½ÃÀ庸°í¼­
»óǰÄÚµå
1826565

¼¼°èÀÇ Å×¶óÇ츣Ã÷ ±â¼ú ½ÃÀå : À¯Çü, ¿ëµµ, ¹ß»ý±â, °ËÃâ±âº°, Áö¿ªº° - ¿¹Ãø(-2030³â)

Terahertz Technology Market by Type, Application, Sources and Detectors & Region - Global Forecast to 2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: MarketsandMarkets | ÆäÀÌÁö Á¤º¸: ¿µ¹® 205 Pages | ¹è¼Û¾È³» : Áï½Ã¹è¼Û

    
    
    




¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

¼¼°èÀÇ Å×¶óÇ츣Ã÷ ±â¼ú ½ÃÀå ±Ô¸ð´Â 2025³â 8¾ï 1,870¸¸ ´Þ·¯¿¡¼­ 2030³â±îÁö 17¾ï 650¸¸ ´Þ·¯¿¡ À̸£°í, CAGR 15.8%ÀÇ ¼ºÀåÀÌ Àü¸ÁµË´Ï´Ù.

ÀÇ·á ºÐ¾ß¿¡¼­ Å×¶óÇ츣Ã÷ À̹Ì¡°ú Å×¶óÇ츣Ã÷ ºÐ±¤ÇÐÀÌ ºñºÐ¸® °íÇØ»óµµ Áø´Ü, ÄÚÆÃÀÇ ¹«°á¼º °Ë»ç, ÀǾàǰ ǰÁú °ü¸® µî¿¡ Ȱ¿ëµÇ´Â °ÍÀÌ ¼ºÀåÀÇ ÁÖ¿ä ¿äÀÎÀÔ´Ï´Ù.

Á¶»ç ¹üÀ§
Á¶»ç ´ë»ó ¿¬µµ 2021-2030³â
±âÁØ ¿¬µµ 2024³â
¿¹Ãø ±â°£ 2025-2030³â
´ÜÀ§ 100¸¸ ´Þ·¯
ºÎ¹® À¯Çü, ¿ëµµ, ¹ß»ý±â, °ËÃâ±â, Áö¿ª
´ë»ó Áö¿ª ºÏ¹Ì, À¯·´, ¾Æ½Ã¾ÆÅÂÆò¾ç, ±âŸ Áö¿ª

µ¿½Ã¿¡ ±º»ç ¹× ±¹Åä ¾Èº¸¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡´Â Æø¹ß¹° ¹× ¼û°ÜÁø À§ÇùÀ» °¨ÁöÇϱâ À§ÇÑ ºñħ½ÀÀû °Ë»ç¿¡ »ç¿ëµÇ´Â Å×¶óÇ츣Ã÷ ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. Å×¶óÇ츣Ã÷ Á֯ļö´Â À§¼ºÅë½Å, Àü¼úÅë½Å, ½Ç³»¿Ü Åë½Å¿¡ »ç¿ëµÇ´Â Ãʰí¼ÓÀÇ ¾ÈÀüÇÑ ¹«¼± µ¥ÀÌÅÍ Àü¼ÛÀ» Áö¿øÇϱâ À§ÇÔÀÔ´Ï´Ù. ¶ÇÇÑ, Å×¶óÇ츣Ã÷ ¼Ö·ç¼ÇÀº ºÐÀÚ ºÐ¼®À» À§ÇÑ ½ÇÇè½Ç ¿¬±¸¿Í ¼Õ»ó ¾øÀÌ ±¸Á¶¹°ÀÇ ¹«°á¼ºÀ» Æò°¡ÇÏ´Â »ê¾÷¿ë ºñÆÄ±« °Ë»ç(NDT)¿¡µµ Ȱ¿ëµÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ´Ù¾çÇÑ ÀÀ¿ë ºÐ¾ß·Î ÀÎÇØ Å×¶óÇ츣Ã÷ ±â¼úÀº ÀÇ·á, ±¹¹æ, Åë½Å, »ê¾÷ µî ´Ù¾çÇÑ ºÐ¾ß¿¡¼­ Áß¿äÇÑ ¿øµ¿·ÂÀ¸·Î ÀÚ¸®¸Å±èÇϰí ÀÖÀ¸¸ç, Àü ¼¼°èÀûÀ¸·Î °­·ÂÇÑ ½ÃÀå È®´ë¸¦ À¯ÁöÇϰí ÀÖ½À´Ï´Ù.

Terahertz Technology Market-IMG1

ÀÇ·á¿ëÀº 2024³â ½ÃÀå Á¡À¯À² 2À§¸¦ Â÷ÁöÇß½À´Ï´Ù.

2024³â Å×¶óÇ츣Ã÷ ±â¼ú ½ÃÀå¿¡¼­ µÎ ¹øÂ°·Î Å« ºñÁßÀ» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµÇ´Â ÀÇ·á ºÐ¾ß´Â ºñħ½ÀÀû Áø´Ü ¹× ÀǾàǰ ǰÁú °ü¸®ÀÇ ¿ªÇÒ È®´ë¿¡ ÈûÀÔÀº °ÍÀ¸·Î º¸ÀÔ´Ï´Ù. Å×¶óÇ츣Ã÷ ½Ã½ºÅÛÀº °íÇØ»óµµÀÇ ºñÀÌ¿ÂÈ­ À̹Ì¡ÀÌ °¡´ÉÇÏ°í ±âÁ¸ ¹æ½Äº¸´Ù ¾ÈÀüÇÏ¿© Áúº´ÀÇ Á¶±â ¹ß°ß, Á¶Á÷¼º»ó Áø´Ü, Ä¡°ú À̹Ì¡ µîÀÇ ¿ëµµ·Î Ȱ¿ëÀÌ È®´ëµÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Á¦¾à ȸ»ç´Â Å×¶óÇ츣Ã÷ ºÐ±¤¹ýÀ» »ç¿ëÇÏ¿© ÄÚÆÃ µÎ²², °áÁ¤È­µµ, ºÒ¼ø¹° ¼öÁØÀ» ºÐ¼®ÇÏ¿© Á¦Ç°ÀÇ Ç°Áú°ú ±ÔÁ¤ Áؼö¸¦ º¸ÀåÇÕ´Ï´Ù. º´¿ø, ¿¬±¸±â°ü, »ý¸í°úÇÐ ±â¾÷µéµµ Á¤¹ÐÀǷḦ ÃËÁøÇϰí Ä¡·á °á°ú¸¦ °³¼±Çϱâ À§ÇØ ÀÌ·¯ÇÑ ½Ã½ºÅÛÀ» ÅëÇÕÇϰí ÀÖ½À´Ï´Ù. º¸´Ù ¾ÈÀüÇÑ Áø´Ü ±â¼ú¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿Í ÀǾàǰ °³¹ß¿¡¼­ ½Å·ÚÇÒ ¼ö Àִ ǰÁú º¸ÁõÀÇ Çʿ伺Àº ÀÇ·á ºÐ¾ß¸¦ °¡Àå À¯¸ÁÇÑ ÃÖÁ¾ »ç¿ë ºÐ¾ß Áß Çϳª·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù. ƯÈ÷ À̹Ì¡ ¹× Æ÷ÀÎÆ® ¿Àºê ÄÉ¾î ¿ëµµÀÇ ±â¼ú Çõ½ÅÀÌ °¡¼ÓÈ­µÊ¿¡ µû¶ó ÀÌ ºÎ¹®Àº ¼¼°è Å×¶óÇ츣Ã÷ ±â¼ú ½ÃÀå¿¡ ´ëÇÑ ±â¿©µµ¸¦ Áö¼ÓÀûÀ¸·Î È®´ëÇϰí ÀÖ½À´Ï´Ù.

