½ÃÀ庸°í¼­
»óǰÄÚµå
1457132

¿ÍÀÌµå ¹êµå°¸ ÆÄ¿ö ¹ÝµµÃ¼ ½ÃÀå - ¿¹Ãø(2024-2029³â)

Wide-Bandgap Power Semiconductor Market - Forecasts from 2024 to 2029

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Knowledge Sourcing Intelligence | ÆäÀÌÁö Á¤º¸: ¿µ¹® 124 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

¿ÍÀÌµå ¹êµå°¸ ÆÄ¿ö ¹ÝµµÃ¼ ½ÃÀåÀÇ CAGRÀº ¿¹Ãø ±â°£ µ¿¾È 27.37%¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, 2022³â 17¾ï 6,982¸¸ 6,000´Þ·¯¿¡¼­ 2029³â¿¡´Â 96¾ï 2,313¸¸ 2,000´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ µµ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¿ÍÀÌµå ¹êµå°¸(WBG) ¹ÝµµÃ¼´Â ºÐÀÚ Á¾À¸·Î º¯ÇüµÈ °æ¿ì µ¶Æ¯ÇÑ ±¤ÇÐ ¹× ÀüÀÚÀû Ư¼ºÀ» ³ªÅ¸³À´Ï´Ù. ÀÌ·¯ÇÑ ±¸¼º¿ä¼Ò´Â Àü·Â ÀüÀÚ Á¦Ç°ÀÇ ½Ç¸®ÄÜ ±â¹Ý Á¦Ç°°ú ºñ±³ÇÏ¿© ¼ÒÇüÈ­, °í¼Ó ÀÛµ¿, Çâ»óµÈ ½Å·Ú¼º ¹× Çâ»óµÈ È¿À²¼ºÀ» Ư¡À¸·ÎÇϸç, WBG Àü·Â ¹ÝµµÃ¼ÀÇ °íÀ¯ ÇÑ °úÇÐÀû ¹× ±â¼úÀû Ư¼ºÀº °í¼º´É ±¤ÀüÀÚ ¹× ÀüÀÚ ÀåÄ¡¿¡¼­ Á¡Á¡ ´õ ¸¹Àº Àα⸦ ¾ò°í ÀÖ½À´Ï´Ù. ÇöÀç ¼ÒºñÀÚ ÀüÀÚ±â±â ¹× ±Þ¼Ó ÃæÀü µî °ü·Ã ±â¼ú¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó WBG ¹ÝµµÃ¼ ½ÃÀåÀº Å©°Ô È®´ëµÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ ¼ÒÀÚ´Â °íÁÖÆÄ¿¡¼­ ¹°¸®Àû Ư¼ºÀ» º¯È­½Ã۸ç, È­ÇÐÀû ¹× ±â°èÀû Ư¼ºÀº ±¤ÀüÀÚ ÀÀ¿ë ºÐ¾ß¿¡ Àû¿ëµË´Ï´Ù. °í¼º´É°ú »õ·Î¿î Ư¼ºÀÇ Á¶ÇÕÀº »õ·Î¿î ±âȸ¸¦ ¿­¾î ÇâÈÄ ½ÃÀå ¼ºÀåÀÇ ±æÀ» ¿­¾îÁÖ°í ÀÖ½À´Ï´Ù.

½ÃÀå ÃËÁø¿äÀÎ:

  • ½Ç¸®ÄÜ Ä«¹ÙÀ̵å(SiC) ¹× ÁúÈ­ °¥·ý(GaN) Àç·á·ÎÀÇ ÀüȯÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù:

