16.4.2 LAMEA BFSI Market by Country
      • 15.16.4.3 LAMEA Retail & E-commerce Market by Country
      • 15.16.4.4 LAMEA Healthcare & Pharmaceutical Market by Country
      • 15.16.4.5 LAMEA Automotive Market by Country
      • 15.16.4.6 LAMEA Other End Use Market by Country
    • 15.16.5 LAMEA AI Server Market by Country
      • 15.16.5.1 Brazil AI Server Market
        • 15.16.5.1.1 Brazil AI Server Market by Processor Type
        • 15.16.5.1.2 Brazil AI Server Market by Cooling Technology
        • 15.16.5.1.3 Brazil AI Server Market by Form Factor
        • 15.16.5.1.4 Brazil AI Server Market by End Use
      • 15.16.5.2 Argentina AI Server Market
        • 15.16.5.2.1 Argentina AI Server Market by Processor Type
        • 15.16.5.2.2 Argentina AI Server Market by Cooling Technology
        • 15.16.5.2.3 Argentina AI Server Market by Form Factor
        • 15.16.5.2.4 Argentina AI Server Market by End Use
      • 15.16.5.3 UAE AI Server Market
        • 15.16.5.3.1 UAE AI Server Market by Processor Type
        • 15.16.5.3.2 UAE AI Server Market by Cooling Technology
        • 15.16.5.3.3 UAE AI Server Market by Form Factor
        • 15.16.5.3.4 UAE AI Server Market by End Use
      • 15.16.5.4 Saudi Arabia AI Server Market
        • 15.16.5.4.1 Saudi Arabia AI Server Market by Processor Type
        • 15.16.5.4.2 Saudi Arabia AI Server Market by Cooling Technology
        • 15.16.5.4.3 Saudi Arabia AI Server Market by Form Factor
        • 15.16.5.4.4 Saudi Arabia AI Server Market by End Use
      • 15.16.5.5 South Africa AI Server Market
        • 15.16.5.5.1 South Africa AI Server Market by Processor Type
        • 15.16.5.5.2 South Africa AI Server Market by Cooling Technology
        • 15.16.5.5.3 South Africa AI Server Market by Form Factor
        • 15.16.5.5.4 South Africa AI Server Market by End Use
      • 15.16.5.6 Nigeria AI Server Market
        • 15.16.5.6.1 Nigeria AI Server Market by Processor Type
        • 15.16.5.6.2 Nigeria AI Server Market by Cooling Technology
        • 15.16.5.6.3 Nigeria AI Server Market by Form Factor
        • 15.16.5.6.4 Nigeria AI Server Market by End Use
      • 15.16.5.7 Rest of LAMEA AI Server Market
        • 15.16.5.7.1 Rest of LAMEA AI Server Market by Processor Type
        • 15.16.5.7.2 Rest of LAMEA AI Server Market by Cooling Technology
        • 15.16.5.7.3 Rest of LAMEA AI Server Market by Form Factor
        • 15.16.5.7.4 Rest of LAMEA AI Server Market by End Use

Chapter 16. Company Profiles

  • 16.1 Dell Technologies, Inc.
    • 16.1.1 Company Overview
    • 16.1.2 Financial Analysis
    • 16.1.3 Segmental and Regional Analysis
    • 16.1.4 Research & Development Expense
    • 16.1.5 Recent strategies and developments:
      • 16.1.5.1 Partnerships, Collaborations, and Agreements:
    • 16.1.6 SWOT Analysis
  • 16.2 Cisco Systems, Inc.
    • 16.2.1 Company Overview
    • 16.2.2 Financial Analysis
    • 16.2.3 Regional Analysis
    • 16.2.4 Research & Development Expense
    • 16.2.5 Recent strategies and developments:
      • 16.2.5.1 Partnerships, Collaborations, and Agreements:
      • 16.2.5.2 Product Launches and Product Expansions:
    • 16.2.6 SWOT Analysis
  • 16.3 IBM Corporation
    • 16.3.1 Company Overview
    • 16.3.2 Financial Analysis
    • 16.3.3 Regional & Segmental Analysis
    • 16.3.4 Research & Development Expenses
    • 16.3.5 Recent strategies and developments:
      • 16.3.5.1 Product Launches and Product Expansions:
    • 16.3.6 SWOT Analysis
  • 16.4 HP, Inc.
    • 16.4.1 Company Overview
    • 16.4.2 Financial Analysis
    • 16.4.3 Segmental and Regional Analysis
    • 16.4.4 Research & Development Expense
    • 16.4.5 Recent strategies and developments:
      • 16.4.5.1 Partnerships, Collaborations, and Agreements:
      • 16.4.5.2 Acquisition and Mergers:
    • 16.4.6 SWOT Analysis
  • 16.5 Huawei Technologies Co., Ltd. (Huawei Investment & Holding Co., Ltd.)
    • 16.5.1 Company Overview
    • 16.5.2 Financial Analysis
    • 16.5.3 Segmental and Regional Analysis
    • 16.5.4 Research & Development Expenses
    • 16.5.5 Recent strategies and developments:
      • 16.5.5.1 Product Launches and Product Expansions:
    • 16.5.6 SWOT Analysis
  • 16.6 NVIDIA Corporation
    • 16.6.1 Company Overview
    • 16.6.2 Financial Analysis
    • 16.6.3 Segmental and Regional Analysis
    • 16.6.4 Research & Development Expenses
    • 16.6.5 Recent strategies and developments:
      • 16.6.5.1 Partnerships, Collaborations, and Agreements:
      • 16.6.5.2 Product Launches and Product Expansions:
    • 16.6.6 SWOT Analysis
  • 16.7 Fujitsu Limited
    • 16.7.1 Company Overview
    • 16.7.2 Financial Analysis
    • 16.7.3 Segmental and Regional Analysis
    • 16.7.4 Research & Development Expenses
    • 16.7.5 Recent strategies and developments:
      • 16.7.5.1 Partnerships, Collaborations, and Agreements:
    • 16.7.6 SWOT Analysis
  • 16.8 Intel Corporation
    • 16.8.1 Company Overview
    • 16.8.2 Financial Analysis
    • 16.8.3 Segmental and Regional Analysis
    • 16.8.4 Research & Development Expenses
    • 16.8.5 Recent strategies and developments:
      • 16.8.5.1 Product Launches and Product Expansions:
    • 16.8.6 SWOT Analysis
  • 16.9 Microsoft Corporation
    • 16.9.1 Company Overview
    • 16.9.2 Financial Analysis
    • 16.9.3 Segmental and Regional Analysis
    • 16.9.4 Research & Development Expenses
    • 16.9.5 Recent strategies and developments:
      • 16.9.5.1 Partnerships, Collaborations, and Agreements:
    • 16.9.6 SWOT Analysis
  • 16.10. Salesforce, Inc.
    • 16.10.1 Company Overview
    • 16.10.2 Financial Analysis
    • 16.10.3 Regional Analysis
    • 16.10.4 Research & Development Expenses
    • 16.10.5 Recent strategies and developments:
      • 16.10.5.1 Acquisition and Mergers:
    • 16.10.6 SWOT Analysis

Chapter 17. Winning Imperatives of AI Server Market

»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