Å×¶óÇ츣Ã÷ À̹Ì¡ ºÎ¹®Àº ¿¹Ãø ±â°£ µ¿¾È µÎ ¹øÂ°·Î ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

Å×¶óÇ츣Ã÷ À̹Ì¡ ºÎ¹®Àº ÀÇ·á, º¸¾È, »ê¾÷ ºÐ¾ß¿¡¼­ÀÇ È°¿ë È®´ë¿¡ ÈûÀÔ¾î ¿¹Ãø ±â°£ µ¿¾È Å×¶óÇ츣Ã÷ ±â¼ú ½ÃÀå¿¡¼­ µÎ ¹øÂ°·Î ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÇ·á ºÐ¾ß¿¡¼­ Å×¶óÇ츣Ã÷ À̹Ì¡Àº ºñħ½ÀÀû Áø´ÜÀÇ °ßÀÎÂ÷ ¿ªÇÒÀ» Çϰí ÀÖÀ¸¸ç, À¯ÇØÇÑ ¹æ»ç¼±À» »ç¿ëÇÏÁö ¾Ê°íµµ Á¶Á÷ÀÇ »ó¼¼ÇÑ ½Ã°¢È­¸¦ °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ¸¶Âù°¡Áö·Î, ±º»ç ¹× ±¹Åä ¾Èº¸ ºÐ¾ß¿¡¼­´Â ÀºÆóµÈ ¹«±â ¹× Æø¹ß¹°À» °¨ÁöÇÏ´Â µ¥ ÀÖ¾î ±âÁ¸ÀÇ ½ºÄ³´× ¹æ¹ýÀ» ´ëüÇÒ ¼ö ÀÖ´Â ¾ÈÀüÇϰí È¿°úÀûÀÎ ¹æ¹ýÀ» Á¦°øÇϱâ À§ÇØ °³¹ßÀÌ ÁøÇàµÇ°í ÀÖ½À´Ï´Ù. ÀÌ ±â¼úÀº »ê¾÷¿ë ºñÆÄ±« °Ë»ç(NDT)¿¡µµ Àû¿ëµÇ¾î Àç·á³ª ºÎǰÀ» ¼Õ»ó½ÃŰÁö ¾Ê°í Á¤È®ÇÏ°Ô °Ë»çÇÒ ¼ö ÀÖ½À´Ï´Ù. °íÇØ»óµµ ½Ç½Ã°£ À̹Ì¡¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö°í ¼ÒÇü ÈÞ´ë¿ë ½Ã½ºÅÛÀÇ ¹ßÀüÀ¸·Î ÀÎÇØ »ó¾÷ ¹× ¿¬±¸ ºÐ¾ß ¸ðµÎ¿¡¼­ äÅÃÀÌ È®´ëµÇ°í ÀÖ½À´Ï´Ù. »ê¾÷°è°¡ ¾ÈÀü, ǰÁú º¸Áõ, ÷´Ü Áø´Ü ¼Ö·ç¼ÇÀÇ ¿ì¼±¼øÀ§¸¦ °è¼Ó ³ô¿©°¡°í ÀÖ´Â °¡¿îµ¥, Å×¶óÇ츣Ã÷ À̹Ì¡Àº ÇâÈÄ ¸î ³â µ¿¾È ½ÃÀå ¼ºÀå¿¡ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.

ij³ª´Ù°¡ ¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì Å×¶óÇ츣Ã÷ ±â¼ú ½ÃÀå¿¡¼­ °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

