½ÃÀ庸°í¼­
»óǰÄÚµå
1462330

»ó¾÷ ºôµù¿ë ÀΰøÁö´É(AI) °æÀï »óȲ(2024³â)

The Competitive Landscape for AI in Commercial Buildings 2024

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Memoori | ÆäÀÌÁö Á¤º¸: ¿µ¹® 179 Pages, 37 Charts, Spreadsheet, Presentation Slides | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

ÀÌ º¸°í¼­´Â 2024³â ±âÁØ, »ó¾÷ ºôµù¿ë º¥´õ AI ¼Ö·ç¼Ç ½ÃÀåÀÇ ÃֽЏÅÇÎ ¹× ºÐ¼® °á°úÀÔ´Ï´Ù.

ÀÌ »õ·Î¿î Á¶»ç´Â MemooriÀÇ 2021³â ÀΰøÁö´É(AI) ½ÃÀå ºÐ¼®À» ±â¹ÝÀ¸·Î, AIÀÇ Àü¹ÝÀûÀÎ ¿ª·®°ú Àü¹®Àû ¿ëµµ ¸ðµÎ¿¡¼­ ¹ß»ýÇÏ´Â º¯È­¿¡ ÁÖ¸ñÇÏ¿© º¸´Ù ½º¸¶Æ®Çϰí Áö¼Ó°¡´ÉÇÏ¸ç ¹ÝÀÀ¼ºÀÌ ³ôÀº °ÇÃà ȯ°æÀ» ±¸ÇöÇÒ ¼ö ÀÖ´Â AIÀÇ º¯È­¸¦ ºÐ¼®ÇÕ´Ï´Ù.

ÀÌ º¸°í¼­´Â »ó¼¼ÇÑ ºÐ¼®À» ÅëÇØ ½º¸¶Æ® ºôµù¿ë AI ±â¾÷ÀÇ ±¹Á¦ ÇöȲÀ» ¸ÅÇÎÇÏ°í ½ÃÀå ±¸Á¶¿¡ ´ëÇÑ ¸íÈ®ÇÑ À̹ÌÁö¸¦ Á¦°øÇÕ´Ï´Ù. µ¶ÀÚµéÀº ´Ù¾çÇÑ AI ¾ÖÇø®ÄÉÀ̼ÇÀÇ ¼º¼÷µµ¿Í ÀáÀç·ÂÀ» Æò°¡ÇÏ°í ¾÷°è¸¦ ¼±µµÇÏ´Â ¾÷ü¸¦ ÆÄ¾ÇÇÒ ¼ö ÀÖ½À´Ï´Ù.

ÀÌ º¸°í¼­¿¡´Â Ãß°¡ ºñ¿ë ¾øÀÌ ÁÖ¿ä 361°³ ±â¾÷(2021³â 255°³ ±â¾÷ ´ëºñ 42% Áõ°¡)À» 66°³ÀÇ AI Ȱ¿ë »ç·Ê·Î ºÐ·ùÇÑ ½ºÇÁ·¹µå½ÃÆ®°¡ Æ÷ÇԵǾî ÀÖ½À´Ï´Ù. ÀڸŠº¸°í¼­¿Í ÇÔ²² »ó¾÷ ºôµù¿¡ ´ëÇÑ AIÀÇ ¿µÇâ¿¡ ´ëÇØ Áö±Ý±îÁö ¹ßÇ¥µÈ °¡Àå ¿Ïº®ÇÑ Æò°¡°¡ ÀÌ·ç¾îÁ³½À´Ï´Ù.

ÀÌ º¸°í¼­´Â 2ºÎ·Î ±¸¼ºµÈ º¸°í¼­ Áß µÎ ¹øÂ° º¸°í¼­ÀÔ´Ï´Ù. Á¦1Æí¿¡¼­´Â AI ±â¼ú, ºñÁî´Ï½º ±âȸ ¹× Ȱ¿ë »ç·Ê¿¡ ´ëÇØ ¼³¸íÇÕ´Ï´Ù. µÎ º¸°í¼­ ¸ðµÎ 2024³â Premium Subscription Service¿¡ Æ÷ÇԵǾî ÀÖÀ¸¸ç, ´ë±Ô¸ð ¾ð¾î ¸ðµ¨(LLM)À» Ȱ¿ëÇÏ¿© ¸ðµç Á¶»ç °á°ú¸¦ Á¶È¸ÇÒ ¼ö ÀÖ´Â Chatbot AIM¿¡ ¾×¼¼½º ÇÒ ¼ö ÀÖ½À´Ï´Ù.

