½ÃÀ庸°í¼­
»óǰÄÚµå
1684037

Ç×°ø¿ìÁÖ ¹× ¹æÀ§¿ë MLCC ½ÃÀå : ½ÃÀå Á¡À¯À² ºÐ¼®, »ê¾÷ µ¿Çâ ¹× Åë°è, ¼ºÀå ¿¹Ãø(2025-2030³â)

Aerospace and Defence MLCC - Market Share Analysis, Industry Trends & Statistics, Growth Forecasts (2025 - 2030)

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Mordor Intelligence | ÆäÀÌÁö Á¤º¸: ¿µ¹® | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

Ç×°ø¿ìÁÖ ¹× ¹æÀ§¿ë MLCC ½ÃÀå ±Ô¸ð´Â 2024³â¿¡ 10¾ï 9,000¸¸ ´Þ·¯·Î Æò°¡µÇ¾ú°í, 2029³â¿¡´Â 28¾ï 6,000¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ¿¹Ãø ±â°£ÀÎ 2024-2029³â CAGR 21.39%·Î ¼ºÀåÇÒ Àü¸ÁÀÔ´Ï´Ù.

Aerospace and Defence MLCC-Market-IMG1

ÃÖÀûÈ­µÈ ¾Æºñ¿À´Ð MLCCÀÇ ¼±ÅÃÀÌ Ç×°ø¿ìÁÖ ¹× ¹æÀ§ ½Ã½ºÅÛ °­È­

  • Ç×°ø¿ìÁÖ ¹× ¹æÀ§ »ê¾÷Àº AI, IoT, 5G Åë½ÅÀ» Æ÷ÇÔÇÑ Ã·´Ü ¾îºñ¿À´Ð½º ±â¼úÀÇ Ã¤¿ëÀÌ ÁøÇàµÇ°í ÀÖ´Â °¡¿îµ¥, ±Þ¼ÓÇÑ º¯¸ð¸¦ ÀÌ·ç°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Ãß¼¼´Â Ç×°ø±âÀÇ ÃÖ÷´Ü ÀüÀÚ ½Ã½ºÅÛÀ» Áö¿øÇϱâ À§ÇØ ³ôÀº Ä¿ÆÐ½ÃÅϽº, ³·Àº ESR ¹× ½Å·Ú¼º Çâ»óÀ» °®Ãá MLCCÀÇ Çʿ伺À» µÞ¹ÞħÇÕ´Ï´Ù. ÄÉÀ̽º Å©±â 0 201 ¹× 0 402ÀÇ MLCC´Â ¾îºñ¿À´Ð½ºÀÇ ¼ÒÇü ¹× °æ·® ÀüÀÚ È¸·Î¿¡ ÀαⰡ ÀÖ½À´Ï´Ù. ¼ÒÇü Æû ÆÑÅÍ¿Í ³ôÀº