ij³ª´Ù´Â ÀÇÇÐ ¿¬±¸, ±¹¹æ Çö´ëÈ­, ÷´Ü Åë½Å ±â¼ú¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡·Î ÀÎÇØ ¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì Å×¶óÇ츣Ã÷ ±â¼ú ½ÃÀå¿¡¼­ °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ij³ª´ÙÀÇ ´ëÇÐ ¹× ¿¬±¸±â°üµéÀº Å×¶óÇ츣Ã÷ÀÇ ¹ÙÀÌ¿À¸ÞµðÄà À̹Ì¡ ¹× ÀǾàǰ °Ë»ç¿¡ ´ëÇÑ Àû¿ëÀ» Àû±ØÀûÀ¸·Î ¸ð»öÇϰí ÀÖÀ¸¸ç, ºÐ±¤ ½Ã½ºÅÛ ¹× À̹Ì¡ ½Ã½ºÅÛ¿¡ ´ëÇÑ °­·ÂÇÑ ¼ö¿ä¸¦ âÃâÇϰí ÀÖ½À´Ï´Ù. µ¿½Ã¿¡, ±¹Åä ¾Èº¸ ¹× ¹æ¾î ´É·ÂÀ» °­È­ÇÏ·Á´Â Á¤ºÎÀÇ ÀÌ´Ï¼ÅÆ¼ºê´Â À§Çù ½Äº°À» À§ÇÑ Å×¶óÇ츣Ã÷ ±â¹Ý ½ºÅ©¸®´× ¹× °¨Áö ½Ã½ºÅÛÀÇ Ã¤ÅÃÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, 6G ¿¬±¸¸¦ Æ÷ÇÔÇÑ Â÷¼¼´ë ¹«¼±Åë½Å ÀÎÇÁ¶ó °³¹ß¿¡ ij³ª´ÙÀÇ Âü¿©°¡ È®´ëµÇ°í ÀÖÀ¸¸ç, Ãʰí¼Ó µ¥ÀÌÅÍ Àü¼ÛÀ» À§ÇÑ Å×¶óÇ츣Ã÷ Á֯ļö¿¡ ´ëÇÑ °ü½ÉÀÌ °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù. °­·ÂÇÑ ¿¬±¸ Ȱµ¿, ÀÇ·á Çõ½Å, Á¤ºÎ Áö¿ø ÇÁ·Î±×·¥À» ÅëÇØ ij³ª´Ù´Â ºÏ¹Ì¿¡¼­ Å×¶óÇ츣Ã÷ ±â¼úÀÇ ÁÖ¿ä ¼ºÀå ½ÃÀåÀ¸·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù.

¼¼°èÀÇ Å×¶óÇ츣Ã÷ ±â¼ú ½ÃÀå¿¡ ´ëÇØ Á¶»ç ºÐ¼®ÇßÀ¸¸ç, ÁÖ¿ä ÃËÁø¿äÀΰú ÀúÇØ¿äÀÎ, °æÀï ±¸µµ, ÇâÈÄ µ¿Çâ µîÀÇ Á¤º¸¸¦ ÀüÇØµå¸³´Ï´Ù.

¸ñÂ÷

Á¦1Àå ¼­·Ð

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå Áß¿ä Áö°ß

  • Å×¶óÇ츣Ã÷ ±â¼ú ½ÃÀåÀÇ ¸Å·ÂÀûÀÎ ¼ºÀå ±âȸ
  • Å×¶óÇ츣Ã÷ ±â¼ú ½ÃÀå : À¯Çüº°
  • Å×¶óÇ츣Ã÷ ±â¼ú ½ÃÀå : ¿ëµµº°
  • Å×¶óÇ츣Ã÷ ±â¼ú ½ÃÀå : Áö¿ªº°
  • Å×¶óÇ츣Ã÷ ±â¼ú ½ÃÀå : ±¹°¡º°

Á¦5Àå ½ÃÀå °³¿ä

  • ¼­·Ð
  • ½ÃÀå ¿ªÇÐ
    • ¼ºÀå ÃËÁø¿äÀÎ
    • ¼ºÀå ¾ïÁ¦¿äÀÎ
    • ±âȸ
    • °úÁ¦
  • °í°´ÀÇ ºñÁî´Ï½º¿¡ ¿µÇâÀ» ¹ÌÄ¡´Â µ¿Çâ/ÆÄ±«
  • °¡°Ý °áÁ¤ ºÐ¼®
    • Æò±Õ ÆÇ¸Å °¡°Ý µ¿Çâ : Áö¿ªº°
    • ÁÖ¿ä ±â¾÷ÀÇ Æò±Õ ÆÇ¸Å °¡°Ý µ¿Çâ : À¯Çüº°
  • °ø±Þ¸Á ºÐ¼®
  • »ýÅÂ°è ºÐ¼®
  • ±â¼ú ºÐ¼®
    • ÁÖ¿ä ±â¼ú
    • º¸¿Ï ±â¼ú
    • ÀÎÁ¢ ±â¼ú
  • ƯÇ㠺м®
  • ¹«¿ª ºÐ¼®
    • ¼öÃ⠽󪸮¿À
    • ¼öÀÔ ½Ã³ª¸®¿À
  • ÁÖ¿ä ÄÁÆÛ·±½º ¹× À̺¥Æ®
  • »ç·Ê ¿¬±¸ ºÐ¼®
  • ±ÔÁ¦ »óȲ
    • ±ÔÁ¦±â°ü, Á¤ºÎ±â°ü, ±âŸ Á¶Á÷
    • ÁÖ¿ä ±ÔÁ¦
  • PorterÀÇ Five Forces ºÐ¼®
  • ÁÖ¿ä ÀÌÇØ°ü°èÀÚ¿Í ±¸ÀÔ ±âÁØ
  • Å×¶óÇ츣Ã÷ ±â¼ú ½ÃÀå AIÀÇ ¿µÇâ
  • 2025³â ¹Ì±¹ °ü¼¼ÀÇ ¿µÇâ - Å×¶óÇ츣Ã÷ ±â¼ú ½ÃÀå
    • ¼­·Ð
    • ÁÖ¿ä °ü¼¼À²
    • °¡°Ý¿¡ ´ëÇÑ ¿µÇ⠺м®
    • ±¹°¡/Áö¿ª¿¡ ´ëÇÑ ¿µÇâ
    • ¿ëµµ¿¡ ´ëÇÑ ¿µÇâ

Á¦6Àå Å×¶óÇ츣Ã÷ ±â¼ú ½ÃÀå : À¯Çüº°

  • ¼­·Ð
  • Å×¶óÇ츣Ã÷ À̹Ì¡
  • Å×¶óÇ츣Ã÷ ºÐ±¤
  • Å×¶óÇ츣Ã÷ Åë½Å ½Ã½ºÅÛ

Á¦7Àå Å×¶óÇ츣Ã÷ ±â¼ú ½ÃÀå : ¿ëµµº°

  • ¼­·Ð
  • ½ÇÇè½Ç¿¡¼­ÀÇ ¿¬±¸
  • ÀÇ·á
  • ±º ¹× ±¹Åä¾Èº¸
  • »ê¾÷¿ë ºñÆÄ±« °Ë»ç(NDT)
  • À§¼ºÅë½Å
  • Àü¼ú/±º¿ë Åë½Å
  • ¾ß¿Ü/½Ç³» ¹«¼±Åë½Å