ÁÖ¿ä Áú¹®

  • ¹Ì·¡ÀÇ »ó¾÷ ºôµù¿ë AI¸¦ Á¿ìÇÒ ÁÖ¿ä ±â¾÷Àº ¾îµðÀϱî? º» º¸°í¼­´Â AI ºÐ¾ß¿¡¼­ »ç¾÷À» Àü°³Çϰí ÀÖ´Â 361°³ ±â¾÷À» »ç¿ë »ç·Êº°, ±â¾÷ ¿¬·Éº°, ±â¾÷ ±Ô¸ðº°·Î ºÐ·ùÇÏ¿© ¼¼¹ÐÇÏ°Ô ºÐ¼®ÇÏ¿´½À´Ï´Ù. º¸°í¼­¿Í ÇÔ²² Á¦°øµÇ´Â ½ºÇÁ·¹µå½ÃÆ®¿¡¼­´Â ½º¸¶Æ® ºôµù ½ÃÀå¿¡¼­ AI°¡ Ȱ¹ßÇÏ°Ô °³¹ßµÇ°í ÀÖ´Â 66°³ÀÇ °³º° »ç¿ë »ç·Êº°·Î ±â¾÷À» ºÐ·ùÇÏ¿© ´õ¿í »ó¼¼ÇÏ°Ô ºÐ¼®ÇÏ¿´½À´Ï´Ù.
  • ÁÖ¿ä ±â¾÷ÀÇ AI Àü·«Àº ¹«¾ùÀΰ¡? º» º¸°í¼­´Â ´Ù¾çÇÑ AI Ȱ¿ë »ç·Ê¿¡ °ÉÃÄ Á¦Ç° ¹× ¼­ºñ½º¸¦ Á¦°øÇÏ´Â 17°³ ÁÖ¿ä ±â¾÷ÀÇ Àü·«Àû Æ÷Áö¼Å´×À» Á¶»çÇß½À´Ï´Ù. ƯÈ÷ ÁÖ¿ä ºôµù ÀÚµ¿È­ ±â¾÷(Carrier, Honeywell µî), ÁÖ¿ä ÇÏÀÌÅ×Å© ±â¾÷(Amazon, Microsoft µî), ¹ÝµµÃ¼ ±â¾÷(GARM, NVIDIA µî)ÀÇ Àü·«, Æ÷Áö¼Å´×, ÃÖ±Ù Çõ½Å¿¡ ´ëÇØ Á¶»çÇϰí ÀÖ½À´Ï´Ù.
  • »ó¾÷ ºôµù¿ë AI ÅõÀÚ ÇöȲÀº ¾î¶²°¡? º» º¸°í¼­´Â °¢ ±¹°¡º°·Î °ø°³µÈ Æò±Õ ÀÚ±Ý ÃѾװú ÀÚ±Ý Áö¿øÀ» ¹ÞÀº ºñ»óÀå ±â¾÷ÀÇ ¼ö¸¦ Á¶»çÇß½À´Ï´Ù.

ÀÌ º¸°í¼­´Â 179ÆäÀÌÁöÀÇ ±Û°ú 37°³ÀÇ µµÇ¥·Î ±¸¼ºµÇ¾î ÀÖÀ¸¸ç, ¸ðµç Áß¿äÇÑ »ç½ÇÀ» ÃßÃâÇÏ°í °á·ÐÀ» µµÃâÇÏ¿© AI ±â¼úÀÌ »ó¾÷ ºôµù¿¡ Àû¿ëµÇ´Â ¹æ¹ý°ú ±× ÀÌÀ¯¸¦ Á¤È®ÇÏ°Ô ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ÀÌ º¸°í¼­´Â »ó¾÷ ºôµùÀÇ ÇöÀç ¿î¿µ »óȲ°ú Á÷°áµÇ´Â Ȱ¿ë »ç·Ê - °Ç¹° ¼º´É, Áö¼Ó°¡´É¼º, °ÅÁÖÀÚ °æÇè µî - ¿¡ ÃÊÁ¡À» ¸ÂÃß°í ÀÖ½À´Ï´Ù. ¹Ý¸é, ¼³°è ¹× ½Ã°ø ´Ü°è¿¡¼­ÀÇ AI Ȱ¿ëÀº ´Ù·çÁö ¾Ê¾Ò½À´Ï´Ù.
  • Àüü »ç¿ë »ç·Ê(ÃÑ 66°Ç) Áß ÃÑ 12°¡Áö ÁÖ¿ä ¿µ¿ªÀ» »ìÆìº¸¸é, º¸¾È°ú Á¢±Ù Á¦¾î°¡ °¡Àå Àαâ ÀÖ´Â µµ¸ÞÀÎ(40.7%)À¸·Î ³ªÅ¸³µ½À´Ï´Ù. ÀÌ¾î °ø°£¡¤°ø½Ç¡¤Àη À̵¿(38.5%), µ¥ÀÌÅÍ ÅëÇÕ¡¤ºÐ¼®(29.1%), ¿¡³ÊÁö °ü¸®¡¤È¿À²(28.3%)ÀÌ µÚ¸¦ À̾ú½À´Ï´Ù.
  • ÀÚ±Ý Áö¿øÀ» ¹Þ´Â ºñ»óÀå AI ±â¾÷ ¼ö´Â ¹Ì±¹ÀÌ 88°³·Î 1À§¸¦ Â÷ÁöÇÏ¸ç ¾ÐµµÀûÀÎ ¿ìÀ§¸¦ Á¡Çϰí ÀÖÁö¸¸, ±â¾÷´ç Æò±Õ °ø½ÃµÈ ÀÚ±ÝÀº Áß±¹ÀÌ 2¾ï 8,700¸¸ ´Þ·¯·Î °¡Àå ³ô½À´Ï´Ù.

