시장보고서
상품코드
1904972

엣지 AI 소프트웨어 시장 평가 : 제공별, 기술별, 데이터 모달리티별, 지역별, 기회 및 예측(2018-2032년)

Global Edge AI Software Market Assessment, By Offerings, By Technology, By Data Modality, By Region, Opportunities and Forecast, 2018-2032F

발행일: | 리서치사: Markets & Data | 페이지 정보: 영문 230 Pages | 배송안내 : 3-5일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

엣지 AI 소프트웨어 시장은 2025-2032년 예측 기간 동안 CAGR 20.45%로 성장할 것으로 예상되고, 2024년 25억 4,000만 달러에서 2032년에는 112억 5,000만 달러로 성장할 전망이며, 시장은 탄탄한 성장세를 보이고 있습니다. 이는 조직 수요가 증가함에 따라 데이터 생성 지점에 가깝고 빠르고 안정적이며 상황 인식 능력을 갖춘 인텔리전스가 요구되기 때문입니다. 시장 확대의 주요 촉진요인 중 하나는 산업, 기업 및 소비자 환경에서 연결 장치의 급속한 보급입니다. 센서, 카메라, 차량 및 임베디드 시스템은 엄청난 양의 데이터를 생성하기 때문에 중앙 집중식 클라우드 인프라로의 지속적인 전송은 비현실적이며 로컬 AI 처리에 대한 수요를 촉진하고 있습니다.

실시간 의사결정의 필요성이 높아지고 있는 것도 이 발전을 추진하는 중요한 요소입니다. 자율 시스템, 산업 자동화, 예측 보전, 영상 분석, 지능형 모니터링 등의 애플리케이션은 클라우드 기반 처리에서 일관되게 제공할 수 없는 초저지연 응답을 요구합니다. 엣지 AI 소프트웨어를 활용하면 즉각적인 추론과 액션을 실행할 수 있어 효율성 및 안전성이 중요한 이용 사례에서 디바이스를 지원합니다.

첨단 엣지 하드웨어와 성숙한 AI 플랫폼 및 머신러닝 프레임워크의 조합으로 도입 복잡성이 줄어들면서 엣지 성능이 크게 향상되었습니다. 또한 5G 네트워크의 확장과 지속적인 기업의 디지털 전환 이니셔티브는 분산 인텔리전스의 비즈니스 사례를 강화하고 있으며, 엣지 AI 소프트웨어는 현대 지능형 시스템의 기반층으로 자리매김하고 있습니다.

예를 들어, 2025년 3월에 Arm이 Embedded World에서 발표한 새로운 엣지 AI 플랫폼은 엣지 디바이스에서 대규모 모델을 직접 실행할 수 있으며, IoT 및 스마트 시스템 전체에서 디바이스 내 머신러닝 및 컴퓨터 비전 용도에 대한 투자 확대라는 업계 동향을 뒷받침합니다.

목차

제1장 프로젝트의 범위 및 정의

제2장 조사 방법

제3장 주요 요약

제4장 고객의 목소리

  • 응답자의 인구통계
  • 브랜드 인지도
  • 구매 결정의 고려 요소
  • 구입 후의 과제

제5장 세계의 엣지 AI 소프트웨어 시장 전망(2018-2032년)

  • 시장 규모 분석 및 예측
    • 금액 기준
  • 시장 점유율 분석 및 예측
    • 제공별
      • 플랫폼별
      • 프레임워크 및 툴킷
    • 기술별
      • 생성형 AI
      • 머신러닝
      • 자연언어처리
      • 컴퓨터 비전
    • 데이터 모달리티별
      • 공간 데이터
      • 시계열 데이터
      • 시각 데이터
      • 멀티모달 데이터
      • 텍스트 데이터
    • 지역별
      • 북미
      • 유럽
      • 아시아태평양
      • 남미
      • 중동 및 아프리카
    • 기업 점유율 분석
  • 시장 맵 분석(2024년)
    • 제공별
    • 기술별
    • 데이터 모달리티별
    • 지역별

제6장 북미의 엣지 AI 소프트웨어 시장 전망(2018-2032년)

  • 시장 규모 분석 및 예측
    • 금액별
  • 시장 점유율 분석 및 예측
    • 제공별
      • 플랫폼별
      • 프레임워크 및 툴킷
    • 기술별
      • 생성형 AI
      • 머신러닝
      • 자연언어처리
      • 컴퓨터 비전
    • 데이터 모달리티별
      • 공간 데이터
      • 시계열 데이터
      • 시각 데이터
      • 멀티모달 데이터
      • 텍스트 데이터
    • 국가별
      • 미국
      • 캐나다
      • 멕시코
  • 국가별 시장 평가
    • 미국의 엣지 AI 소프트웨어 시장 전망(2018-2032년)
      • 시장 규모 분석 및 예측
      • 시장 점유율 분석 및 예측