Á¦8Àå Å×¶óÇ츣Ã÷ ±â¼ú : ¹ß»ý±â, °ËÃâ±âº°

  • ¼­·Ð
  • Å×¶óÇ츣Ã÷ ¹ß»ý±â
    • ¾çÀÚ Ä³½ºÄÉÀÌµå ·¹ÀÌÀú(QCL)
    • Á֯ļö ¹èÀ²±â
    • ±×·Î¹Ù
    • ±¤Àüµµ ¾ÈÅ׳ª(PCA)
    • STAR(Stimulated Terahertz Amplified Radiation)
  • °ËÃâ±â
    • Schottky barrier diode
    • °íÀüÀÚ À̵¿µµ Æ®·£Áö½ºÅÍ(HEMT)
    • ³ª³ë¿ÍÀ̾î
    • ÃÊÀü °ËÃâ±â
    • GOLAY CELL
    • º¼·¯¹ÌÅÍ ¹× SHAB(Superconducting Hotspot Air-bridge Bolometer)

Á¦9Àå Å×¶óÇ츣Ã÷ ±â¼ú ½ÃÀå : Áö¿ªº°

  • ¼­·Ð
  • ºÏ¹Ì
    • ºÏ¹ÌÀÇ °Å½Ã°æÁ¦ Àü¸Á
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • À¯·´ÀÇ °Å½Ã°æÁ¦ Àü¸Á
    • ¿µ±¹
    • µ¶ÀÏ
    • ÇÁ¶û½º
    • ÀÌÅ»¸®¾Æ
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ °Å½Ã°æÁ¦ Àü¸Á
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ±âŸ Áö¿ª
    • ±âŸ Áö¿ª °Å½Ã°æÁ¦ Àü¸Á
    • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • ³²¹Ì

Á¦10Àå °æÀï ±¸µµ

  • ¼­·Ð
  • ÁÖ¿ä ½ÃÀå ÁøÃâ±â¾÷ÀÇ Àü·«/°­Á¡
  • ¸ÅÃ⠺м®(2021³â-2024³â)
  • ½ÃÀå Á¡À¯À² ºÐ¼®(2024³â)
  • ±â¾÷ Æò°¡ ¸ÅÆ®¸¯½º : ÁÖ¿ä ±â¾÷(2024³â)
  • ±â¾÷ Æò°¡ ¸ÅÆ®¸¯½º : ½ºÅ¸Æ®¾÷/Áß¼Ò±â¾÷(2024³â)
  • °æÀï ½Ã³ª¸®¿À

Á¦11Àå ±â¾÷ °³¿ä

  • ÁÖ¿ä ±â¾÷
    • ADVANTEST CORPORATION
    • LUNA INNOVATIONS
    • TERAVIEW LIMITED
    • TOPTICA PHOTONICS AG
    • HUBNER GMBH & CO. KG
    • MENLO SYSTEMS
    • TERASENSE GROUP INC.
    • GENTEC ELECTRO-OPTICS
    • QMC INSTRUMENTS LTD.
    • TERAVIL LTD
  • ±âŸ ±â¾÷
    • VIRGINIA DIODES, INC.
    • MICROTECH INSTRUMENTS
    • SWISSTO12
    • DEL MAR PHOTONICS, INC.
    • INSIGHT PRODUCT COMPANY
    • BATOP GMBH
    • LYTID SAS
    • TYDEX
    • QUANTUM DESIGN INC.
    • RAYSECUR, INC.
    • LONGWAVE PHOTONICS LLC
    • BRIDGE12 TECHNOLOGIES, INC.
    • ACAL BFI
    • THORLABS, INC.
    • SCIENCETECH INC.

Á¦12Àå ºÎ·Ï

LSH

The Terahertz Technology market is expected to grow from USD 818.7 million in 2025 to USD 1,706.5 million by 2030, at a CAGR of 15.8%. Growth is primarily fueled by the expanding adoption of terahertz imaging and spectroscopy in the medical and healthcare sector, where it enables non-ionizing, high-resolution diagnostics, coating integrity checks, and pharmaceutical quality control.

Scope of the Report
Years Considered for the Study2021-2030
Base Year2024
Forecast Period2025-2030
Units ConsideredValue (USD Million)
SegmentsBy Type, Application, Sources and Detectors, Region
Regions coveredNorth America, Europe, APAC, RoW

At the same time, increasing investments in military and homeland security are driving demand for terahertz systems used in non-invasive screening to detect explosives and concealed threats. Another major growth catalyst is the advancement of next-generation communication technologies, as terahertz frequencies support ultra-fast, secure wireless data transfer for satellite, tactical, and indoor/outdoor communications. In addition, terahertz solutions are being adopted in laboratory research for molecular analysis and in industrial non-destructive testing (NDT) to evaluate structural integrity without causing damage. Together, these diverse application areas position terahertz technology as a critical enabler across healthcare, defense, communications, and industrial domains, sustaining strong market expansion worldwide.

Terahertz Technology Market - IMG1

The medical & healthcare applications accounted for the second-largest market share in 2024.

The medical & healthcare application represents the second largest share of the terahertz technology market in 2024, supported by its growing role in non-invasive diagnostics and pharmaceutical quality control. Terahertz systems are increasingly utilized for applications such as early disease detection, tissue characterization, and dental imaging, owing to their ability to deliver high-resolution, non-ionizing imaging that is safer than conventional methods. In addition, pharmaceutical companies are adopting terahertz spectroscopy to analyze coating thickness, crystallinity, and impurity levels, ensuring product quality and regulatory compliance. Hospitals, research institutions, and life sciences companies are also integrating these systems to advance precision medicine and improve treatment outcomes. The rising demand for safer diagnostic technologies, coupled with the need for reliable quality assurance in drug development, has positioned medical and healthcare as one of the most promising end-use sectors. As innovation accelerates, particularly in imaging and point-of-care applications, this segment continues to expand its contribution to the global terahertz technology market.

The terahertz imaging segment is projected to register the second-highest CAGR during the forecast period.