Ä¿ÆÐ½ÃÅϽº´Â UAV ¹× ±âŸ ¼ÒÇü Ç×°ø±â¿¡ ÀåÂøµÇ´Â ºñÇà Á¦¾î ½Ã½ºÅÛ, ³»ºñ°ÔÀÌ¼Ç ½Ã½ºÅÛ, Åë½Å Àåºñ µîÀÇ ¼ÒÇüÈ­ µð¹ÙÀ̽º¿¡ ÀÌ»óÀûÀÔ´Ï´Ù. Ç×°øÀüÀÚ±â±âÀÇ ¼ÒÇüÈ­ ¹× °æ·®È­ÀÇ µ¿ÇâÀº ÄÉÀ̽º »çÀÌÁî 0 201 ¹× 0 402 MLCC ¼ö¿ä¸¦ °ßÀÎÇϰí ÀÖ½À´Ï´Ù.
  • ÄÉÀ̽º Å©±â 0 603 ¹× 1 005ÀÇ MLCC´Â ¼ÒÇüÈ­¿Í Ä¿ÆÐ½ÃÅϽºÀÇ ±ÕÇüÀ» ÀÌ·ç¸ç ´Ù¾çÇÑ Ç×°ø ÀüÀÚ±â±â ¿ëµµ¿¡¼­ ´ÙÀç´Ù´ÉÇÑ ºÎǰÀÌ µÇ¾ú½À´Ï´Ù. À̵éÀº ÀϹÝÀûÀ¸·Î Á¶Á¾¼® µð½ºÇ÷¹ÀÌ, ¼¾¼­ ½Ã½ºÅÛ, À¯ÀÎ ¹× ¹«ÀÎ Ç×°ø±âÀÇ ¹èÀü ³×Æ®¿öÅ©¿¡ »ç¿ëµË´Ï´Ù. ÃֽŠÇ×°ø±â¿¡¼­´Â °í±Þ ¾îºñ¿À´Ð½º ½Ã½ºÅÛÀÇ Ã¤¿ëÀÌ Áõ°¡Çϰí ÀÖÀ¸¸ç, ÄÉÀ̽º Å©±â 0 603 ¹× 1 005 MLCC¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.
  • ÄÉÀ̽º Å©±â 1 210ÀÇ MLCC´Â ³ôÀº Ä¿ÆÐ½ÃÅϽº °ªÀ» Á¦°øÇϸç Ç×°ø ÀüÀÚ±â±âÀÇ Àü·Â °ü¸®, ¿¡³ÊÁö ÀúÀå ¹× ÇÊÅ͸µ ¿ëµµ¿¡ ÀûÇÕÇÕ´Ï´Ù. ÀÌ ´ëÇü MLCC´Â ÀϹÝÀûÀ¸·Î ·¹ÀÌ´õ ½Ã½ºÅÛ, À§¼º Åë½Å ¹× °í±Þ ¾îºñ¿À´Ð½º Á¦¾î ÀåÄ¡¿Í °°Àº Áß¿äÇÑ ¾îºñ¿À´Ð½º ½Ã½ºÅÛ¿¡¼­ »ç¿ëµË´Ï´Ù. º¸´Ù °­·ÂÇϰí Á¤±³ÇÑ ¹ÙÀÌ¿À´Ð½º ±â¼ú¿¡ ´ëÇÑ ¿ä±¸ Áõ°¡´Â ÄÉÀ̽º Å©±â 1 210 ¹× ±âŸ MLCC ¼ö¿ä¿¡ ±â¿©ÇÕ´Ï´Ù. UAV¿Í MAV¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖÀ¸¸ç MLCC´Â ¾ÈÁ¤ÀûÀ̰í È¿À²ÀûÀÎ ÀüÀÚ ºÎǰÀÇ ÀÛµ¿À» º¸ÀåÇÏ´Â Áß¿äÇÑ ¿ªÇÒÀ» ´ã´çÇÕ´Ï´Ù.