제7장 유럽의 엣지 AI 소프트웨어 시장 전망(2018-2032년)

  • 독일
  • 프랑스
  • 이탈리아
  • 영국
  • 러시아
  • 네덜란드
  • 스페인
  • 튀르키예
  • 폴란드

제8장 아시아태평양의 엣지 AI 소프트웨어 시장 전망(2018-2032년)

  • 인도
  • 중국
  • 일본
  • 호주
  • 베트남
  • 한국
  • 인도네시아
  • 필리핀

제9장 남미의 엣지 AI 소프트웨어 시장 전망(2018-2032년)

  • 브라질
  • 아르헨티나

제10장 중동 및 아프리카의 엣지 AI 소프트웨어 시장 전망(2018-2032년)

  • 사우디아라비아
  • 아랍에미리트(UAE)
  • 남아프리카

제11장 Porter's Five Forces 분석

제12장 PESTLE 분석

제13장 시장 역학

  • 시장 성장 촉진요인
  • 시장 과제

제14장 시장 동향 및 발전

제15장 사례 연구

제16장 경쟁 구도

  • 상위 5개사의 경쟁 매트릭스
  • 상위 5개사의 SWOT 분석
  • 주요 10개사의 주요 기업 동향
    • Microsoft Corporation
      • 기업 상세
      • 주요 관리직
      • 제공되는 주요 제품 및 서비스
      • 주요 재무 지표(보고치)
      • 주요 시장 동향 및 지리적 전개
      • 최근 동향, 제휴, 파트너십, 합병 및 인수
    • IBM Corporation
    • Google LLC
    • Amazon Web Services, Inc.
    • Nutanix, Inc.
    • Hewlett Packard Enterprise Development LP
    • Cognex Corporation
    • Edgeimpulse, Inc.
    • Roboflow, Inc.
    • Striveworks

제17장 전략적 제안

제18장 회사소개 및 면책사항

AJY

Edge AI software market is projected to witness a CAGR of 20.45% during the forecast period 2025-2032, growing from USD 2.54 billion in 2024 to USD 11.25 billion in 2032, the market is showing strong growth as organizations, in their increasing demand, require a faster, more reliable, and context-aware intelligence that is closer to the data generation point. One of the primary drivers of market expansion is the rapid proliferation of connected devices across industrial, enterprise, and consumer environments. Sensors, cameras, vehicles, and embedded systems generate vast volumes of data, making continuous transmission to centralized cloud infrastructure impractical and driving demand for localized AI processing.

The growing need for real-time decision-making is also a key factor driving this development. Applications such as autonomous systems, industrial automation, predictive maintenance, video analytics, and intelligent surveillance require ultra-low latency responses that cloud-based processing cannot consistently deliver. With Edge AI software, it is possible to perform immediate inference and action; the device is supported in efficiency and safety-critical use cases.

The combination of advanced edge hardware with mature AI platforms and machine learning frameworks has reduced deployment complexity while significantly improving performance at the edge. In addition, the expansion of 5G networks and ongoing enterprise digital transformation initiatives are strengthening the business case for distributed intelligence, positioning edge AI software as a foundational layer of modern intelligent systems.

For instance, in March 2025, Arm unveiled a new edge AI platform at Embedded World, capable of running large models directly on edge devices, reinforcing the industry trend toward increased investment in on-device machine learning and computer vision applications across IoT and smart systems.

Increased Data Privacy, Security, and Regulatory Compliance Demand is Driving Market Expansion

As organizations increasingly process sensitive data at its point of generation, data privacy, security, and regulatory compliance have emerged as the primary drivers fueling demand for Global Edge AI software. Most edge applications, such as video surveillance, facial recognition, patient monitoring, industrial inspection, and connected mobility, process personal, operational, or otherwise confidential data that is subject to strict regulatory oversight. Transmitting this data to centralized cloud environments increases exposure to cybersecurity threats, cross-border data transfer restrictions, and potential regulatory non-compliance.

By no means is it necessary to move all the raw data between the public or private networks if one uses edge AI software. This is because such software enables local data processing and inference directly on devices or within near-edge infrastructure, minimizing reliance on centralized systems. This localized approach aligns with data protection and data localization regulations by ensuring region-specific compliance with requirements related to data storage, retention, and access control.