ÀÌ º¸°í¼­´Â ±â¾÷ÀÌ Àü·« ¼ö¸³À» °³¼±Çϰí AI ±â¼ú µµÀÔÀ» ÅëÇÑ ºñÁî´Ï½º ¹ßÀü °¡´É¼ºÀ» °ËÅäÇÒ ¼ö ÀÖµµ·Ï ±ÍÁßÇÑ Á¤º¸¸¦ Á¦°øÇÕ´Ï´Ù.

¸ñÂ÷

¼­¹®

Á¶»ç ¹üÀ§¿Í ¹æ¹ý

ÁÖ¿ä ¿ä¾à

Á¦1Àå ½ÃÀå »óȲ°ú µ¿Çâ

  • ¼¼°èÀÇ ½º¸¶Æ® ºôµù¿ë AI ±â¾÷ »óȲ
  • ½º¸¶Æ® ºôµù¿ë AI ½ÃÀå : ÀÌ¿ë »ç·Êº°
  • ½º¸¶Æ® ºôµù¿ë AI ½ÃÀå : ±â¾÷ ¿¬·Éº°
  • ½º¸¶Æ® ºôµù¿ë AI ½ÃÀå : ±â¾÷ ±Ô¸ðº°

Á¦2Àå »ç¿ë »ç·Êº° °æÀï »óȲ

  • ¿¡³ÊÁö °ü¸®¡¤È¿À²
  • ¼öµµ¡¤Çϼö°ü¸®
  • AI Çϵå¿þ¾î¡¤ÄÄÇ»ÆÃ
  • º¸¾È¡¤¾×¼¼½º Á¦¾î
  • °ø°£¡¤°ø½Ç¡¤Àοø À̵¿
  • ½Ç³» ȯ°æ¡¤°ÅÁÖÀÚ ÄèÀû¼º
  • °ÅÁÖÀÚ Âü¿©¿Í °æÇè
  • Áö¼Ó°¡´É¼º°ú ±ÔÁ¦ ÄÄÇöóÀ̾ð½º
  • ±ä±Þ¡¤¾ÈÀü ½Ã½ºÅÛ
  • »çÀ̹ö º¸¾È¡¤³×Æ®¿öÅ© °ü¸®
  • µðÁöÅÐ Æ®À©¡¤°Ç¹° ½Ã¹Ä·¹À̼Ç
  • µ¥ÀÌÅÍ ÅëÇÕ¡¤ºÐ¼®

Á¦3Àå ÁÖ¿ä ±â¾÷ÀÇ Àü·«Àû Æ÷Áö¼Å´×

  • ºôµù ÀÚµ¿È­ ±â¾÷
    • ABB
    • Carrier
    • Honeywell
    • Johnson Controls
    • Schneider Electric
    • Siemens
    • Major Tech Firms
    • Amazon
    • Cisco
    • Google
    • IBM
    • Microsoft
    • Samsung
  • ÁÖ¿ä ¹ÝµµÃ¼ ±â¾÷
    • AMD
    • ARM
    • Intel
    • NVIDIA
    • Qualcomm

Á¦4Àå M&A¿Í ÅõÀÚ

  • ±â¾÷ ÀμöÇÕº´(M&A)
  • ÅõÀÚ µ¿Çâ
    • Áö¿ªº° ÅõÀÚ µ¿Çâ
    • ÁÖ¸ñÇÒ ¸¸ÇÑ ÅõÀÚ °Å·¡
ksm 24.06.05

This Report is a New 2024 Mapping and Analysis of Vendor AI Solutions for the Commercial Buildings Market

This new research builds on Memoori's previous 2021 Artificial Intelligence (AI) market analysis, exploring the immense progress that has occurred both in the capabilities of AI and the growing vendor landscape enabling smarter, more sustainable, and more responsive commercial buildings.

