시장보고서
상품코드
1826740

세계의 소프트웨어 개발 수명주기용 생성형 AI 시장 - 규모, 점유율, 업계 분석 보고서 : 최종 사용자별, 용도별, 지역별 전망 및 예측(2025-2032년)

Global Generative AI in Software Development Lifecycle Market Size, Share & Industry Analysis Report By End-user, By Application, By Regional Outlook and Forecast, 2025 - 2032

발행일: | 리서치사: KBV Research | 페이지 정보: 영문 414 Pages | 배송안내 : 즉시배송

    
    
    



※ 본 상품은 영문 자료로 한글과 영문 목차에 불일치하는 내용이 있을 경우 영문을 우선합니다. 정확한 검토를 위해 영문 목차를 참고해주시기 바랍니다.

세계의 소프트웨어 개발 수명주기용 생성형 AI 시장 규모는 예측 기간 동안 34.2%의 연평균 복합 성장률(CAGR)로 성장하고 2032년까지 52억 6,000만 달러에 달할 것으로 예상되고 있습니다.

주요 하이라이트:

  • 2024년에는 북미 시장이 소프트웨어 개발 수명주기용 생성형 AI 시장을 독점했으며, 2024년에는 41.8%의 수익 점유율을 차지했습니다.
  • 미국 시장은 북미의 리더십을 유지하며 2032년까지 시장 규모가 15억 8,000만 달러에 달할 것으로 예측됩니다.
  • 다양한 최종 사용자 중에서 소프트웨어 엔지니어 및 DevOps 전문 부문은 세계 시장을 독점했으며 2024년에는 수익 점유율의 75.43%를 차지했습니다.
  • 용도별로는 코드 생성과 자동 완성 부문이 2032년까지 35.19%의 수익 점유율을 획득하여 세계 시장을 선도할 것으로 예측됩니다.

소프트웨어 개발 수명주기의 생성형 AI 시장은 범용 코드 완성 파일럿에서 요구사항, 아키텍처, 코딩, 테스트, 보안, 릴리스 및 운영에 걸친 변화를 추진하는 것으로 진화했습니다. 도입은 IDE에서 개별 개발자가 부조종사를 맡는 것부터 엔터프라이즈 레벨에서의 계획 보드, CI/CD, 가관측성, 사고 대응 전체의 오케스트레이션으로 변화했습니다. 정부와 규제 당국은 AI를 안전하게 사용하는 방법에 대해 조언함으로써 이러한 변화를 지원해 왔습니다. 이를 통해 기업은 역할 기반 액세스, 로깅 및 데이터 레지던시와 같은 기본 제공 거버넌스 기능을 요구하고 기업 구매 방법도 변경되었습니다. 공급업체는 프라이버시를 보호하는 아키텍처, 관리된 검색 확장 생성(RAG), 감사를 가능하게 하는 정책 엔진을 개발했습니다. 기업은 현재 결함률, 사이클 시간, 테스트 커버리지, 개발자 경험 등에 AI가 어떻게 영향을 미치는지 검토하고 있습니다.

경쟁은 IDE 및 채팅에 표시되는 기본 모델 또는 전용 모델, 코드/문서/티켓의 엔터프라이즈 관련 컨텍스트, 규정 준수를 위한 거버넌스 레이어 및 프로덕션 메트릭에 연결된 피드백 루프라는 몇 가지 주요 패턴에 자리를 잡고 있습니다. 다음 세 가지 추세가 두드러집니다 : 거버넌스가 제품이 되고 있는 것, 단일 부조종사가 오케스트레이션된 멀티 에이전트 시스템으로 대체되고, 품질과 보안이 인간이 관여하는 AI 지원으로 재정의되고 있다는 것입니다. 리더 기업은 거버넌스, 보안 스캔, 인간 모니터링 및 프로덕션 급료 지표를 포함한 엔드 투 엔드 엔지니어링 시스템에 AI를 통합하여 타사와 차별화하고 있습니다. 이렇게 하면 AI 출력이 안전하고 이해하기 쉽고 측정 가능한 개선에 연결되어 있는지 확인할 수 있습니다. 경쟁 우위는 모델이 단독으로 얼마나 잘 작동하는지, 다른 시스템과 얼마나 잘 작동하는지, 엔터프라이즈급에서 얼마나 잘 관리되는지, CI/CD 및 프로덕션 배포에서 얼마나 ROI를 제시하는지에 이르고 있습니다.

KBV Cardinal matrix - 소프트웨어 개발 수명주기용 생성형 AI 시장 경쟁 분석에서

KBV Cardinal matrix에 제시된 분석을 바탕으로 Microsoft Corporation, Google LLC, NVIDIA Corporation, Meta Platforms, Inc. 및 Amazon Web Services, Inc.는 소프트웨어 개발 수명주기용 생성된 AI 시장의 선구자입니다. 2025년 8월, Microsoft Corporation은 Microsoft 365 Copilot, GitHub Copilot, Visual Studio Code 및 Azure AI Foundry를 포함한 소비자, 엔터프라이즈 및 개발자 플랫폼에서 OpenAI GPT-5와의 파트너십을 발표했습니다. GPT-5는 코딩, 복잡한 추론 및 에이전트 워크플로우를 강화하고 안전한 엔터프라이즈급 AI 기능을 제공하여 생산성을 향상시키고 소프트웨어 개발을 가속화하며 고급 비즈니스 프로세스를 지원합니다. Accenture PLC, IBM Corporation, Adobe, Inc.와 같은 기업은 소프트웨어 개발 수명주기용 생성된 AI 시장의 주요 혁신자의 일부입니다.