The terahertz imaging segment is projected to register the second-highest CAGR in the terahertz technology market during the forecast period, driven by its expanding use across healthcare, security, and industrial applications. In the medical and healthcare sector, terahertz imaging is gaining traction for non-invasive diagnostics, enabling detailed visualization of tissues without harmful radiation. Similarly, in military and homeland security, it is increasingly deployed to detect concealed weapons and explosives, offering a safer and more effective alternative to conventional scanning methods. The technology is also being adopted in industrial non-destructive testing (NDT), where it ensures precise inspection of materials and components without causing damage. The growing emphasis on high-resolution, real-time imaging, combined with advancements in compact and portable systems, is fueling wider adoption across both commercial and research domains. As industries continue to prioritize safety, quality assurance, and advanced diagnostic solutions, terahertz imaging is set to play a pivotal role in shaping market growth over the coming years.

Canada is estimated to register the highest CAGR in the North American terahertz technology market during the forecast period.

Canada is anticipated to record the highest CAGR in the North American terahertz technology market over the forecast period, driven by increasing investments in medical research, defense modernization, and advanced communication technologies. Canadian universities and research institutes are actively exploring terahertz applications in biomedical imaging and pharmaceutical testing, creating strong demand for spectroscopy and imaging systems. At the same time, government initiatives to enhance homeland security and defense capabilities are fostering the adoption of terahertz-based screening and detection systems for threat identification. Furthermore, the growing participation of Canada in developing next-generation wireless communication infrastructure, including 6G research, is accelerating interest in terahertz frequencies for ultra-fast data transfer. The strong research activity, rising healthcare innovation, and supportive government programs position Canada as a leading growth market for terahertz technology in North America.

Breakdown of Primaries

A variety of executives from key organizations operating in the terahertz technology market were interviewed in-depth, including CEOs, marketing directors, and innovation and technology directors.

  • By Company Type: Tier 1-35%, Tier 2- 40%, and Tier 3-25%
  • By Designation: C-level Executives-30%, Directors-40%, and Others-30%
  • By Region: North America-40%, Europe -32%, Asia Pacific -23%, and Rest of the World-5%

The terahertz technology market is dominated by globally established players such as ADVANTEST CORPORATION (Japan), HUBNER GmbH & Co. KG (Germany), TOPTICA Photonics AG (Germany), Gentec Electro-Optics (Canada), Luna Innovations (US), Menlo Systems (Germany), TeraView Limited (UK), Terasense Group Inc. (US), QMC Instruments Ltd. (UK), and Quantum Design Inc. (US). The study includes an in-depth competitive analysis of these key players in the terahertz technology market, as well as their company profiles, recent developments, and key market strategies.

Study Coverage

The report segments the terahertz technology market and forecasts its size by type, application, and region. It also discusses the market's drivers, restraints, opportunities, and challenges. It gives a detailed view of the market across four main regions: North America, Europe, Asia Pacific, and Rest of the World. The report includes a supply chain analysis, along with the key players and their competitive analysis of the terahertz technology ecosystem.

Key Benefits of Buying the Report

  • Analysis of key drivers (increasing emphasis on public safety and security, growing integration of terahertz in medical imaging and diagnostics), restraints (limited awareness and expertise across end-use industries, and complex integration with existing systems), opportunities (increasing focus on 6G and ultra-high-speed communications, booming automotive sector for advanced driver assistance systems, and growing investment in quantum and ultrafast optics research), and challenges (technical barriers to generating and detecting stable terahertz signals) influencing the growth of the terahertz technology market
  • Products/Solution/Service Development/Innovation: Detailed insights into upcoming technologies, research and development activities, and new product/solution/service launches in the terahertz technology market
  • Market Development: Comprehensive information about lucrative markets-the report analyses the terahertz technology market across varied regions.
  • Market Diversification: Exhaustive information about new products/solutions/services, untapped geographies, recent developments, and investments in the terahertz technology market
  • Competitive Assessment: In-depth assessment of market shares, growth strategies, and service offerings of leading players such as ADVANTEST CORPORATION (Japan), HUBNER GmbH & Co. KG (Germany), TOPTICA Photonics AG (Germany), Luna Innovations (US), and Thorlabs, Inc. (US), among others.

TABLE OF CONTENTS

1 INTRODUCTION

  • 1.1 STUDY OBJECTIVES
  • 1.2 MARKET DEFINITION AND SCOPE
    • 1.2.1 INCLUSIONS AND EXCLUSIONS
    • 1.2.2 MARKETS COVERED
    • 1.2.3 YEARS CONSIDERED
  • 1.3 CURRENCY
  • 1.4 STAKEHOLDERS
  • 1.5 SUMMARY OF CHANGES

2 RESEARCH METHODOLOGY

  • 2.1 RESEARCH DATA
    • 2.1.1 SECONDARY DATA
      • 2.1.1.1 Key data from secondary sources
      • 2.1.1.2 List of key secondary sources
    • 2.1.2 PRIMARY DATA
      • 2.1.2.1 Key data from primary sources
      • 2.1.2.2 List of primary interview participants
      • 2.1.2.3 Breakdown of primaries
      • 2.1.2.4 Key industry insights
    • 2.1.3 SECONDARY AND PRIMARY RESEARCH
  • 2.2 MARKET SIZE ESTIMATION METHODOLOGY
    • 2.2.1 BOTTOM-UP APPROACH
      • 2.2.1.1 Approach to arrive at market size using bottom-up analysis (demand side)
    • 2.2.2 TOP-DOWN APPROACH
      • 2.2.2.1 Approach to arrive at market size using top-down analysis (supply side)
  • 2.3 MARKET SHARE ESTIMATION
  • 2.4 DATA TRIANGULATION
  • 2.5 RISK ANALYSIS
  • 2.6 RESEARCH ASSUMPTIONS
  • 2.7 RESEARCH LIMITATIONS

3 EXECUTIVE SUMMARY

4 PREMIUM INSIGHTS

  • 4.1 ATTRACTIVE GROWTH OPPORTUNITIES IN TERAHERTZ TECHNOLOGY MARKET
  • 4.2 TERAHERTZ TECHNOLOGY MARKET, BY TYPE
  • 4.3 TERAHERTZ TECHNOLOGY MARKET, BY APPLICATION
  • 4.4 TERAHERTZ TECHNOLOGY MARKET, BY REGION
  • 4.5 TERAHERTZ TECHNOLOGY MARKET, BY COUNTRY