ÆÄ¿öÀÏ·ºÆ®·Î´Ð½º ºÐ¾ß¿¡¼­ ¿ÍÀÌµå ¹êµå°¸ ¹× Ãʱ¤´ë¿ª °¸ ÆÄ¿öÀÏ·ºÆ®·Î´Ð½º ¹ÝµµÃ¼´Â ȹ±âÀûÀÎ Çõ½ÅÀ» »ó¡ÇÕ´Ï´Ù. ½Ç¸®ÄÜ Ä«¹ÙÀ̵å(SiC), ÁúÈ­±Ô¼Ò(GaN), ´ÙÀ̾Ƹóµå µî ÷´Ü ¼ÒÀç´Â ±âÁ¸ Si ±â¹Ý Á¦Ç°À» ´É°¡Çϰí ÀÖ½À´Ï´Ù. ÃÖ±Ù ¸î ³â µ¿¾È ¿ÍÀÌµå ¹êµå°¸ Àü·ÂÀüÀÚ ¹ÝµµÃ¼´Â Å©°Ô °³¼±µÇ¾ú½À´Ï´Ù. ¿©±â¿¡´Â Àç·á ǰÁú, ¼ÒÀÚ ¼³°è ¹× Á¦Á¶ ±â¼úÀÇ °³¼±ÀÌ Æ÷ÇԵ˴ϴÙ. ¿ì¼öÇÑ SiC ¹× GaN ±âÆÇÀÇ °³¹ß, °áÁ¤ ¼ºÀå ¹æ¹ýÀÇ ¹ßÀü, ¼ÒÀÚ Á¦Á¶ °øÁ¤ÀÇ Á¤±³È­´Â Çаè¿Í »ê¾÷°è ÀÌÇØ°ü°èÀÚµéÀÇ Çù·ÂÀ¸·Î ÀÌ·ç¾îÁ³½À´Ï´Ù. ÀÌ·¯ÇÑ ¹ßÀüÀ¸·Î ±¤´ë¿ª °¸ ¼ÒÀÚ´Â Á¡Á¡ ´õ »ó¾÷ÀûÀ¸·Î ½ÇÇö °¡´ÉÇØÁ³½À´Ï´Ù. ±× ¹è°æ¿¡´Â Àç·á ¼º´É Çâ»ó, ¼ÒÀÚ ¼öÀ² °³¼±, Á¦Á¶ ºñ¿ë Àý°¨ µîÀÌ ÀÖ½À´Ï´Ù.

½Ç¸®ÄÜ Ä«¹ÙÀ̵å(SiC)´Â ±¤¹üÀ§ÇÏ°Ô ¿¬±¸µÇ°í ½±°Ô ±¸ÇÒ ¼ö ÀÖ´Â ¿ÍÀÌµå ¹êµå°¸ Àç·á·Î °¢±¤¹Þ°í ÀÖÀ¸¸ç, SiCÀÇ ¹êµå°¸ ¿¡³ÊÁö´Â ¾à 3.3ÀüÀÚº¼Æ®(eV)·Î ½Ç¸®ÄÜÀÇ 1.1eV¿¡ ºñÇØ ÇöÀúÇÏ°Ô Áõ°¡Çß½À´Ï´Ù. Àü·Â ¼ÒÀÚ´Â Àüµµ ¼Õ½Ç ¹× ½ºÀ§Äª ¼Õ½Ç °¨¼Ò, °í¿Â¿¡ ´ëÇÑ ³»¼º Çâ»ó, Àü¹ÝÀûÀÎ È¿À²¼º Çâ»ó µî ¿©·¯ °¡Áö ÀåÁ¡À» °¡Áö°í ÀÖ½À´Ï´Ù. SiC¿Í ¸¶Âù°¡Áö·Î ¾à 3.4eVÀÇ ¹êµå°¸ ¿¡³ÊÁö·Î ÃÖ±Ù ÁÖ¸ñ¹Þ°í ÀÖ´Â ¶Ç ´Ù¸¥ ¿ÍÀÌµå ¹êµå°¸ Àç·á´Â ÁúÈ­°¥·ý(GaN)À¸·Î, GaN ±â¹Ý Àü·Â ¼ÒÀÚ´Â ³ôÀº ³»Àü¾Ð, °í¼Ó ½ºÀ§Äª, ³·Àº ¿Â ÀúÇ× µî ¶Ù¾î³­ ¼º´É Ư¼ºÀ» °¡Áö°í ÀÖ½À´Ï´Ù. ¼º´É Ư¼ºÀ» ³ªÅ¸³À´Ï´Ù.