COVID-19의 영향 분석

COVID-19의 유행에 따라 회사는 처음에 SDLC에서 생성형 AI의 활용을 앞당겼습니다. 사업 연속성, 원격 근무, 보안에 대한 대응을 중시할 필요가 있었기 때문입니다. 지적재산권 및 데이터 출처에 대한 우려로 인해 조달주기가 지연되고 분산된 재택근무와 컴플라이언스의 동결로 파일럿 운영이 제한되었습니다. 그러나 원격근무가 안정됨에 따라 기업은 다시 생성형 AI를 활용하기 시작했지만 리스크 관리 팀을 만족시키기 위해 테넌트 분리, 로깅, CI/CD 게이트 등 보다 엄격한 규칙을 도입했습니다. 분산형 팀은 온보딩, 테스트 작성, 문서 작성, 마이그레이션 지원에 AI를 활용하여 대면 공동 작업을 할 수 없어 생산성이 저하된 부분을 회복시킬 수 있었습니다. 따라서 COVID-19는 시장에 긍정적인 영향을 미쳤습니다.

시장 점유율 분석

용도별 전망

용도별로 보면, 시장은 코드 생성과 자동 보완, 개인화 개발 툴, 개발용 자연 언어 인터페이스, AI 강화 설계 및 UX, 기타 용도으로 분류됩니다. 맞춤형 개발 도구 부문은 2024년 시장 점유율의 21.3%를 기록했습니다. 이러한 도구는 개별 코딩 스타일, 프로젝트 요구 사항, 팀의 선호도에 맞게 맞춤화되며 맞춤형 권장 사항과 효율적인 작업 관리를 제공합니다. 상황에 맞는 지원을 제공함으로써 개발자는 프로젝트 간의 일관성을 유지하면서 아티팩트를 향상시킬 수 있습니다.

지역별 전망

지역별로 보면 시장은 북미, 유럽, 아시아태평양, 라틴아메리카, 중동, 아프리카로 구분되고 있습니다. 북미 부문은 2024년 시장에서 41.8%의 수익 점유율을 기록했습니다. 소프트웨어 개발 수명주기용 생성된 AI 시장은 강력한 거버넌스 프레임워크, 기업의 광범위한 사용, DevOps 및 보안 파이프라인에 대한 깊은 통합으로 북미와 유럽에서 빠르게 성장하고 있습니다. 미국은 설계에 따른 컴플라이언스, 테넌트 분리, 결함 감소 및 사이클 타임 단축 등 지표 전체에서 측정 가능한 ROI로 북미를 선도하고 있습니다. 캐나다 통계국에 따르면 ICT 부문은 캐나다의 GDP에 크게 기여하고 있습니다. 2021년 이 섹터의 GDP는 1,045억 달러(2012년 고정 달러)로 국내 GDP의 5.3%를 차지하고 국내 GDP의 점유율을 높이는 경향이 계속되고 있습니다. 이 데이터는 이 지역의 IT 개발에 Xanada의 큰 기여를 보여줍니다. 게다가 GDPR(EU 개인정보보호규정)과 AI법은 유럽이 프라이버시 보호의 전개, 투명성, 감사 가능성에 중점을 두도록 형성되었습니다. 두 지역은 IDE, 계획 보드, CI/CD 파이프라인의 코파일럿 기능 등을 포함한 엔터프라이즈 지원 플랫폼을 중심으로 협력하고 있습니다. 보안 시스템과 거버넌스 관리는 구매 결정에서 매우 중요한 요소가 되고 있습니다. 또한 유럽에서 디지털 경제의 발전도 시장 성장을 이끌고 있습니다. ITA에 따르면 영국 디지털 기술 관련 산업의 연간 매출은 1,700억 달러로, 10만 개 이상의 소프트웨어 기업이 영국 시장에 진출하고 있다고 합니다. 또, 1인당 ICT 지출 랭킹에서는 미국에 이은 2위의 ICT 시장이 되고 있습니다(미국 1위).

거버넌스의 성숙도는 다양하지만, 급속한 디지털 변혁, 클라우드의 광범위한 채용, 소프트웨어 최신화에 대한 수요 증가가 아시아태평양과 라틴아메리카, 중동, 아프리카에서의 성장의 주요 원동력이 되고 있습니다. On-Premise와 VPC 기반의 전개는 아시아태평양 시장, 특히 중국, 일본, 호주, 인도 시장에서 데이터 주권을 다루면서 생산성을 향상시키는 데 주력하고 있습니다. 예를 들어 일본 총무성에 따르면 2021년도 일본 예산의 연구개발비 총액은 19조 7,400억엔으로, 그 중 1,744억엔이 AI용입니다. 또한 라틴아메리카, 중동 및 아프리카는 중동 및 라틴아메리카의 다른 지역에서 인기가 높아지고 있으며, 기업은 비용 절감, 최신화 및 신속한 제공을 위해 AI에 눈을 돌리고 있습니다. 예를 들어 국제무역국(ITA)에 따르면 브라질에서는 AI의 성숙이 진행되었고, 2023년에는 지출이 10억 미국을 넘어 전년 대비 33% 증가했습니다. 지능형 프로세스 자동화(IPA)에 대한 지출은 2023년 2억 1,400만 미국을 넘어 전년 대비 약 17% 증가했습니다. 또한 턴키 거버넌스와 현지화된 컴플라이언스 지원을 제공하는 공급업체는 규제 변화에 대응할 수 있는 이점을 확보하고 있습니다. 반면에 비용 관리, 개발자 경험, 다국어 또는 다중 프레임워크 지원은 두 지역에서 중요한 차별화 요인이 되었습니다.