¹æÀ§ºñ Áõ°¡¿Í ÁöÁ¤ÇÐÀû ´ÙÀ̳ª¹Í½º ¼Ó¿¡¼­ Ç×°ø¿ìÁÖ ¹× ¹æÀ§¿ë MLCC ½ÃÀåÀº ¼¼°èÀûÀ¸·Î ¼ºÀå

  • Ç×°ø¿ìÁÖ ¹× ¹æÀ§¿ë MLCC ½ÃÀåÀº ¼¼°èÀûÀ¸·Î °ßÁ¶ÇÑ ¼ºÀåÀ» ÀÌ·ç°í ÀÖ½À´Ï´Ù. Áß±¹°ú Àεµ°¡ °ßÀÎÇÏ´Â ¾Æ½Ã¾ÆÅÂÆò¾ç¿¡¼­´Â 2022³â¿¡ 3¾ï 6,203¸¸ ´Þ·¯ÀÇ ¸ÅÃâÀ» ±â·ÏÇß°í, 2028³â¿¡´Â 10¾ï 6,000¸¸ ´Þ·¯·Î ±ÞÁõÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, 2023³âºÎÅÍ 2028³â±îÁöÀÇ CAGRÀº 20.37%·Î °ßÁ¶ÇÑ ¼ºÀå¼¼¸¦ º¸ÀÏ Àü¸ÁÀÔ´Ï´Ù. 2023³âºÎÅÍ 2024³âµµ±îÁö ¿¹»êÀÌ 59.4¾ï ·çÇÇ¿¡ À̸£´Â Àεµ´Â MLCC°¡ ƯÈ÷ ¹«ÀÎÇ×°ø±â(UAV)ÀÇ ¹æÀ§ ´É·ÂÀ» Çâ»ó½ÃŰ´Â µ¥ ÀÖ¾î ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ´ã´çÇϰí ÀÖÀ½À» °­Á¶Çϰí ÀÖ½À´Ï´Ù.
  • À¯·´Àº ±¹¹æºñÀÇ ÇöÀúÇÑ Áõ°¡¸¦ º¸¿´À¸¸ç 2020³âºÎÅÍ 2021³â±îÁö 3% Áõ°¡¸¦ ¹Ý¿µÇÏ¿© 2021³â±îÁö 1¾ï 1,605¸¸ ´Þ·¯¿¡ ´ÞÇß½À´Ï´Ù. 2022³â ·¯½Ã¾Æ¿Í ¿ìÅ©¶óÀ̳ª °£ÀÇ ºÐÀïÀÌ ¹ß»ýÇÑ °¡¿îµ¥ À¯·´Àº ¹æÀ§·ÂÀ» °­È­ÇßÀ¸¸ç, ±× °á°ú ¹æÀ§ºñ´Â 14% Áõ°¡ÇÑ 3,450¾ï ´Þ·¯·Î ±ÞÁõÇß½À´Ï´Ù. MLCC´Â ÀÌ·¯ÇÑ »óȲ¿¡¼­ Áß¿äÇÑ ¿ªÇÒÀ» ¼öÇàÇϰí, ±º¿ë±â ¹× ¹æÀ§ ½Ã½ºÅÛ¿¡¼­ ½ÅÈ£ÀÇ ¹«°á¼ºÀ» È®º¸Çϰí, 2028³â±îÁö 3¾ï 3,116¸¸ ´Þ·¯¶ó´Â ÀÌ ºÐ¾ßÀÇ ¿¹»ó ¼öÀÍ ¸ñÇ¥¿¡ °øÇåÇϰí ÀÖ½À´Ï´Ù.
  • ºÏ¹Ì´Â ¼¼°è ±º»çºñÀÇ Áö¹èÀû ¼¼·ÂÀ¸·Î ¹æÀ§¿¡ ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖÀ¸¸ç, 2022³â ´©Àû ÁöÃâÀº 9,120¾ï ´Þ·¯¿¡ ´ÞÇß½À´Ï´Ù. ƯÈ÷ ¹Ì±¹ÀÇ Ç×°ø¿ìÁÖ ¹× ¹æÀ§ ºÎ¹®Àº 3,910¾ï ´Þ·¯ÀÇ °æÁ¦ °øÇåÀ» Çϰí ÀÖÀ¸¸ç, MLCC´Â ±º¿ë±â ¹× ÀüÀÚÀü¹æÀ§ ½Ã½ºÅÛÀÇ È®½ÇÇÑ ¿î¿ë¿¡ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù.
  • Áßµ¿, ¾ÆÇÁ¸®Ä« ¹× ³²¹Ì¸¦ Æ÷ÇÔÇÑ ¼¼°è ±âŸ Áö¿ªÀº ÁöÁ¤ °úÁ¦, Å×·¯ À§Çù ¹× ±¹¹æ ÁöÃâ Áõ°¡¸¦ À§ÇØ ³ë·ÂÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Áö¿ª Àüü¿¡¼­ Ç×°ø¿ìÁÖ ¹× ¹æÀ§¿ë MLCC ½ÃÀåÀº °æÁ¦¿ªÇÐ, ÁöÁ¤ÇÐÀû ¿µÇâ, ¹æÀ§ ¿ì¼±¼øÀ§ÀÇ ¼ö·ÅÀ» ¹Ý¿µÇϰí ÀÖÀ¸¸ç, MLCC´Â Ç×°ø¿ìÁÖ ¹× ¹æÀ§ ½Ã½ºÅÛÀÇ ½Å·Ú¼º°ú È¿À²À» È®º¸ÇÏ´Â Áß¿äÇÑ ºÎǰÀ¸·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù.