5 MARKET OVERVIEW

  • 5.1 INTRODUCTION
  • 5.2 MARKET DYNAMICS
    • 5.2.1 DRIVERS
      • 5.2.1.1 Increasing use in security screening and surveillance applications
      • 5.2.1.2 Rise in applications in medical imaging and diagnostics
    • 5.2.2 RESTRAINTS
      • 5.2.2.1 Limited awareness and expertise across end-user industries
      • 5.2.2.2 Complex integration with existing systems
    • 5.2.3 OPPORTUNITIES
      • 5.2.3.1 Role in 6G and ultra-high-speed communications
      • 5.2.3.2 Expansion into automotive sector with Advanced Driver Assistance Systems (ADAS)
      • 5.2.3.3 Growing investment in quantum and ultrafast optics research
    • 5.2.4 CHALLENGES
      • 5.2.4.1 Technical barriers to generating and detecting stable terahertz signals
  • 5.3 TRENDS/DISRUPTIONS IMPACTING CUSTOMERS' BUSINESSES
  • 5.4 PRICING ANALYSIS
    • 5.4.1 AVERAGE SELLING PRICE TREND, BY REGION
    • 5.4.2 AVERAGE SELLING PRICE TREND OF KEY PLAYERS, BY TYPE
  • 5.5 SUPPLY CHAIN ANALYSIS
  • 5.6 ECOSYSTEM ANALYSIS
  • 5.7 TECHNOLOGY ANALYSIS
    • 5.7.1 KEY TECHNOLOGIES
      • 5.7.1.1 Terahertz detectors
      • 5.7.1.2 Terahertz imaging systems
      • 5.7.1.3 Terahertz spectroscopy
    • 5.7.2 COMPLEMENTARY TECHNOLOGIES
      • 5.7.2.1 Photonic integration
    • 5.7.3 ADJACENT TECHNOLOGIES
      • 5.7.3.1 Infrared and optical imaging
      • 5.7.3.2 Nanotechnology
  • 5.8 PATENT ANALYSIS
  • 5.9 TRADE ANALYSIS
    • 5.9.1 EXPORT SCENARIO
    • 5.9.2 IMPORT SCENARIO
  • 5.10 KEY CONFERENCES AND EVENTS
  • 5.11 CASE STUDY ANALYSIS
    • 5.11.1 NVIDIA LEVERAGED TERAVIEW TERAHERTZ TECHNOLOGY TO OVERCOME CHIP-LEVEL FAULT ANALYSIS CHALLENGES
    • 5.11.2 LUNA INNOVATIONS AND BRIDGESTONE ENHANCED TIRE RELIABILITY WITH TERAHERTZ-BASED MEASUREMENT SOLUTIONS
    • 5.11.3 ENHANCED CHIP-LEVEL FAULT ANALYSIS WITH TERAHERTZ TIME-DOMAIN REFLECTOMETRY DRIVING PRECISION AND RELIABILITY
  • 5.12 REGULATORY LANDSCAPE
    • 5.12.1 REGULATORY BODIES, GOVERNMENT AGENCIES, AND OTHER ORGANIZATIONS
    • 5.12.2 KEY REGULATIONS
  • 5.13 PORTER'S FIVE FORCES ANALYSIS
    • 5.13.1 THREAT OF NEW ENTRANTS
    • 5.13.2 THREAT OF SUBSTITUTES
    • 5.13.3 BARGAINING POWER OF SUPPLIERS
    • 5.13.4 BARGAINING POWER OF BUYERS
    • 5.13.5 INTENSITY OF COMPETITIVE RIVALRY
  • 5.14 KEY STAKEHOLDERS AND BUYING CRITERIA
    • 5.14.1 KEY STAKEHOLDERS IN BUYING PROCESS
    • 5.14.2 BUYING CRITERIA
  • 5.15 IMPACT OF ARTIFICIAL INTELLIGENCE ON TERAHERTZ TECHNOLOGY MARKET
    • 5.15.1 INTRODUCTION
  • 5.16 IMPACT OF 2025 US TARIFF - TERAHERTZ TECHNOLOGY MARKET
    • 5.16.1 INTRODUCTION
    • 5.16.2 KEY TARIFF RATES
    • 5.16.3 PRICE IMPACT ANALYSIS
    • 5.16.4 IMPACT OF COUNTRY/REGION
      • 5.16.4.1 US
      • 5.16.4.2 Europe
      • 5.16.4.3 Asia Pacific
    • 5.16.5 IMPACT ON APPLICATION

6 TERAHERTZ TECHNOLOGY MARKET, BY TYPE

  • 6.1 INTRODUCTION
  • 6.2 TERAHERTZ IMAGING
    • 6.2.1 TRANSFORMING NON-INVASIVE DIAGNOSTICS AND HIGH-PRECISION SECURITY SCREENING USING NEXT-GENERATION TERAHERTZ IMAGING
      • 6.2.1.1 Active terahertz imaging systems
      • 6.2.1.2 Passive terahertz imaging systems
  • 6.3 TERAHERTZ SPECTROSCOPY
    • 6.3.1 HARNESSING TERAHERTZ SPECTROSCOPY AS STRATEGIC ENABLER FOR NEXT-WAVE BIOMEDICAL AND PHARMA GROWTH
      • 6.3.1.1 Terahertz time-domain spectroscopy
      • 6.3.1.2 Terahertz frequency-domain spectroscopy
  • 6.4 TERAHERTZ COMMUNICATION SYSTEMS
    • 6.4.1 HARNESSING TERAHERTZ FREQUENCY BANDS TO ENABLE SCALABLE HIGH SPEED WIRELESS COMMUNICATION
      • 6.4.1.1 Antennas
      • 6.4.1.2 Emitters
      • 6.4.1.3 Modulators