시장 경쟁과 특성

소규모 기업과 신흥 기업은 생성형 AI를 활용한 소프트웨어 개발 수명주기 분야에서 치열한 경쟁을 벌이고 있습니다. 혁신적인 신생 기업과 틈새 전문 기업은 전문적인 자동화, 원활한 통합 및 개발자 중심의 워크플로우를 통해 차별화를 도모하려고 경쟁하고 있습니다. 경쟁의 핵심은 자체 커밋 전후의 코드 생성, AI 구동 테스트 및 CI/CD 최적화입니다. 전문 분야에 특화된 혁신에 대한 장벽이 낮은 것은 분단을 가속화하고 경쟁의 역동성을 높이고 있습니다.

목차

제1장 시장 범위와 조사 방법

  • 시장의 정의
  • 목적
  • 시장 범위
  • 세분화
  • 조사 방법

제2장 시장 개관

  • 주요 하이라이트

제3장 시장 개요

  • 소개
    • 개요
      • 시장구성과 시나리오
  • 시장에 영향을 미치는 주요 요인
    • 시장 성장 촉진요인
    • 시장 성장 억제요인
    • 시장 기회
    • 시장의 과제

제4장 시장 동향 - 소프트웨어 개발 수명주기용 생성형 AI 시장

제5장 경쟁 현황 - 소프트웨어 개발 수명주기용 생성형 AI 시장

제6장 소프트웨어 개발 수명주기용 생성형 AI 시장의 밸류체인 분석

제7장 제품 수명주기 - 소프트웨어 개발 수명주기용 생성형 AI 시장

제8장 시장 통합 - 소프트웨어 개발 수명주기용 생성형 AI 시장

제9장 주요 고객 기준 - 소프트웨어 개발 수명주기용 생성형 AI 시장

제10장 경쟁 분석 - 세계

  • KBV Cardinal Matrix
  • 최근 업계 전체의 전략적 전개
    • 파트너십, 협업 및 계약
    • 제품 출시 및 제품 확대
    • 인수와 합병
  • 시장 점유율 분석, 2024년
  • 주요 성공 전략
    • 주요 전략
    • 주요 전략적 움직임
  • Porter's Five Forces 분석

제11장 세계 시장 : 최종 사용자별

  • 세계의 소프트웨어 엔지니어/DevOps 프로페셔널 시장 : 지역별
  • 세계의 보안 전문가/SecOps 시장 : 지역별

제12장 세계 시장 : 용도별

  • 생성 및 자동 보완 세계 시장 : 지역별
  • 개인화 개발 툴 세계 시장 : 지역별
  • 개발용 자연 언어 인터페이스 세계 시장 : 지역별
  • AI 강화 디자인 및 UX 세계 시장 : 지역별
  • 기타 용도 세계 시장 : 지역별

제13장 세계 시장 : 지역별

  • 북미
  • 시장에 영향을 미치는 열쇠
    • 북미 시장 : 국가별
      • 미국
      • 캐나다
      • 멕시코
      • 기타 북미
  • 유럽
  • 시장에 영향을 미치는 열쇠
    • 유럽 시장 : 국가별
      • 독일
      • 영국
      • 프랑스
      • 러시아
      • 스페인
      • 이탈리아
      • 기타 유럽
  • 아시아태평양
  • 시장에 영향을 미치는 열쇠
    • 아시아태평양 시장 : 국가별
      • 중국
      • 일본
      • 인도
      • 한국
      • 싱가포르
      • 말레이시아
      • 기타 아시아태평양
  • 라틴아메리카, 중동 및 아프리카
  • 시장에 영향을 미치는 열쇠
    • 라틴아메리카, 중동 및 아프리카 시장 : 국가별
      • 브라질
      • 아르헨티나
      • 아랍에미리트(UAE)
      • 사우디아라비아
      • 남아프리카
      • 나이지리아
      • 기타 라틴아메리카, 중동 및 아프리카

제14장 기업 프로파일

  • Microsoft Corporation
  • OpenAI, LLC
  • NVIDIA Corporation
  • Google LLC
  • Anthropic PBC
  • Amazon Web Services, Inc(Amazon.com, Inc.)
  • Meta Platforms, Inc
  • IBM Corporation
  • Accenture PLC
  • Adobe, Inc

제15장 소프트웨어 개발 수명주기용 생성형 AI 시장의 성공 필수 조건

JHS

The Global Generative AI in Software Development Lifecycle Market size is expected to reach USD 5.26 billion by 2032, rising at a market growth of 34.2% CAGR during the forecast period.

Key Highlights:

  • The North America market dominated Global Generative AI in Software Development Lifecycle Market in 2024, accounting for a 41.8% revenue share in 2024.
  • The U.S. market is projected to maintain its leadership in North America, reaching a market size of USD 1.58 billion by 2032.
  • Among the various End-user, the Software Engineers/DevOps Professionals segment dominated the global market, contributing a revenue share of 75.43% in 2024.
  • In terms of Application, Code Generation & Auto-Completion segment are expected to lead the global market, with a projected revenue share of 35.19% by 2032.

The generative AI in the software development lifecycle market has evolved from a generic code-completion pilots to advance transformation spanning requirements, architecture, coding, testing, security, release, and operations. Adoption has changed from having individual developer copilots in IDEs to having orchestration across planning boards, CI/CD, observability, and incident response at the enterprise level. Governments and regulators have supported this change by giving advice on how to use AI safely. This has led companies to ask for built-in governance features like role-based access, logging, and data residency, and it has also changed how companies buy things. Vendors have come up with architectures that protect privacy, governed retrieval-augmented generation (RAG), and policy engines that allow for auditing. Enterprises now look at how AI affects things like defect rates, cycle time, test coverage, and developer experience.