¼¼°èÀÇ Ç×°ø¿ìÁÖ ¹× ¹æÀ§¿ë MLCC ½ÃÀå µ¿Çâ

¸ð´ÏÅ͸µ ¼Ö·ç¼Ç °³¼±¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡°¡ ½ÃÀåÀ» µÞ¹Þħ

  • MLCC ¼ö¿ä´Â Ç×°ø¿ìÁÖ ¹× ¹æÀ§(A&D) ºÐ¾ß, ƯÈ÷ ±º¿ë±â³ª UAV¿Í °°Àº ÀüÀÚÀü¹æÀ§ ½Ã½ºÅÛ µîÀÇ ¿ëµµ·Î ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ »ê¾÷¿¡¼­´Â ƯÁ¤ ±â´ÉÀ» °¡Áø ºÎǰÀ» Ȱ¿ëÇÏ´Â ½Å·ÚÇÒ ¼ö ÀÖ´Â ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½º ½Ã½ºÅÛÀÌ ÇÊ¿äÇÕ´Ï´Ù. MLCC´Â ³ôÀº ½Å·Ú¼º, °íǰÁú ÀÎÀÚ¿¡ ÀÇÇÑ ÃÖÀû ¼º´É, È¿°úÀûÀÎ EMI ¾ïÁ¦, ³ëÀÌÁî °¨¼Ò, ¶óÀÎ ÇÊÅ͸µ, ¿¡³ÊÁö ÃàÀû ±â´É, °íÁÖÆÄ ³ëÀÌÁî µðÄ¿Çøµ, Àü¾Ð ·¹±Ö·¹ÀÌ¼Ç ±â´ÉÀ» Á¦°øÇϱ⠶§¹®¿¡ ÀÌ·¯ÇÑ ¿ä±¸¸¦ ÃæÁ·½ÃŰ´Â µ¥ ¸Å¿ì Áß¿äÇÕ´Ï´Ù. MLCC´Â UAV ¹× ±âŸ Ç×°ø¿ìÁÖ ¹× ¹æÀ§ Àü·Â ÀüÀÚ ½Ã½ºÅÛÀÇ ¾ÈÁ¤ÀûÀÎ ÀÛµ¿À» º¸ÀåÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÕ´Ï´Ù.
  • UAVÀÇ »ý»ê ´ë¼ö´Â 2021³â 384¸¸ 7,000´ë¿¡¼­ 2022³â¿¡´Â 444¸¸ 8,000´ë·Î 14%ÀÇ ´ëÆø Áõ°¡¸¦ ±â·ÏÇß½À´Ï´Ù. ÀÌ·¯ÇÑ ¼ºÀåÀ¸·Î ÀÎÇØ ƯÈ÷ UAV¿ë, ƯÈ÷ °íÀü¾Ð Àü¿ø ¿ëµµÀ» À§ÇÑ MLCC ¼ö¿ä°¡ Å©°Ô Áõ°¡Çϰí ÀÖ½À´Ï´Ù. MLCC´Â UAV¿¡¼­ Àü¿ø ¹ÙÀÌÆÐ½º Ä¿ÆÐ½ÃÅÍ, DC-DC ÄÁ¹öÅÍÀÇ ÀÔÃâ·Â ÇÊÅÍ, ÆòȰ Ä¿ÆÐ½ÃÅÍ, µðÁöÅРȸ·Î ¹× LCD ¸ðµâÀÇ Çʼö ºÎǰÀ¸·Î¼­ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. A&D ±â¾÷Àº ƯÁ¤ ¿ä±¸ »çÇ×À» ÃæÁ·ÇÏ°í ½Ã½ºÅÛ ¼º´ÉÀ» Çâ»ó½ÃŰ´Â MLCCÀÇ °¡Ä¡¿Í Á߿伺À» Á¡Á¡ ´õ ÀνÄÇϰí ÀÖ½À´Ï´Ù.
  • ¼ÒÇüÈ­¿Í ±â´É °­È­ µî MLCCÀÇ Áøº¸´Â ¼ö¿ä¸¦ Áõ´ë½Ã۰í ÀÖ½À´Ï´Ù. ±× °á°ú, º¸´Ù °í¼º´ÉÀÎ ÀÚµ¿ Á¶Á¾ ½Ã½ºÅÛÀÇ °³¹ßÀ̳ª ±â´ÉÀ» ¼Õ»ó½ÃŰÁö ¾Ê°í MLCC¸¦ ÄÄÆÑÆ®ÇÏ°Ô ÅëÇÕÇÔÀ¸·Î½á ¿ëÀÌÇØÁø ½Ç½Ã°£ UAV ¿ëµµÀÇ È®´ë·Î À̾îÁö°í ÀÖ½À´Ï´Ù. °í½Å·Ú¼º°ú °í¼Ó ÀÀ´ä ½Ã°£ µî MLCCÀÇ ±â´É Çâ»óÀÌ ½Ç½Ã°£ UAV ¿ëµµÀÇ Ã¤¿ë¿¡ ¹ÚÂ÷¸¦ °¡Çϰí ÀÖ½À´Ï´Ù.