  • ¿ÍÀÌµå ¹êµå°¸ ÆÄ¿ö ¹ÝµµÃ¼ Àç·áÀÇ ½ÃÀå ¿ìÀ§¸¦ ³ôÀÌ´Â ½ÃÀå °³Ã´.

PowerAmerica¿Í X-FabÀº °øµ¿À¸·Î ±âÁ¸ ½Ç¸®ÄÜ ¿þÀÌÆÛ¸¦ »ý»êÇÏ´ø ÅØ»ç½º ÀνºÆ®·ç¸ÕÆ®(Texas Instruments)ÀÇ ½Ã¼³À» ¼¼°è ÃÖÃÊÀÇ °³¹æÇü ½Ç¸®ÄÜ Ä«¹ÙÀÌµå ÆÄ¿îµå¸®·Î ÀüȯÇß½À´Ï´Ù. ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½ºÀÇ ¿¡³ÊÁö È¿À²°ú ½Å·Ú¼ºÀ» Çâ»ó½Ã۱â À§ÇØ Power America´Â ÁøÀÔ À庮À» ³·Ãß°í ±¤´ë¿ª °¸(WBG) ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½º ±â¼úÀÇ »ó¿ëÈ­¸¦ Áö¿øÇÏ´Â °ÍÀ» ¸ñÇ¥·Î Çß½À´Ï´Ù. À̸¦ ÅëÇØ ¹Ì±¹ ³» ¿ÍÀÌµå ¹êµå°¸ ÆÄ¿ö ¹ÝµµÃ¼ÀÇ ½ÃÀå Á¡À¯À²À» È®´ëÇÒ ¼ö ÀÖÀ» °ÍÀ¸·Î ±â´ëµË´Ï´Ù.

2021³â 11¿ù, ÁÖ¿ä Çʼö ¹ÝµµÃ¼ °ø±Þ¾÷üÀÎ Nexperia´Â 650V, 10A SiC ¼îƮŰ ´ÙÀÌ¿Àµå¸¦ Ãâ½ÃÇÏ¸ç °íÀü·Â ½Ç¸®ÄÜ Ä«¹ÙÀ̵å(SiC) ´ÙÀÌ¿Àµå ½ÃÀå¿¡ ÁøÃâÇÑ´Ù°í ¹ßÇ¥Çß½À´Ï´Ù. È¿À²ÀûÀÎ Àü·Â ÁúÈ­°¥·ý(GaN) FETÀÇ ¾ÈÁ¤ÀûÀÎ °ø±ÞÀ¸·Î Àß ¾Ë·ÁÁø NexperiaÀÇ À̹ø Àü·«ÀûÀÎ ¿òÁ÷ÀÓÀº °íÀü¾Ð ±¤´ë¿ª °¸ ¹ÝµµÃ¼ ¼ÒÀÚ Æ÷Æ®Æú¸®¿À¸¦ È®ÀåÇÏ´Â °ÍÀ» ¸ñÇ¥·Î ÇÕ´Ï´Ù. À̹ø¿¡ Ãâ½ÃÇÏ´Â SiC ¼îƮŰ ´ÙÀÌ¿Àµå´Â »ê¾÷¿ë µî±Þ ¼ÒÀÚÀÔ´Ï´Ù. ¹Ýº¹ ÇÇÅ© ¿ª¹æÇâ Àü¾Ð(VRRM) 650V, ¿¬¼Ó ¼ø¹æÇâ Àü·ù(IF) 10A¸¦ Ư¡À¸·Î Çϸç, Àü·Â º¯È¯ ¾ÖÇø®ÄÉÀ̼ǿ¡¼­ ÃÊ°í¼º´É, °íÈ¿À², Àú¿¡³ÊÁö ¼Õ½ÇÀÇ Á¶ÇÕÀ» Á¦°øÇϵµ·Ï Ưº°È÷ ¼³°èµÆ½À´Ï´Ù.