Competition has settled on a few main patterns: foundation or specialised models shown in IDEs and chat, enterprise-specific context from code/docs/tickets, governance layers for compliance, and feedback loops linked to production metrics. Three trends stand out: governance is becoming a product, single copilots are being replaced by orchestrated multi-agent systems, and quality and security are being redefined as AI-assisted with humans in the loop. Leaders set themselves apart by incorporating AI into end-to-end engineering systems, which include governance, security scanning, human oversight, and production-grade metrics. This makes sure that AI outputs are safe, easy to understand, and linked to improvements that can be measured. The competitive edge is moving away from how well the model works on its own and towards how well it works with other systems, how well it is governed at the enterprise level, and how well it shows ROI in CI/CD and production delivery.

The major strategies followed by the market participants are Partnership as the key developmental strategy to keep pace with the changing demands of end users. For instance, In May, 2025, Accenture PLC announced the partnership with Dell Technologies and NVIDIA to Integrate Dell's and NVIDIA's infrastructure with Accenture, it enhances Accenture's AI Refinery, enabling secure, scalable, and compliant deployment of agentic AI for enterprises, particularly in regulated industries requiring data sovereignty and resilience. Additionally, In July, 2025, OpenAI, LLC teamed up with HCLTech to drive enterprise-scale generative AI adoption. Integrating OpenAI models into platforms like AI Force and AI Foundry, the collaboration enhances client services, internal productivity, and process efficiency across industries, supporting AI deployment, governance, and change management for transformative business solutions worldwide.

KBV Cardinal Matrix - Generative AI in Software Development Lifecycle Market Competition Analysis

Based on the Analysis presented in the KBV Cardinal matrix; Microsoft Corporation, Google LLC, NVIDIA Corporation, Meta Platforms, Inc. and Amazon Web Services, Inc. are the forerunners in the Generative AI in Software Development Lifecycle Market. In August, 2025, Microsoft Corporation announced the partnership with OpenAI's GPT-5 across consumer, enterprise, and developer platforms, including Microsoft 365 Copilot, GitHub Copilot, Visual Studio Code, and Azure AI Foundry. GPT-5 enhances coding, complex reasoning, and agentic workflows, providing secure, enterprise-grade AI capabilities to improve productivity, accelerate software development, and support advanced business processes. Companies such as Accenture PLC, IBM Corporation, and Adobe, Inc. are some of the key innovators in Generative AI in Software Development Lifecycle Market.

COVID 19 Impact Analysis

The COVID-19 pandemic made businesses put off using generative AI in the SDLC at first because they had to focus on business continuity, remote work, and security. Concerns about IP and data provenance made procurement cycles slower, and pilots were limited by fragmented home setups and compliance freezes. But as remote work became more stable, businesses started using it again, but with stricter rules to please risk teams, such as tenant isolation, logging, and CI/CD gates. Distributed teams used AI for onboarding, creating tests, writing documentation, and helping with migration, which helped them get back to being productive after losing productivity when they couldn't work together in person. Thus, COVID 19 had positive impact on the market.

Market Share Analysis

Application Outlook

Based on Application, the market is segmented into Code Generation & Auto-Completion, Personalized Development Tools, Natural Language Interfaces for Development, AI-Enhanced Design and UX, and Other Application. The Personalized Development Tools segment recorded 21.3% revenue share in the market in 2024. These tools adapt to individual coding styles, project requirements, and team preferences, offering customized recommendations and efficient task management. By providing contextual support, they help developers improve their output while ensuring consistency across projects.

Regional Outlook

Region-wise, the market is analyzed across North America, Europe, Asia Pacific, and LAMEA. The North America segment recorded 41.8% revenue share in the market in 2024. The generative AI in software development lifecycle market is growing quickly in North America and Europe because of strong governance frameworks, widespread use in businesses, and deep integration into DevOps and security pipelines. The U.S. leads North America in compliance-by-design, tenant isolation, and measurable ROI across metrics like defect reduction and faster cycle times. According to Statistics Canada, The ICT sector contributes substantially to Canada's GDP. In 2021, the sector's GDP was $104.5 billion (in 2012 constant dollars), accounting for 5.3% of national GDP, continuing a trend of taking a higher share of national GDP. This data shows a huge contribution of Xanada in IT development in the region Furthermore, the GDPR and the AI Act have shaped Europe to focus on privacy-preserving deployments, transparency, and auditability. Both regions are coming together around enterprise-ready platforms that include copilots in IDEs, planning boards, and CI/CD pipelines. Security posture and governance controls are becoming very important factors in buying decisions. Also, rising digital economy in the Europe is driving the growth of the market. According to ITA, United Kingdom has $170 billion digital tech annual turnover, over 100,000 software companies are in UK's market, it has second largest ICT markets in ranking of ICT spending per head (U.S. #1).

Though governance maturity varies, rapid digital transformation, widespread cloud adoption, and growing demand for software modernisation are the main drivers of growth in Asia-Pacific and LAMEA. With on-premises and VPC-based deployments, Asia-Pacific markets-especially those in China, Japan, Australia, and India-are concentrating on increasing productivity while addressing data sovereignty. For example, According to the Statistics Bureau of Japan, the nation's total expenditure on R&D during fiscal year (FY) 2021 stood at 19.74 trillion yen, out of which 174.4 billion yen for AI. Furthermore, LAMEA is becoming more popular in the Middle East and other parts of Latin America, where businesses are turning to AI for cost savings, modernisation, and faster delivery. For instance, as per the InternationalTrade administration (ITA), AI continued to mature in Brazil and exceeded US$1 billion in spending in 2023, representing a 33% increase year-over-year. Spending on Intelligent Process Automation (IPA) exceeded US$214 million in 2023, marking an increase of about 17% from the previous year. Also, vendors providing turnkey governance and localised compliance support are well-positioned as regulations change, while cost control, developer experience, and multi-language or framework support are important differentiators in both regions.