Moreover, through edge computing, enterprises are provided with abilities to pre-filter, anonymize, or aggregate information to transmit securely and in accordance with security and governance frameworks. At the same time, from an operational standpoint, the deployment of edge-based intelligence allows the company to significantly reduce the risk of being dependent on an uninterrupted network connection, thus cutting vast exposure to outages or cyber intrusions that target centralized systems.

Across industries, including healthcare, manufacturing, public infrastructure, and smart cities,organizations are increasingly adopting edge AI to balance the need for advanced analytics with robust data stewardship and governance.

Edge AI is gradually becoming a decisive tool in the hands of companies seeking secure, compliant, and trustworthy AI deployment in distributed environments, as the regulatory oversight on data usage is ramping up globally.

For instance, in February 2025, the State of New York prohibited the use of the AI application DeepSeek on government devices and networks, citing significant data privacy and foreign surveillance concerns. This action highlights how public sector organizations are establishing stricter data governance standards for AI adoption and reflects heightened vigilance in enforcing AI governance and risk management frameworks.

Proliferation of Advanced Edge Hardware and Connectivity Propels Market Growth

The growing number of advanced edge devices, along with high-performance networking, is a key factor that is pushing up the global market for Edge AI software. Historically, the Edge was viewed primarily as a remote data collection layer; however, it has now evolved into a network of powerful compute nodes equipped with dedicated AI accelerators, vision processors, and heterogeneous system-on-chips capable of executing complex machine learning workloads. The consequence of this shift is the expansion of the feasibility of embedding intelligence directly into devices such as industrial gateways, smart cameras, vehicles, robots, and edge servers. As edge hardware continues to advance, organizations increasingly require sophisticated software platforms, frameworks, and toolkits that enable the rapid deployment, optimization, and management of AI models across diverse and resource-constrained environments.

Edge AI software is instrumental in model compression, hardware abstraction, workload orchestration, and lifecycle management, which in turn allows for the same performance level to be maintained across different processor architectures and even under different operating conditions. In addition, advancements in connectivity technologies are significantly driving demand for such software. The deployment of 5G and private wireless networks enables high-bandwidth, low-latency, and highly reliable connectivity between edge devices and centralized systems. This shift supports distributed intelligence rather than cloud-dependent processing, allowing enterprises to perform local inference while maintaining centralized orchestration, monitoring, and model updates.

Overall, advancements in edge hardware and connectivity are redefining edge locations as intelligent endpoints capable of executing real-time AI workloads in a scalable, secure, and resilient manner. This is why edge AI software is becoming indispensable across sectors like manufacturing, automotive, telecommunications, and smart infrastructure.

For instance, the Qualcomm Snapdragon 8 Elite platform was awarded as edge AI processor of the year in August 2025 due to its significant improvements in performance and power efficiency, which resulted in the enablement of more complex on-device AI processing and thereby directly drove the adoption of edge AI software for applications such as vision analytics and real-time inference.

Visual Data is Leading the Edge AI Software Market Share

Visual data has become the main data mode for the Global Edge AI Software Market. This is mainly because it is widely generated at the edge and is directly applicable to real-time, decision-critical applications. The continuous generation of data from sources such as surveillance cameras, industrial inspection systems, in-vehicle sensors, medical imaging equipment, and retail monitoring systems has driven a substantial increase in image and video data volumes. Transmitting this raw visual data to centralized cloud platforms is bandwidth-intensive, costly, and often impractical, making edge-based processing a more efficient, scalable, and economically viable approach.

On top of that, the need for privacy and security are reasons why visual data predominates at the edge. On-site processing of video streams enables the filtering, anonymization, and analysis of sensitive visual data without transmitting identifiable information across networks, thereby supporting regulatory compliance and strengthening data governance. Organizations have been investing in edge AI software that can handle visual data efficiently due to the rise in edge hardware, which is increasingly being combined with vision processors and AI accelerators that are optimized for image and video inference.

For instance, at the October 2025 Embedded Vision Summit, industry participants showcased lightweight camera stacks and edge vision solutions designed for use cases such as object detection, tracking, and 3D depth imaging. These demonstrations underscored the critical role of image and video processing workloads in enabling practical, on-site edge AI deployments.