2022³â 2¿ù 17ÀÏ, ÀÎÇǴϾð Å×Å©³î·¯Áö½º(Infineon Technologies AG)´Â ±¤´ë¿ª °¸(SiC ¹× GaN) ¹ÝµµÃ¼ ºÐ¾ßÀÇ Á¦Á¶ ´É·ÂÀ» È®´ëÇÏ¿© Àü·Â ¹ÝµµÃ¼ ½ÃÀå¿¡¼­ÀÇ ¸®´õ½ÊÀ» °­È­Çß½À´Ï´Ù. ÀÌ È¸»ç´Â 20¾ï À¯·Î ÀÌ»óÀ» ÅõÀÚÇÏ¿© ¸»·¹ÀÌ½Ã¾Æ Å©¸² °øÀå¿¡ ¼¼ ¹øÂ° ¸ðµâÀ» °Ç¼³Çß½À´Ï´Ù. ÀÌ »õ·Î¿î ¸ðµâÀÌ ¿ÏÀüÈ÷ °¡µ¿µÇ¸é ½Ç¸®ÄÜ Ä«¹ÙÀ̵å¿Í ÁúÈ­°¥·ý ±â¹Ý Á¦Ç°¿¡¼­ ¿¬°£ 20¾ï À¯·ÎÀÇ Ãß°¡ ¸ÅÃâÀÌ ¹ß»ýÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

2023³â 6¿ù 19ÀÏ, Ãֽб¸µ¿ ±â¼ú ¹× Àü±âÈ­ ¼Ö·ç¼Ç Àü¹® ¼¼°è ±â¾÷ ºñÅ×½ºÄÚ Å×Å©³î·¯Áö½º(VITESCO Technologies)°¡ ¿¡³ÊÁö È¿À²ÀÌ ³ôÀº ½Ç¸®ÄÜ Ä«¹ÙÀ̵å Àü·Â ¹ÝµµÃ¼ÀÇ Àü·«ÀûÀ¸·Î Áß¿äÇÑ ¿ª·®À» È®º¸Çß½À´Ï´Ù. ÀÌ´Â 2030³â±îÁö 10¾ï ´Þ·¯°¡ ³Ñ´Â ·Î¿È°úÀÇ Àå±â °ø±Þ ÆÄÆ®³Ê½ÊÀÇ °á°úÀÔ´Ï´Ù. ½Ç¸®ÄÜ Ä«¹ÙÀ̵å(SiC) ¼ÒÀڴ ƯÈ÷ Àü±âÀÚµ¿Â÷ ÀιöÅÍ¿Í °°Àº ¾ÖÇø®ÄÉÀ̼ǿ¡¼­ °íÈ¿À² ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½º ¼³°è¿¡ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖÀ¸¸ç, SiC ĨÀº ƯÈ÷ ³ôÀº Àü¾Ð°ú ¾ß½ÉÂù ÁÖÇà°Å¸® ¸ñÇ¥ ¹× ÃÖÀûÀÇ Á¾ÇÕ È¿À²À» °¡Áø ÀÚµ¿Â÷¿¡ Áß¿äÇÑ ±â¼úÀÔ´Ï´Ù. Áß¿äÇÑ ±â¼úÀÔ´Ï´Ù. ·Î¿È°úÀÇ Áö¼ÓÀûÀÎ °³¹ß ÆÄÆ®³Ê½ÊÀ» ÅëÇØ °ü·Ã SiC ĨÀº Â÷·®¿ë ÀιöÅÍ¿ëÀ¸·Î ´õ¿í °­È­µÇ¾î 2024³â¿¡ ±¸ÇöÀÌ ½ÃÀÛµÉ ¿¹Á¤ÀÔ´Ï´Ù.