Market Competition and Attributes

Smaller and emerging firms are fiercely competing in the generative-AI-enabled software-development-lifecycle space. Innovative startups and niche specialists battle to differentiate via specialized automation, seamless integration, and developer-centric workflows. The race centers on unique pre- and post-commit code generation, AI-driven testing, and CI/CD optimization. Low barriers for specialized innovation intensify fragmentation and heighten competitive dynamism.

Recent Strategies Deployed in the Market

  • Aug-2025: OpenAI, LLC unveiled GPT-5, a more advanced AI model designed for coding, creative writing, and complex problem-solving. CEO Sam Altman calls it a "major upgrade," offering interactions that feel like consulting an expert. The rollout aims to maintain OpenAI's edge amid rising competition from US and Chinese rivals.
  • Aug-2025: Amazon Web Services, Inc. unveiled the AI-Driven Development Lifecycle (AI-DLC), placing AI at the core of software creation to accelerate development from months to days. The launch includes the AI-Native Builders Community, agentic IDEs like Kiro, and AI agents for autonomous coding, testing, and deployment, empowering businesses and developers to integrate AI effectively.
  • Jul-2025: Microsoft Corporation unveiled AI-powered, agent-driven app development, enabling users to generate production-ready code directly from natural language prompts. Combining low-code flexibility with enterprise-grade security, governance, and open standards, generative pages streamline design, customization, and deployment, empowering organizations to rapidly build scalable, secure, and fully controlled enterprise applications.
  • Jul-2025: OpenAI, LLC unveiled AI agents capable of performing engineering tasks, signaling a major shift in software development. These agents could handle coding, testing, and project management, augmenting human engineers. Businesses and developers are advised to prepare for AI integration, upskill, and adapt strategies to leverage AI-enhanced workflows effectively.
  • Jun-2025: IBM Corporation unveiled industry-first software integrating watsonx.governance and Guardium AI Security to unify AI governance and security for agentic and generative AI. The solution enables lifecycle monitoring, compliance mapping, automated red teaming, and secure AI operations, helping enterprises scale AI responsibly while meeting global regulatory standards efficiently.

List of Key Companies Profiled

  • Microsoft Corporation
  • OpenAI, LLC
  • NVIDIA Corporation
  • Google LLC
  • Anthropic PBC
  • Amazon Web Services, Inc. (Amazon.com, Inc.)
  • Meta Platforms, Inc.
  • IBM Corporation
  • Accenture PLC
  • Adobe, Inc.

Global Generative AI in Software Development Lifecycle Market Report Segmentation

By End-user

  • Software Engineers/DevOps Professionals
  • Security Professionals/SecOps

By Application

  • Code Generation & Auto-Completion
  • Personalized Development Tools
  • Natural Language Interfaces for Development
  • AI-Enhanced Design and UX
  • Other Application

By Geography

  • North America
    • US
    • Canada
    • Mexico
    • Rest of North America
  • Europe
    • Germany
    • UK
    • France
    • Russia
    • Spain
    • Italy
    • Rest of Europe
  • Asia Pacific
    • China
    • Japan
    • India
    • South Korea
    • Singapore
    • Malaysia
    • Rest of Asia Pacific
  • LAMEA
    • Brazil
    • Argentina
    • UAE
    • Saudi Arabia
    • South Africa
    • Nigeria
    • Rest of LAMEA

Table of Contents

Chapter 1. Market Scope & Methodology

  • 1.1 Market Definition
  • 1.2 Objectives
  • 1.3 Market Scope
  • 1.4 Segmentation
    • 1.4.1 Global Generative AI in Software Development Lifecycle Market, by End-user
    • 1.4.2 Global Generative AI in Software Development Lifecycle Market, by Application
    • 1.4.3 Global Generative AI in Software Development Lifecycle Market, by Geography
  • 1.5 Methodology for the research

Chapter 2. Market at a Glance

  • 2.1 Key Highlights

Chapter 3. Market Overview

  • 3.1 Introduction
    • 3.1.1 Overview
      • 3.1.1.1 Market Composition and Scenario
  • 3.2 Key Factors Impacting the Market
    • 3.2.1 Market Drivers
    • 3.2.2 Market Restraints
    • 3.2.3 Market Opportunities: -
    • 3.2.4 Market Challenges: -

Chapter 4. Market Trends - Generative AI in Software Development Lifecycle Market

Chapter 5. State of Competition - Generative AI in Software Development Lifecycle Market

Chapter 6. Value Chain Analysis of Generative AI in Software Development Lifecycle Market

Chapter 7. PLC (Product Life Cycle) - Generative AI in Software Development Lifecycle Market

Chapter 8. Market Consolidation - Generative AI in Software Development Lifecycle Market

Chapter 9. Key Customer Criteria - Generative AI in Software Development Lifecycle Market