7 TERAHERTZ TECHNOLOGY MARKET, BY APPLICATION

  • 7.1 INTRODUCTION
  • 7.2 LABORATORY RESEARCH
    • 7.2.1 ADVANCING SCIENTIFIC FRONTIERS THROUGH TERAHERTZ-ENABLED HIGH-PRECISION LABORATORY RESEARCH SOLUTIONS
      • 7.2.1.1 Material characterization
      • 7.2.1.2 Biochemistry
      • 7.2.1.3 Plasma diagnostics
  • 7.3 MEDICAL & HEALTHCARE
    • 7.3.1 LEVERAGING TERAHERTZ IMAGING FOR NON-IONIZING, HIGH-PRECISION DIAGNOSTICS IN NEXT-GEN HEALTHCARE
      • 7.3.1.1 Oncology
      • 7.3.1.2 Dentistry
      • 7.3.1.3 Dermatology
      • 7.3.1.4 Tomography
  • 7.4 MILITARY & HOMELAND SECURITY
    • 7.4.1 ADVANCING DEFENSE AND SECURITY CAPABILITIES THROUGH TERAHERTZ-DRIVEN THREAT DETECTION AND HIGH-SPEED COMMUNICATIONS
      • 7.4.1.1 Passenger screening
      • 7.4.1.2 Landmine and improvised explosive device detection
  • 7.5 INDUSTRIAL NON-DESTRUCTIVE TESTING (NDT)
    • 7.5.1 UNLOCKING STRATEGIC VALUE THROUGH TERAHERTZ-DRIVEN, HIGH-PRECISION NON-DESTRUCTIVE TESTING SOLUTIONS
      • 7.5.1.1 Aerospace
      • 7.5.1.2 Semiconductor and electronics
      • 7.5.1.3 Pharmaceuticals
  • 7.6 SATELLITE COMMUNICATIONS
    • 7.6.1 LEVERAGING INTER-SATELLITE COMMUNICATIONS TO ENHANCE BANDWIDTH, SECURITY, AND ORBITAL ASSET MONITORING
  • 7.7 TACTICAL/MILITARY COMMUNICATIONS
    • 7.7.1 TRANSFORMING TACTICAL CONNECTIVITY THROUGH TERAHERTZ-ENABLED ULTRA-SECURE, HIGH-BANDWIDTH BATTLEFIELD COMMUNICATIONS
  • 7.8 OUTDOOR/INDOOR WIRELESS COMMUNICATIONS
    • 7.8.1 UNLOCKING ULTRA-HIGH DATA THROUGHPUT VIA SHORT-RANGE, LOW-TERAHERTZ WIRELESS NETWORK INNOVATION

8 TERAHERTZ TECHNOLOGY: SOURCES AND DETECTORS

  • 8.1 INTRODUCTION
  • 8.2 THZ SOURCES
    • 8.2.1 QUANTUM-CASCADE LASER (QCL)
    • 8.2.2 FREQUENCY MULTIPLIER
    • 8.2.3 GLOBAR
    • 8.2.4 PHOTOCONDUCTIVE ANTENNA (PCA)
    • 8.2.5 STIMULATED TERAHERTZ AMPLIFIED RADIATION (STAR)
  • 8.3 DETECTORS
    • 8.3.1 SCHOTTKY DIODE
    • 8.3.2 HIGH ELECTRON MOBILITY TRANSISTOR (HEMT)
    • 8.3.3 NANOWIRE
    • 8.3.4 PYROELECTRIC DETECTOR
    • 8.3.5 GOLAY CELL
    • 8.3.6 BOLOMETER AND SUPERCONDUCTIVE HOT-SPOT AIR-BRIDGE BOLOMETER (SHAB)

9 TERAHERTZ TECHNOLOGY MARKET, BY REGION

  • 9.1 INTRODUCTION
  • 9.2 NORTH AMERICA
    • 9.2.1 MACROECONOMIC OUTLOOK FOR NORTH AMERICA
    • 9.2.2 US
      • 9.2.2.1 Academic leadership and stratospheric mission validations to accelerate commercialization of terahertz systems
    • 9.2.3 CANADA
      • 9.2.3.1 Healthcare innovation and cancer diagnostics drive adoption of non-ionizing terahertz imaging solutions
    • 9.2.4 MEXICO
      • 9.2.4.1 Telecom reforms and national research infrastructure to strengthen Mexico's terahertz technology capabilities
  • 9.3 EUROPE
    • 9.3.1 MACROECONOMIC OUTLOOK FOR EUROPE
    • 9.3.2 UK
      • 9.3.2.1 Research excellence and breakthroughs to drive commercialization of terahertz applications in UK
    • 9.3.3 GERMANY
      • 9.3.3.1 Germany to fuel market leadership through breakthroughs in terahertz imaging and 6G-enabled systems
    • 9.3.4 FRANCE
      • 9.3.4.1 France to strengthen terahertz ecosystem through strategic investments in security, telecom, and industrial modernization
    • 9.3.5 ITALY
      • 9.3.5.1 Italy to strengthen global terahertz positioning through quantum devices and industrial integration
    • 9.3.6 SPAIN
      • 9.3.6.1 Spain to position terahertz as strategic enabler for industrial and healthcare innovation
    • 9.3.7 REST OF EUROPE
  • 9.4 ASIA PACIFIC
    • 9.4.1 MACROECONOMIC OUTLOOK FOR ASIA PACIFIC
    • 9.4.2 JAPAN
      • 9.4.2.1 Innovations in terahertz devices and 6G demonstrations to drive Japan's market growth across telecom and connectivity sectors
    • 9.4.3 CHINA
      • 9.4.3.1 Economic expansion and semiconductor autonomy to support China's terahertz technology market growth
    • 9.4.4 INDIA
      • 9.4.4.1 India to accelerate terahertz adoption through health, wellness, and defense-focused technological innovations
    • 9.4.5 SOUTH KOREA
      • 9.4.5.1 South Korea to expand terahertz commercialization through 6G innovation and cross-industry adoption
    • 9.4.6 REST OF ASIA PACIFIC
  • 9.5 REST OF THE WORLD (ROW)
    • 9.5.1 MACROECONOMIC OUTLOOK FOR ROW
    • 9.5.2 MIDDLE EAST & AFRICA
      • 9.5.2.1 Unlocking strategic value of terahertz in next-gen connectivity and cultural asset preservation to support market growth
    • 9.5.3 SOUTH AMERICA
      • 9.5.3.1 Advancing terahertz innovation to drive South America's science and industry landscape