Asia-Pacific is Fastest Growing Region in the Global Edge AI Software Market

Asia-Pacific represents the fastest-growing region in the Global Edge AI Software Market, driven by large-scale digitization, rapid industrial expansion, and strong adoption of connected technologies across both public and private sectors. Countries such as China, Japan, South Korea, India, and several Southeast Asian nations are witnessing widespread deployment of IoT devices, smart manufacturing systems, intelligent transportation solutions, and urban digital infrastructure, collectively generating substantial volumes of edge-level data and accelerating demand for edge AI software.

Manufacturing is at the core of this expansion. Some of the world's largest manufacturing hubs are in the Asia-Pacific region, where edge AI software is increasingly being employed for visual inspection, predictive maintenance, robotics control, and real-time process optimization. These use cases necessitate on-site intelligence to comply with requirements of very low delay, high reliability, and continuous operation, thus creating a need for edge-based AI platforms and frameworks.

For instance, in August 2025, Malaysia launched MARS1000, its first locally designed edge AI processor, a landmark moment in the development of local edge hardware ecosystems that facilitate a wider edge AI software adoption.

Future Market Scenario (2025-2032F)

Expansion of Edge AI Software in Industrial Automation

Edge AI adoption in manufacturing and industrial automation is expected to accelerate, with software enabling real-time defect detection, predictive maintenance, and process optimization directly on production lines.

Enterprises will increasingly integrate AI platforms and toolkits with industrial IoT devices, reducing downtime, improving quality, and enhancing operational efficiency.

Regional Growth Dynamics

Asia-Pacific is anticipated to remain the fastest-growing region, driven by industrial modernization, smart city initiatives, and government-backed AI adoption programs.

North America will continue to dominate in terms of market share, supported by early adoption, technological maturity, and large-scale enterprise deployments.

Key Players Landscape and Outlook

The landscape of the global Edge AI Software market is shaped by rapid advancements in AI model optimization, increasing deployment of connected devices, and growing adoption across industrial, automotive, healthcare, and smart city applications. Leading players include AI platform providers, semiconductor and embedded systems companies, and specialized software developers that offer platforms, frameworks, and toolkits for machine learning, computer vision, natural language processing, and generative AI. These companies are focusing on improving model deployment efficiency, hardware acceleration, interoperability across heterogeneous edge environments, and real-time analytics capabilities to meet evolving operational and regulatory requirements.

The market outlook remains positive, supported by accelerating digital transformation initiatives, expansion of 5G and private wireless networks, and increasing demand for low-latency, secure, and privacy-compliant AI processing at the edge. Companies are also investing in regional edge infrastructure, software certification, and partnerships with IoT device manufacturers, automotive OEMs, and industrial automation providers to enhance market reach and deployment scalability.

For instance, in September 2025, Qualcomm announced the Snapdragon Ride platform's integration with BMW vehicles for real-time edge AI processing in autonomous driving systems, highlighting the company's technological leadership and ability to deliver certified, high-performance AI solutions for automotive and industrial applications globally.

Table of Contents

1. Project Scope and Definitions

2. Research Methodology

3. Executive Summary

4. Voice of Customers

  • 4.1. Respondent Demographics
  • 4.2. Brand Awareness
  • 4.3. Factors Considered in Purchase Decisions
  • 4.4. Challenges Faced Post Purchase

5. Global Edge AI Software Market Outlook, 2018-2032F

  • 5.1. Market Size Analysis & Forecast
    • 5.1.1. By Value
  • 5.2. Market Share Analysis & Forecast
    • 5.2.1. By Offerings
      • 5.2.1.1. Platform
      • 5.2.1.2. Frameworks & Toolkit
    • 5.2.2. By Technology
      • 5.2.2.1. Generative AI
      • 5.2.2.2. Machine Learning
      • 5.2.2.3. NLP
      • 5.2.2.4. Computer Vision
    • 5.2.3. By Data Modality
      • 5.2.3.1. Spatial Data
      • 5.2.3.2. Temporal Data
      • 5.2.3.3. Visual Data
      • 5.2.3.4. Multimodal Data
      • 5.2.3.5. Textual Data
    • 5.2.4. By Region
      • 5.2.4.1. North America
      • 5.2.4.2. Europe
      • 5.2.4.3. Asia-Pacific
      • 5.2.4.4. South America
      • 5.2.4.5. Middle East and Africa
    • 5.2.5. By Company Market Share Analysis (Top 5 Companies and Others - By Value, 2024)
  • 5.3. Market Map Analysis, 2024
    • 5.3.1. By Offerings
    • 5.3.2. By Technology
    • 5.3.3. By Data Modality
    • 5.3.4. By Region