Chapter 10. Competition Analysis - Global

  • 10.1 KBV Cardinal Matrix
  • 10.2 Recent Industry Wide Strategic Developments
    • 10.2.1 Partnerships, Collaborations and Agreements
    • 10.2.2 Product Launches and Product Expansions
    • 10.2.3 Acquisition and Mergers
  • 10.3 Market Share Analysis, 2024
  • 10.4 Top Winning Strategies
    • 10.4.1 Key Leading Strategies: Percentage Distribution (2021-2025)
    • 10.4.2 Key Strategic Move: (Partnerships, Collaborations & Agreements: 2023, May - 2025, Aug) Leading Players
  • 10.5 Porter Five Forces Analysis

Chapter 11. Global Generative AI in Software Development Lifecycle Market by End-user

  • 11.1 Global Software Engineers/DevOps Professionals Market by Region
  • 11.2 Global Security Professionals/SecOps Market by Region

Chapter 12. Global Generative AI in Software Development Lifecycle Market by Application

  • 12.1 Global Code Generation & Auto-Completion Market by Region
  • 12.2 Global Personalized Development Tools Market by Region
  • 12.3 Global Natural Language Interfaces for Development Market by Region
  • 12.4 Global AI-Enhanced Design and UX Market by Region
  • 12.5 Global Other Application Market by Region

Chapter 13. Global Generative AI in Software Development Lifecycle Market by Region