The in-depth analysis maps out the global landscape of smart building AI companies, providing a clear picture of the market's structure, and allows the reader to assess the maturity and potential of various AI applications and identify vendors shaping the industry.

It includes, at no extra cost, a spreadsheet that assigns all 361 companies identified (a 42% increase from the 255 companies we identified in 2021) to 66 distinct individual AI use cases. Together with its sister report it is by far the most complete assessment of the impact of AI on commercial buildings published to date.

It is the second in a 2-part series of reports, with the first report providing a review of AI technologies, opportunities and use cases. Both these reports are included in our 2024 Premium Subscription Service, which also gives access to our chatbot AIM, where you can query all our research using the power of Large Language Models (LLMs) .

KEY QUESTIONS ADDRESSED:

  • Who are the key players shaping the future of AI commercial building applications? The report provides a granular analysis of 361 companies that we identified as operating in the AI space, segmenting companies by use case, company age, and company size. The spreadsheet that comes with the report provides further in-depth analysis assigning companies to each of the 66 distinct individual use cases where AI is being actively developed for use in the smart buildings market.
  • What are the AI strategies of the major players? The report examines the strategic positioning of 17 major players whose offerings typically span multiple use cases for AI. It explores the strategies, positioning and recent innovations of leading building automation firms (e.g. Carrier, Honeywell), big tech (e.g. Amazon, Microsoft), and semiconductor companies (e.g ARM, NVIDIA).
  • What does the investment landscape for AI in commercial buildings look like? The report looks at the average total disclosed funding and the number of funded private companies across various countries.

WITHIN ITS 179 PAGES AND 37 CHARTS AND TABLES, THE REPORT FILTERS OUT ALL THE KEY FACTS AND DRAWS CONCLUSIONS, SO YOU CAN UNDERSTAND EXACTLY HOW AI TECHNOLOGY WILL BE APPLIED TO COMMERCIAL BUILDINGS AND WHY;

  • The report is focused on the use cases that relate directly to the ongoing operations of commercial buildings, such as building performance, sustainability, and the occupant experience. The scope does not include AI applications for design and construction phases.
  • Across 12 distinct use case domains, encompassing a total of 66 individual use cases, Security and Access Control emerges as the most popular domain (40.7%), followed by Space, Occupancy & People Movement (38.5%), Data Integration and Analytics (29.1%), and Energy Management and Efficiency (28.3%).
  • In terms of the number of private AI companies being funded, the US is the clear leader with 88, BUT China has the highest average disclosed funding per company at $287 million.

This report provides valuable information to companies so they can improve their strategic planning exercises AND look at the potential for developing their business through implementing AI technology.

WHO SHOULD BUY THIS REPORT?

The information contained in this report will be of value to all those engaged in managing, operating, and investing in commercial buildings (and their advisers) around the world. In particular, those wishing to understand the global landscape of AI & Machine Learning companies in commercial real estate will find it particularly useful.

Table of Contents

Preface

Research Scope & Methodology

Executive Summary

1. Market Landscape and Dynamics

  • 1.1. The Global Landscape of Smart Building AI Companies
  • 1.2. Smart Building AI Market by Use Case
  • 1.3. Smart Building AI Market by Company Age
  • 1.4. Smart Building AI Market by Company Size

2. Competitive Landscape by Use Case

  • 2.1. Energy Management and Efficiency
  • 2.2. Water and Waste Management
  • 2.3. AI Hardware and Compute
  • 2.4. Security and Access Control
  • 2.5. Space, Occupancy, and People Movement
  • 2.6. Indoor Environment and Occupant Comfort
  • 2.7. Occupant Engagement and Experience
  • 2.8. Sustainability and Regulatory Compliance
  • 2.9. Emergency and Safety Systems
  • 2.10. Cybersecurity and Network Management
  • 2.11. Digital Twin and Building Simulation
  • 2.12. Data Integration and Analytics

3. The Strategic Positioning of Key Players

  • 3.1. Building Automation Firms
    • ABB
    • Carrier
    • Honeywell
    • Johnson Controls
    • Schneider Electric
    • Siemens
    • 3.2 Major Tech Firms
    • Amazon
    • Cisco
    • Google
    • IBM
    • Microsoft
    • Samsung
  • 3.3. Major Semiconductor Firms
    • AMD
    • ARM
    • Intel
    • NVIDIA
    • Qualcomm

4. M&A & Investment

  • 4.1. Mergers and Acquisitions
  • 4.2. Investment Trends
    • Geographic Investment Trends
    • Notable Investment Deals
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