¾Æ¸Þ¸®Ä«, ¿ÍÀÌµå ¹êµå°¸ ÆÄ¿ö ¹ÝµµÃ¼ ½ÃÀå Å©°Ô ¼ºÀå:

´Ù¾çÇÑ »ê¾÷ ºÐ¾ß¿¡¼­ ¿¡³ÊÁö È¿À²ÀÌ ³ôÀº ÀüÀÚÁ¦Ç°¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ´Â °ÍÀÌ ¹Ì±¹ ½ÃÀåÀ» À̲ô´Â ¿äÀÎ Áß ÇϳªÀÔ´Ï´Ù.

¶ÇÇÑ, Àü±âÀÚµ¿Â÷¿¡ ´ëÇÑ °ü½É Áõ°¡¿Í Àç»ý¿¡³ÊÁö·ÎÀÇ ÀüȯÀº ¹Ì±¹ ³» WBG Àü·Â ¹ÝµµÃ¼¿¡ ´ëÇÑ ¼ö¿ä¸¦ Áõ°¡½ÃÄÑ ½ÃÀåÀ» È®´ë½Ã۰í ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, ´Ù¾çÇÑ »ê¾÷ ºÐ¾ß¿¡¼­ ¿¡³ÊÁö È¿À²ÀÌ ³ôÀº ÀüÀÚÁ¦Ç°¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϸ鼭 WBG Àü·Â ¹ÝµµÃ¼´Â ¼ÒºñÀÚ ÀüÀÚÁ¦Ç°, ÀÚµ¿Â÷, Àç»ý¿¡³ÊÁö µîÀÇ ¾ÖÇø®ÄÉÀ̼ǿ¡ ÇʼöÀûÀÎ ¿ä¼Ò·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù. º¸´Ù ¿ì¼öÇÑ ¼º´É°ú È¿À²À» Á¦°øÇϱ⠶§¹®ÀÔ´Ï´Ù. ½Ç¸®ÄÜ Ä«¹ÙÀ̵å(SiC) ¹× ÁúÈ­°¥·ý(GaN) ºÎǰÀÌ ´ëÇ¥ÀûÀÎ ¿¹ÀÔ´Ï´Ù. ¶ÇÇÑ, Àü±âÀÚµ¿Â÷ ¹× Àç»ý¿¡³ÊÁö·ÎÀÇ ÀüȯÀº WBG Àü·Â ¹ÝµµÃ¼¿¡ ´ëÇÑ ¼ö¿ä¸¦ Áõ°¡½ÃÄÑ ¹Ì±¹ ½ÃÀåÀ» È®´ë½Ã۰í ÀÖ½À´Ï´Ù.

¶ÇÇÑ ±¹Á¦¿¡³ÊÁö±â±¸ÀÇ ¹ßÇ¥¿¡ µû¸£¸é 2022³â ¹Ì±¹ÀÇ Àü±âÀÚµ¿Â÷ ÆÇ¸Å·®Àº 2021³â ´ëºñ 55% Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, BEV°¡ ÀÌ·¯ÇÑ ¼ºÀåÀ» ÁÖµµÇϰí ÀÖÀ¸¸ç, 2019-2020³âÀÇ °­·ÂÇÑ ¼ºÀå¿¡ À̾î BEV ÆÇ¸Å·®Àº 70% Áõ°¡ÇÑ ¾à 80¸¸ ´ë¿¡ ´ÞÇØ 2³â° °­·ÂÇÑ ¼ºÀå¼¼¸¦ º¸À̰í ÀÖ½À´Ï´Ù. ¼ºÀå¼¼¸¦ º¸À̰í ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå ¼Ò°³

  • ½ÃÀå °³¿ä
  • ½ÃÀå Á¤ÀÇ
  • Á¶»ç ¹üÀ§
  • ½ÃÀå ¼¼ºÐÈ­
  • ÅëÈ­
  • °¡Á¤
  • ±âÁØ ¿¬µµ¿Í ¿¹Ãø ¿¬µµ ŸÀÓ¶óÀÎ