  • 13.1 North America Generative AI in Software Development Lifecycle Market
  • 13.2 Key Impacting the Market
    • 13.2.1 Market Drivers
    • 13.2.2 Market Restraints
    • 13.2.3 Market Opportunities
    • 13.2.4 Market Challenges
    • 13.2.5 Market Trends
    • 13.2.6 State of Competition
    • 13.2.7 North America Generative AI in Software Development Lifecycle Market by End-user
      • 13.2.7.1 North America Software Engineers/DevOps Professionals Market by Country
      • 13.2.7.2 North America Security Professionals/SecOps Market by Country
    • 13.2.8 North America Generative AI in Software Development Lifecycle Market by Application
      • 13.2.8.1 North America Code Generation & Auto-Completion Market by Country
      • 13.2.8.2 North America Personalized Development Tools Market by Country
      • 13.2.8.3 North America Natural Language Interfaces for Development Market by Country
      • 13.2.8.4 North America AI-Enhanced Design and UX Market by Country
      • 13.2.8.5 North America Other Application Market by Country
    • 13.2.9 North America Generative AI in Software Development Lifecycle Market by Country
      • 13.2.9.1 US Generative AI in Software Development Lifecycle Market
        • 13.2.9.1.1 US Generative AI in Software Development Lifecycle Market by End-user
        • 13.2.9.1.2 US Generative AI in Software Development Lifecycle Market by Application
      • 13.2.9.2 Canada Generative AI in Software Development Lifecycle Market
        • 13.2.9.2.1 Canada Generative AI in Software Development Lifecycle Market by End-user
        • 13.2.9.2.2 Canada Generative AI in Software Development Lifecycle Market by Application
      • 13.2.9.3 Mexico Generative AI in Software Development Lifecycle Market
        • 13.2.9.3.1 Mexico Generative AI in Software Development Lifecycle Market by End-user
        • 13.2.9.3.2 Mexico Generative AI in Software Development Lifecycle Market by Application
      • 13.2.9.4 Rest of North America Generative AI in Software Development Lifecycle Market
        • 13.2.9.4.1 Rest of North America Generative AI in Software Development Lifecycle Market by End-user
        • 13.2.9.4.2 Rest of North America Generative AI in Software Development Lifecycle Market by Application
  • 13.3 Europe Generative AI in Software Development Lifecycle Market
  • 13.4 Key Impacting the Market
    • 13.4.1 Market Drivers
    • 13.4.2 Market Restraints
    • 13.4.3 Market Opportunities
    • 13.4.4 Market Challenges
    • 13.4.5 Market Trends
    • 13.4.6 State of Competition
    • 13.4.7 Europe Generative AI in Software Development Lifecycle Market by End-user
      • 13.4.7.1 Europe Software Engineers/DevOps Professionals Market by Country
      • 13.4.7.2 Europe Security Professionals/SecOps Market by Country
    • 13.4.8 Europe Generative AI in Software Development Lifecycle Market by Application
      • 13.4.8.1 Europe Code Generation & Auto-Completion Market by Country
      • 13.4.8.2 Europe Personalized Development Tools Market by Country
      • 13.4.8.3 Europe Natural Language Interfaces for Development Market by Country
      • 13.4.8.4 Europe AI-Enhanced Design and UX Market by Country
      • 13.4.8.5 Europe Other Application Market by Country
    • 13.4.9 Europe Generative AI in Software Development Lifecycle Market by Country
      • 13.4.9.1 Germany Generative AI in Software Development Lifecycle Market
        • 13.4.9.1.1 Germany Generative AI in Software Development Lifecycle Market by End-user
        • 13.4.9.1.2 Germany Generative AI in Software Development Lifecycle Market by Application
      • 13.4.9.2 UK Generative AI in Software Development Lifecycle Market
        • 13.4.9.2.1 UK Generative AI in Software Development Lifecycle Market by End-user
        • 13.4.9.2.2 UK Generative AI in Software Development Lifecycle Market by Application
      • 13.4.9.3 France Generative AI in Software Development Lifecycle Market
        • 13.4.9.3.1 France Generative AI in Software Development Lifecycle Market by End-user
        • 13.4.9.3.2 France Generative AI in Software Development Lifecycle Market by Application
      • 13.4.9.4 Russia Generative AI in Software Development Lifecycle Market
        • 13.4.9.4.1 Russia Generative AI in Software Development Lifecycle Market by End-user
        • 13.4.9.4.2 Russia Generative AI in Software Development Lifecycle Market by Application
      • 13.4.9.5 Spain Generative AI in Software Development Lifecycle Market
        • 13.4.9.5.1 Spain Generative AI in Software Development Lifecycle Market by End-user
        • 13.4.9.5.2 Spain Generative AI in Software Development Lifecycle Market by Application
      • 13.4.9.6 Italy Generative AI in Software Development Lifecycle Market
        • 13.4.9.6.1 Italy Generative AI in Software Development Lifecycle Market by End-user
        • 13.4.9.6.2 Italy Generative AI in Software Development Lifecycle Market by Application
      • 13.4.9.7 Rest of Europe Generative AI in Software Development Lifecycle Market
        • 13.4.9.7.1 Rest of Europe Generative AI in Software Development Lifecycle Market by End-user
        • 13.4.9.7.2 Rest of Europe Generative AI in Software Development Lifecycle Market by Application
  • 13.5 Asia Pacific Generative AI in Software Development Lifecycle Market
  • 13.6 Key Impacting the Market
    • 13.6.1 Market Drivers
    • 13.6.2 Market Restraints
    • 13.6.3 Market Opportunities
    • 13.6.4 Market Challenges
    • 13.6.5 Market Trends
    • 13.6.6 State of Competition
    • 13.6.7 Asia Pacific Generative AI in Software Development Lifecycle Market by End-user
      • 13.6.7.1 Asia Pacific Software Engineers/DevOps Professionals Market by Country
      • 13.6.7.2 Asia Pacific Security Professionals/SecOps Market by Country
    • 13.6.8 Asia Pacific Generative AI in Software Development Lifecycle Market by Application
      • 13.6.8.1 Asia Pacific Code Generation & Auto-Completion Market by Country
      • 13.6.8.2 Asia Pacific Personalized Development Tools Market by Country
      • 13.6.8.3 Asia Pacific Natural Language Interfaces for Development Market by Country
      • 13.6.8.4 Asia Pacific AI-Enhanced Design and UX Market by Country
      • 13.6.8.5 Asia Pacific Other Application Market by Country
    • 13.6.9 Asia Pacific Generative AI in Software Development Lifecycle Market by Country
      • 13.6.9.1 China Generative AI in Software Development Lifecycle Market
        • 13.6.9.1.1 China Generative AI in Software Development Lifecycle Market by End-user
        • 13.6.9.1.2 China Generative AI in Software Development Lifecycle Market by Application
      • 13.6.9.2 Japan Generative AI in Software Development Lifecycle Market
        • 13.6.9.2.1 Japan Generative AI in Software Development Lifecycle Market by End-user
        • 13.6.9.2.2 Japan Generative AI in Software Development Lifecycle Market by Application
      • 13.6.9.3 India Generative AI in Software Development Lifecycle Market
        • 13.6.9.3.1 India Generative AI in Software Development Lifecycle Market by End-user
        • 13.6.9.3.2 India Generative AI in Software Development Lifecycle Market by Application
      • 13.6.9.4 South Korea Generative AI in Software Development Lifecycle Market
        • 13.6.9.4.1 South Korea Generative AI in Software Development Lifecycle Market by End-user
        • 13.6.9.4.2 South Korea Generative AI in Software Development Lifecycle Market by Application
      • 13.6.9.5 Singapore Generative AI in Software Development Lifecycle Market
        • 13.6.9.5.1 Singapore Generative AI in Software Development Lifecycle Market by End-user
        • 13.6.9.5.2 Singapore Generative AI in Software Development Lifecycle Market by Application
      • 13.6.9.6 Malaysia Generative AI in Software Development Lifecycle Market
        • 13.6.9.6.1 Malaysia Generative AI in Software Development Lifecycle Market by End-user
        • 13.6.9.6.2 Malaysia Generative AI in Software Development Lifecycle Market by Application
      • 13.6.9.7 Rest of Asia Pacific Generative AI in Software Development Lifecycle Market
        • 13.6.9.7.1 Rest of Asia Pacific Generative AI in Software Development Lifecycle Market by End-user
        • 13.6.9.7.2 Rest of Asia Pacific Generative AI in Software Development Lifecycle Market by Application
  • 13.7 LAMEA Generative AI in Software Development Lifecycle Market
  • 13.8 Key Impacting the Market
    • 13.8.1 Market Drivers
    • 13.8.2 Market Restraint
    • 13.8.3 Market Opportunities
    • 13.8.4 Market Challenges
    • 13.8.5 Market Trends
    • 13.8.6 State of Competition
    • 13.8.7 LAMEA Generative AI in Software Development Lifecycle Market by End-user
      • 13.8.7.1 LAMEA Software Engineers/DevOps Professionals Market by Country
      • 13.8.7.2 LAMEA Security Professionals/SecOps Market by Country
    • 13.8.8 LAMEA Generative AI in Software Development Lifecycle Market by Application
      • 13.8.8.1 LAMEA Code Generation & Auto-Completion Market by Country
      • 13.8.8.2 LAMEA Personalized Development Tools Market by Country
      • 13.8.8.3 LAMEA Natural Language Interfaces for Development Market by Country
      • 13.8.8.4 LAMEA AI-Enhanced Design and UX Market by Country
      • 13.8.8.5 LAMEA Other Application Market by Country
    • 13.8.9 LAMEA Generative AI in Software Development Lifecycle Market by Country
      • 13.8.9.1 Brazil Generative AI in Software Development Lifecycle Market
        • 13.8.9.1.1 Brazil Generative AI in Software Development Lifecycle Market by End-user
        • 13.8.9.1.2 Brazil Generative AI in Software Development Lifecycle Market by Application
      • 13.8.9.2 Argentina Generative AI in Software Development Lifecycle Market
        • 13.8.9.2.1 Argentina Generative AI in Software Development Lifecycle Market by End-user
        • 13.8.9.2.2 Argentina Generative AI in Software Development Lifecycle Market by Application
      • 13.8.9.3 UAE Generative AI in Software Development Lifecycle Market
        • 13.8.9.3.1 UAE Generative AI in Software Development Lifecycle Market by End-user
        • 13.8.9.3.2 UAE Generative AI in Software Development Lifecycle Market by Application
      • 13.8.9.4 Saudi Arabia Generative AI in Software Development Lifecycle Market
        • 13.8.9.4.1 Saudi Arabia Generative AI in Software Development Lifecycle Market by End-user
        • 13.8.9.4.2 Saudi Arabia Generative AI in Software Development Lifecycle Market by Application
      • 13.8.9.5 South Africa Generative AI in Software Development Lifecycle Market
        • 13.8.9.5.1 South Africa Generative AI in Software Development Lifecycle Market by End-user
        • 13.8.9.5.2 South Africa Generative AI in Software Development Lifecycle Market by Application
      • 13.8.9.6 Nigeria Generative AI in Software Development Lifecycle Market
        • 13.8.9.6.1 Nigeria Generative AI in Software Development Lifecycle Market by End-user
        • 13.8.9.6.2 Nigeria Generative AI in Software Development Lifecycle Market by Application
      • 13.8.9.7 Rest of LAMEA Generative AI in Software Development Lifecycle Market
        • 13.8.9.7.1 Rest of LAMEA Generative AI in Software Development Lifecycle Market by End-user
        • 13.8.9.7.2 Rest of LAMEA Generative AI in Software Development Lifecycle Market by Application