6. North America Edge AI Software Market Outlook, 2018-2032F

  • 6.1. Market Size Analysis & Forecast
    • 6.1.1. By Value
  • 6.2. Market Share Analysis & Forecast
    • 6.2.1. By Offerings
      • 6.2.1.1. Platform
      • 6.2.1.2. Frameworks & Toolkit
    • 6.2.2. By Technology
      • 6.2.2.1. Generative AI
      • 6.2.2.2. Machine Learning
      • 6.2.2.3. NLP
      • 6.2.2.4. Computer Vision
    • 6.2.3. By Data Modality
      • 6.2.3.1. Spatial Data
      • 6.2.3.2. Temporal Data
      • 6.2.3.3. Visual Data
      • 6.2.3.4. Multimodal Data
      • 6.2.3.5. Textual Data
    • 6.2.4. By Country
      • 6.2.4.1. United States
      • 6.2.4.2. Canada
      • 6.2.4.3. Mexico
  • 6.3. Country Market Assessment
    • 6.3.1. United States Edge AI Software Market Outlook, 2018-2032F
      • 6.3.1.1. Market Size Analysis & Forecast
        • 6.3.1.1.1. By Value
      • 6.3.1.2. Market Share Analysis & Forecast
        • 6.3.1.2.1. By Offerings
          • 6.3.1.2.1.1. Platform
          • 6.3.1.2.1.2. Frameworks & Toolkit
        • 6.3.1.2.2. By Technology
          • 6.3.1.2.2.1. Generative AI
          • 6.3.1.2.2.2. Machine Learning
          • 6.3.1.2.2.3. NLP
          • 6.3.1.2.2.4. Computer Vision
        • 6.3.1.2.3. By Data Modality
          • 6.3.1.2.3.1. Spatial Data
          • 6.3.1.2.3.2. Temporal Data
          • 6.3.1.2.3.3. Visual Data
          • 6.3.1.2.3.4. Multimodal Data
          • 6.3.1.2.3.5. Textual Data

All segments will be provided for all regions and countries covered

7. Europe Edge AI Software Market Outlook, 2018-2032F

  • 7.1. Germany
  • 7.2. France
  • 7.3. Italy
  • 7.4. United Kingdom
  • 7.5. Russia
  • 7.6. Netherlands
  • 7.7. Spain
  • 7.8. Turkey
  • 7.9. Poland

8. Asia-Pacific Edge AI Software Market Outlook, 2018-2032F

  • 8.1. India
  • 8.2. China
  • 8.3. Japan
  • 8.4. Australia
  • 8.5. Vietnam
  • 8.6. South Korea
  • 8.7. Indonesia
  • 8.8. Philippines

9. South America Edge AI Software Market Outlook, 2018-2032F

  • 9.1. Brazil
  • 9.2. Argentina

10. Middle East and Africa Edge AI Software Market Outlook, 2018-2032F

  • 10.1. Saudi Arabia
  • 10.2. UAE
  • 10.3. South Africa

11. Porter's Five Forces Analysis

12. PESTLE Analysis

13. Market Dynamics

  • 13.1. Market Drivers
  • 13.2. Market Challenges

14. Market Trends and Developments

15. Case Studies

16. Competitive Landscape

  • 16.1. Competition Matrix of Top 5 Market Leaders
  • 16.2. SWOT Analysis for Top 5 Players
  • 16.3. Key Players Landscape for Top 10 Market Players
    • 16.3.1. Microsoft Corporation
      • 16.3.1.1. Company Details
      • 16.3.1.2. Key Management Personnel
      • 16.3.1.3. Key Products/Services Offered
      • 16.3.1.4. Key Financials (As Reported)
      • 16.3.1.5. Key Market Focus and Geographical Presence
      • 16.3.1.6. Recent Developments/Collaborations/Partnerships/Mergers and Acquisitions
    • 16.3.2. IBM Corporation
    • 16.3.3. Google LLC
    • 16.3.4. Amazon Web Services, Inc.
    • 16.3.5. Nutanix, Inc.
    • 16.3.6. Hewlett Packard Enterprise Development LP
    • 16.3.7. Cognex Corporation
    • 16.3.8. Edgeimpulse, Inc.
    • 16.3.9. Roboflow, Inc.
    • 16.3.10. Striveworks

Companies mentioned above DO NOT hold any order as per market share and can be changed as per information available during research work.

17. Strategic Recommendations

18. About Us and Disclaimer

샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제