Á¦2Àå Á¶»ç ¹æ¹ý

  • Á¶»ç µ¥ÀÌÅÍ
  • Á¶»ç °úÁ¤

Á¦3Àå ÁÖ¿ä ¿ä¾à

  • Á¶»ç ÇÏÀ̶óÀÌÆ®

Á¦4Àå ½ÃÀå ¿ªÇÐ

  • ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
  • ½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ
  • Porter's Five Forces ºÐ¼®
  • ¾÷°è ¹ë·ùüÀÎ ºÐ¼®

Á¦5Àå ¿ÍÀÌµå ¹êµå°¸ ÆÄ¿ö ¹ÝµµÃ¼ ½ÃÀå : ¼ÒÀ纰

  • ¼Ò°³
  • źȭ±Ô¼Ò
  • ÁúÈ­°¥·ý
  • ´ÙÀ̾Ƹóµå
  • »êÈ­°¥·ý
  • ÁúÈ­¾Ë·ç¹Ì´½

Á¦6Àå ¿ÍÀÌµå ¹êµå°¸ ÆÄ¿ö ¹ÝµµÃ¼ ½ÃÀå : ¿ëµµº°

  • ¼Ò°³
  • µ¥ÀÌÅͼ¾ÅÍ
  • Àç»ý¿¡³ÊÁö ¹ßÀü
  • ÇÏÀ̺긮µå ÀÚµ¿Â÷¿Í Àü±âÀÚµ¿Â÷
  • ¸ðÅÍ µå¶óÀ̺ê

Á¦7Àå ¿ÍÀÌµå ¹êµå°¸ ÆÄ¿ö ¹ÝµµÃ¼ ½ÃÀå : Áö¿ªº°

  • ¼Ò°³
  • ¾Æ¸Þ¸®Ä«
    • ¼ÒÀ纰
    • ¿ëµµº°
    • ±¹°¡º°
  • À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • ¼ÒÀ纰
    • ¿ëµµº°
    • ±¹°¡º°
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ¼ÒÀ纰
    • ¿ëµµº°
    • ±¹°¡º°

Á¦8Àå °æÀï ȯ°æ°ú ºÐ¼®

  • ÁÖ¿ä ±â¾÷°ú Àü·« ºÐ¼®
  • ½ÃÀå Á¡À¯À² ºÐ¼®
  • ÇÕº´, Àμö, ÇÕÀÇ ¹× Çù¾÷

Á¦9Àå ±â¾÷ °³¿ä

  • ROHM SEMICONDUCTOR
  • Wolfspeed, Inc.
  • STMicroelectronics
  • Infineon Technologies AG
  • Mitsubishi Electric Corporation
  • Semikron Danfoss
  • Texas Instruments
  • Analog Devices, Inc.
  • Navitas Semiconductor
  • Microchip Technology Inc.
ksm 24.04.04

The wide-bandgap power semiconductor market is expected to experience a CAGR of 27.37% throughout the forecast period, reaching a market size of US$9,623.132 million by 2029, from US$1,769.826 million in 2022.

Wide-bandgap (WBG) semiconductors, when modified with molecular species, exhibit distinctive optical and electronic properties. These components are characterized by their smaller size, faster operation, enhanced reliability, and greater efficiency compared to silicon-based counterparts in power electronics. The unique scientific and technological attributes of WBG power semiconductors have led to their increasing popularity in high-performance optoelectronic and electronic devices. With a rising demand for consumer electronics and related technologies like fast charging in the current period, the market for WBG semiconductors is expected to expand significantly. The devices transform their physical characteristics at high frequencies, while their chemical and mechanical features find applications in optoelectronic uses. The combination of high performance and novel properties is opening new opportunities and paving the way for the market's growth in the years ahead.