Chapter 14. Company Profiles

  • 14.1 Microsoft Corporation
    • 14.1.1 Company Overview
    • 14.1.2 Financial Analysis
    • 14.1.3 Segmental and Regional Analysis
    • 14.1.4 Research & Development Expenses
    • 14.1.5 Recent strategies and developments:
      • 14.1.5.1 Partnerships, Collaborations, and Agreements:
      • 14.1.5.2 Product Launches and Product Expansions:
    • 14.1.6 SWOT Analysis
  • 14.2 OpenAI, LLC
    • 14.2.1 Company Overview
    • 14.2.2 Recent strategies and developments:
      • 14.2.2.1 Partnerships, Collaborations, and Agreements:
      • 14.2.2.2 Product Launches and Product Expansions:
    • 14.2.3 SWOT Analysis
  • 14.3 NVIDIA Corporation
    • 14.3.1 Company Overview
    • 14.3.2 Financial Analysis
    • 14.3.3 Segmental and Regional Analysis
    • 14.3.4 Research & Development Expenses
    • 14.3.5 Recent strategies and developments:
      • 14.3.5.1 Partnerships, Collaborations, and Agreements:
    • 14.3.6 SWOT Analysis
  • 14.4 Google LLC
    • 14.4.1 Company Overview
    • 14.4.2 Financial Analysis
    • 14.4.3 Segmental and Regional Analysis
    • 14.4.4 Research & Development Expenses
    • 14.4.5 Recent strategies and developments:
      • 14.4.5.1 Partnerships, Collaborations, and Agreements:
    • 14.4.6 SWOT Analysis
  • 14.5 Anthropic PBC
    • 14.5.1 Company Overview
    • 14.5.2 Recent strategies and developments:
      • 14.5.2.1 Partnerships, Collaborations, and Agreements:
      • 14.5.2.2 Product Launches and Product Expansions:
  • 14.6 Amazon Web Services, Inc. (Amazon.com, Inc.)
    • 14.6.1 Company Overview
    • 14.6.2 Financial Analysis
    • 14.6.3 Segmental and Regional Analysis
    • 14.6.4 Recent strategies and developments:
      • 14.6.4.1 Partnerships, Collaborations, and Agreements:
      • 14.6.4.2 Product Launches and Product Expansions:
    • 14.6.5 SWOT Analysis
  • 14.7 Meta Platforms, Inc.
    • 14.7.1 Company Overview
    • 14.7.2 Financial Analysis
    • 14.7.3 Segment and Regional Analysis
    • 14.7.4 Research & Development Expense
    • 14.7.5 SWOT Analysis
  • 14.8 IBM Corporation
    • 14.8.1 Company Overview
    • 14.8.2 Financial Analysis
    • 14.8.3 Regional & Segmental Analysis
    • 14.8.4 Research & Development Expenses
    • 14.8.5 Recent strategies and developments:
      • 14.8.5.1 Partnerships, Collaborations, and Agreements:
      • 14.8.5.2 Product Launches and Product Expansions:
      • 14.8.5.3 Acquisition and Mergers:
    • 14.8.6 SWOT Analysis
  • 14.9 Accenture PLC
    • 14.9.1 Company Overview
    • 14.9.2 Financial Analysis
    • 14.9.3 Segmental Analysis
    • 14.9.4 Recent strategies and developments:
      • 14.9.4.1 Partnerships, Collaborations, and Agreements:
      • 14.9.4.2 Product Launches and Product Expansions:
      • 14.9.4.3 Acquisition and Mergers:
    • 14.9.5 SWOT Analysis
  • 14.10. Adobe, Inc.
    • 14.10.1 Company Overview
    • 14.10.2 Financial Analysis
    • 14.10.3 Segmental and Regional Analysis
    • 14.10.4 Research & Development Expense
    • 14.10.5 SWOT Analysis

Chapter 15. Winning Imperatives of Generative AI in Software Development Lifecycle Market

샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제