10 COMPETITIVE LANDSCAPE

  • 10.1 INTRODUCTION
  • 10.2 KEY PLAYER STRATEGIES/RIGHT TO WIN
  • 10.3 REVENUE ANALYSIS, 2021-2024
  • 10.4 MARKET SHARE ANALYSIS, 2024
  • 10.5 COMPANY EVALUATION MATRIX: KEY PLAYERS, 2024
    • 10.5.1 STARS
    • 10.5.2 EMERGING LEADERS
    • 10.5.3 PERVASIVE PLAYERS
    • 10.5.4 PARTICIPANTS
    • 10.5.5 COMPANY FOOTPRINT: KEY PLAYERS, 2024
      • 10.5.5.1 Company footprint
      • 10.5.5.2 Regional footprint
      • 10.5.5.3 Application footprint
      • 10.5.5.4 Type footprint
  • 10.6 COMPANY EVALUATION MATRIX: STARTUPS/SMES, 2024
    • 10.6.1 PROGRESSIVE COMPANIES
    • 10.6.2 RESPONSIVE COMPANIES
    • 10.6.3 DYNAMIC COMPANIES
    • 10.6.4 STARTING BLOCKS
    • 10.6.5 COMPETITIVE BENCHMARKING: STARTUPS/SMES, 2024
      • 10.6.5.1 Detailed list of key startups/SMEs
      • 10.6.5.2 Competitive benchmarking of key startups/SMEs
  • 10.7 COMPETITIVE SCENARIO
    • 10.7.1 PRODUCT LAUNCHES
    • 10.7.2 DEALS
    • 10.7.3 EXPANSIONS
    • 10.7.4 OTHER DEVELOPMENTS

11 COMPANY PROFILES

  • 11.1 KEY PLAYERS
    • 11.1.1 ADVANTEST CORPORATION
      • 11.1.1.1 Business overview
      • 11.1.1.2 Products/solutions/services offered
      • 11.1.1.3 Recent developments
        • 11.1.1.3.1 Product launches
        • 11.1.1.3.2 Deals
        • 11.1.1.3.3 Other developments
      • 11.1.1.4 MnM view
        • 11.1.1.4.1 Key strengths/right to win
        • 11.1.1.4.2 Strategic choices made
        • 11.1.1.4.3 Weaknesses and competitive threats
    • 11.1.2 LUNA INNOVATIONS
      • 11.1.2.1 Business overview
      • 11.1.2.2 Products/solutions/services offered
        • 11.1.2.2.1 Expansions
        • 11.1.2.2.2 Other developments
      • 11.1.2.3 MnM view
        • 11.1.2.3.1 Key strengths/right to win
        • 11.1.2.3.2 Strategic choices made
        • 11.1.2.3.3 Weaknesses and competitive threats
    • 11.1.3 TERAVIEW LIMITED
      • 11.1.3.1 Business overview
      • 11.1.3.2 Products/solutions/services offered
      • 11.1.3.3 Recent developments
        • 11.1.3.3.1 Product launches
        • 11.1.3.3.2 Deals
      • 11.1.3.4 MnM view
        • 11.1.3.4.1 Key strengths/right to win
        • 11.1.3.4.2 Strategic choices
        • 11.1.3.4.3 Weaknesses and competitive threats
    • 11.1.4 TOPTICA PHOTONICS AG
      • 11.1.4.1 Business overview
      • 11.1.4.2 Products/solutions/services offered
      • 11.1.4.3 MnM view
        • 11.1.4.3.1 Key strengths/right to win
        • 11.1.4.3.2 Strategic choices made
        • 11.1.4.3.3 Weaknesses and competitive threats
    • 11.1.5 HUBNER GMBH & CO. KG
      • 11.1.5.1 Business overview
      • 11.1.5.2 Products/solutions/services offered
      • 11.1.5.3 Recent developments
        • 11.1.5.3.1 Product launches
        • 11.1.5.3.2 Deals
      • 11.1.5.4 MnM view
        • 11.1.5.4.1 Key strengths/right to win
        • 11.1.5.4.2 Strategic choices
        • 11.1.5.4.3 Weaknesses and competitive threats
    • 11.1.6 MENLO SYSTEMS
      • 11.1.6.1 Business overview
      • 11.1.6.2 Products/solutions/services offered
      • 11.1.6.3 Recent developments
        • 11.1.6.3.1 Product launches
        • 11.1.6.3.2 Expansions
    • 11.1.7 TERASENSE GROUP INC.
      • 11.1.7.1 Business overview
      • 11.1.7.2 Products/solutions/services offered
      • 11.1.7.3 Recent developments
        • 11.1.7.3.1 Product launches
    • 11.1.8 GENTEC ELECTRO-OPTICS
      • 11.1.8.1 Business overview
      • 11.1.8.2 Products/solutions/services offered
    • 11.1.9 QMC INSTRUMENTS LTD.
      • 11.1.9.1 Business overview
      • 11.1.9.2 Products/solutions/services offered
    • 11.1.10 TERAVIL LTD
      • 11.1.10.1 Business overview
      • 11.1.10.2 Products/solutions/services offered
  • 11.2 OTHER PLAYERS
    • 11.2.1 VIRGINIA DIODES, INC.
    • 11.2.2 MICROTECH INSTRUMENTS
    • 11.2.3 SWISSTO12
    • 11.2.4 DEL MAR PHOTONICS, INC.
    • 11.2.5 INSIGHT PRODUCT COMPANY
    • 11.2.6 BATOP GMBH
    • 11.2.7 LYTID SAS
    • 11.2.8 TYDEX
    • 11.2.9 QUANTUM DESIGN INC.
    • 11.2.10 RAYSECUR, INC.
    • 11.2.11 LONGWAVE PHOTONICS LLC
    • 11.2.12 BRIDGE12 TECHNOLOGIES, INC.
    • 11.2.13 ACAL BFI
    • 11.2.14 THORLABS, INC.
    • 11.2.15 SCIENCETECH INC.

12 APPENDIX

  • 12.1 DISCUSSION GUIDE
  • 12.2 KNOWLEDGESTORE: MARKETSANDMARKETS' SUBSCRIPTION PORTAL
  • 12.3 CUSTOMIZATION OPTIONS
  • 12.4 RELATED REPORTS
  • 12.5 AUTHOR DETAILS
»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