MARKET DRIVERS:

  • Rising shift towards silicon carbide (SiC) and gallium nitride (GaN) materials:

In the realm of power electronics, wide and ultrawide bandgap power electronic semiconductors represent a transformative innovation. These state-of-the-art materials, including silicon carbide (SiC), gallium nitride (GaN), and diamond, outperform traditional Si-based products. Recent years have witnessed substantial improvements in wide bandgap power electronic semiconductors. It encompasses improvements in material quality, device design, and manufacturing techniques. The development of superior SiC and GaN substrates, progress in crystal growth methods, and refinement in device production processes have resulted from collaborative efforts between academic and industry stakeholders. These advancements have made wide bandgap devices increasingly viable commercially. This is driven by heightened material performance, improved device yields, and reduced production costs.

Silicon carbide (SiC) stands out as one of the extensively researched and readily available wide bandgap materials. It possesses a bandgap energy of approximately 3.3 electron volts (eV), a notable increase compared to silicon's 1.1 eV. Power devices based on SiC offer multiple advantages, including reduced conduction and switching losses, heightened tolerance to higher temperatures, and enhanced overall efficiency. Another noteworthy wide bandgap material is gallium nitride (GaN), which has garnered significant attention in recent times. GaN exhibits a bandgap energy of approximately 3.4 eV, similar to SiC. Power devices based on GaN demonstrate exceptional performance characteristics, including high breakdown voltages, swift switching speeds, and low on-resistance.

  • Market developments to increase the market lucrativeness for wide bandgap power semiconductor materials.

PowerAmerica and X-Fab partnered together to convert a former Texas Instruments facility that produced conventional silicon wafers into the world's first open silicon carbide foundry. To improve power electronics' energy efficiency and dependability, PowerAmerica aimed to lower entry barriers and assist in the commercialization of wide bandgap (WBG) power electronics technologies. This is expected to increase the market share of wide-bandgap power semiconductors in the United States.

In November 2021, Nexperia, a leading provider of essential semiconductors, announced its entry into the high-power Silicon Carbide (SiC) diodes market by introducing 650 V, 10 A SiC Schottky diodes. This strategic move by Nexperia, known for its reliable supply of efficient power Gallium Nitride (GaN) FETs, aims to broaden its portfolio of high-voltage wide bandgap semiconductor devices. The inaugural SiC Schottky diode from Nexperia is an industrial-grade device. It features a repetitive peak reverse voltage (VRRM) of 650 V and a continuous forward current (IF) of 10 A. It is specifically designed to offer a combination of ultra-high performance, high efficiency, and low energy loss in power conversion applications.

On February 17, 2022, Infineon Technologies AG bolstered its market leadership in power semiconductors by expanding manufacturing capacities in the wide bandgap (SiC and GaN) semiconductor sector. The company invested over €2 billion to construct a third module at its Kulim, Malaysia site. When fully operational, the new module was projected to generate an additional €2 billion in annual revenue with products based on silicon carbide and gallium nitride.

On June 19, 2023, Vitesco Technologies, a prominent global manufacturer specializing in modern drive technologies and electrification solutions, secured strategically significant capacities in energy-efficient silicon carbide power semiconductors. This achievement is the result of a long-term supply partnership valued at over one billion US dollars with ROHM, extending until 2030. Silicon carbide (SiC) devices play a crucial role in the design of highly efficient power electronics, especially in applications such as electric car inverters. SiC chips represent a key technology, particularly for high voltages and for vehicles with ambitious range goals and optimal overall efficiency. Through the ongoing development partnership with ROHM, the relevant SiC chips have been further enhanced for use in automotive inverters, with implementation starting in 2024.

Americas to witness significant market growth for the wide-bandgap power semiconductors market:

The growing need for energy-efficient electronic devices across a range of industries is one of the factors driving the market in the United States.

Further, the growing emphasis on electric vehicles and the shift to renewable energy sources are driving up demand for WBG power semiconductors in the United States and expanding the market. For instance, the growing need for energy-efficient electronic devices across a range of industries is an important growth drive. WBG power semiconductors are crucial for applications in consumer electronics, automotive, and renewable energy. This is because they provide better performance and efficiency than conventional silicon-based devices. Examples of these devices are silicon carbide (SiC) and gallium nitride (GaN) components. Furthermore, the growing emphasis on electric vehicles and the shift to renewable energy sources are driving up demand for WBG power semiconductors and expanding the market in the United States.

Moreover, as per the International Energy Agency, the sales of electric vehicles rose by 55% in the US in 2022 compared to 2021, with BEVs driving this growth. After a strong growth in 2019-2020, sales of BEVs increased by 70% to nearly 800,000, indicating a second year of strong growth.

Market Segmentation:

By Material

  • Silicon Carbide
  • Gallium Nitride
  • Diamond
  • Gallium Oxide
  • Aluminium Nitride

By Application

  • Data Centers
  • Renewable Energy Generation
  • Hybrid and Electric Vehicles
  • Motor Drives

By Geography

  • Americas
  • USA
  • Others
  • Europe Middle East and Africa
  • UK
  • Germany
  • France
  • Others
  • Asia Pacific
  • China
  • Japan
  • Taiwan
  • South Korea
  • Others

TABLE OF CONTENTS

1. INTRODUCTION

  • 1.1. Market Overview
  • 1.2. Market Definition
  • 1.3. Scope of the Study
  • 1.4. Market Segmentation
  • 1.5. Currency
  • 1.6. Assumptions
  • 1.7. Base, and Forecast Years Timeline

2. RESEARCH METHODOLOGY

  • 2.1. Research Data
  • 2.2. Research Process

3. EXECUTIVE SUMMARY

  • 3.1. Research Highlights

4. MARKET DYNAMICS

  • 4.1. Market Drivers
  • 4.2. Market Restraints
  • 4.3. Porter's Five Forces Analysis
  • 4.4. Industry Value Chain Analysis

5. WIDE-BANDGAP POWER SEMICONDUCTOR MARKET, BY MATERIAL

  • 5.1. Introduction
  • 5.2. Silicon Carbide
  • 5.3. Gallium Nitride
  • 5.4. Diamond
  • 5.5. Gallium Oxide
  • 5.6. Aluminium Nitride

6. WIDE-BANDGAP POWER SEMICONDUCTOR MARKET, BY APPLICATION

  • 6.1. Introduction
  • 6.2. Data Centers
  • 6.3. Renewable Energy Generation
  • 6.4. Hybrid and Electric Vehicles
  • 6.5. Motor Drives

7. WIDE-BANDGAP POWER SEMICONDUCTOR MARKET, BY GEOGRAPHY

  • 7.1. Introduction
  • 7.2. Americas
    • 7.2.1. By Material
    • 7.2.2. By Application
    • 7.2.3. By Country
      • 7.2.3.1. USA
      • 7.2.3.2. Others
  • 7.3. Europe Middle East and Africa
    • 7.3.1. By Material
    • 7.3.2. By Application
    • 7.3.3. By Country
      • 7.3.3.1. Germany
      • 7.3.3.2. France
      • 7.3.3.3. UK
      • 7.3.3.4. Others
  • 7.4. Asia Pacific
    • 7.4.1. By Material
    • 7.4.2. By Application
    • 7.4.3. By Country
      • 7.4.3.1. China
      • 7.4.3.2. Japan
      • 7.4.3.3. Taiwan
      • 7.4.3.4. South Korea
      • 7.4.3.5. Others

8. COMPETITIVE ENVIRONMENT AND ANALYSIS

  • 8.1. Major Players and Strategy Analysis
  • 8.2. Market Share Analysis
  • 8.3. Mergers, Acquisitions, Agreements, and Collaborations

9. COMPANY PROFILES

  • 9.1. ROHM SEMICONDUCTOR
  • 9.2. Wolfspeed, Inc.
  • 9.3. STMicroelectronics
  • 9.4. Infineon Technologies AG
  • 9.5. Mitsubishi Electric Corporation
  • 9.6. Semikron Danfoss
  • 9.7. Texas Instruments
  • 9.8. Analog Devices, Inc.
  • 9.9. Navitas Semiconductor
  • 9.10. Microchip Technology Inc.
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