ÁöÁ¤ÇÐÀû ±äÀå Áõ°¡ ¹× ³ëÈÄÈ­µÈ ±º¿ë±â¸¦ ´ëüÇϱâ À§ÇÑ ±Ù´ëÈ­ °èȹÀÌ ±º»ç ÁöÃâÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

  • MLCC´Â ¹æÀ§¿ë ÀüÀÚ ±â±â¿¡ ÇʼöÀûÀÎ ºÎǰÀ¸·Î, Áß¿äÇÑ ¿¡³ÊÁö ÀúÀå ¹× ½ÅÈ£ ÇÊÅ͸µ ±â´ÉÀ» Á¦°øÇÕ´Ï´Ù. MLCC ¼ö¿ä´Â ¹æÀ§ºñÀÇ º¯µ¿¿¡ Á÷Á¢ ¿µÇâÀ» ¹ÞÀ¸¸ç, ƯÈ÷ ¹Ì»çÀÏ ½Ã½ºÅÛÀ̳ª ¹æÀ§ Åë½Å±â±â µîÀÇ ºÐ¾ß¿¡¼­´Â ÁöÃâ Áõ°¡°¡ ¼ö¿ä Áõ°¡¸¦ ÃËÁøÇÕ´Ï´Ù. ±×·¯³ª COVID-19 ÆÒµ¥¹Í ½Ã ±¹¹æ ÁöÃâÀÇ °¨¼Ò´Â ¾÷°è°¡ ÀÇ·á ±â¼ú¿¡ ÁßÁ¡À» ¿Å°Ü MLCC ½ÃÀå¿¡ ºÎÁ¤ÀûÀÎ ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. ¹æÀ§ºñÀÇ ¾ÈÁ¤È­¿¡ µû¶ó ¹æÀ§¿ë ÀüÀÚ±â±âÀÇ MLCC ¼ö¿ä´Â ȸº¹µÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
  • COVID-19 ÆÒµ¥¹ÍÀº ¼¼°èÀÇ ¿ì¼±¼øÀ§°¡ ÀÇ·á±â¼ú ¹× ½ÇÇè¿ë ½ÃÇèÀåÄ¡·Î À̵¿Ç߱⠶§¹®¿¡ ¹æÀ§ÀüÀÚ¿¡ Áß´ëÇÑ ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. ÀÌ ¶§¹®¿¡ °í½Å·Ú¼º ¹æÀ§¿ë ÀüÀÚ ±â±â¿¡ ´ëÇÑ ¼ö¿ä°¡ °¨¼ÒÇÏ¿© °íÀü¾Ð ¹æÀ§ ½ÃÀåÀ» ¾ÈÁ¤½Ã۱â À§ÇÑ ³ë·ÂÀÌ ÇÊ¿äÇÏ°Ô µÇ¾ú½À´Ï´Ù. ÆÒµ¥¹ÍÀº ¸¹Àº ¹æÀ§ ¼öÁ÷ Ç÷§Æû¿¡µµ ¾Ç¿µÇâÀ» ¹ÌÄ¡°í, ¿¹±âÄ¡ ¾ÊÀº È¥¶õ¿¡ Á÷¸éÇßÀ» ¶§ÀÇ ÀûÀÀ¼º°ú ȸº¹·ÂÀÇ Á߿伺À» ºÎ°¢½ÃÄ×½À´Ï´Ù.
  • 2012³âºÎÅÍ 2016³â±îÁö Á¤ºÎÀÇ ±äÃà ÀçÁ¤ÀÇ °á°ú·Î ¹æÀ§ ½ÃÀåÀº Á¤Ã¼µÇ¾ú½À´Ï´Ù. ±×·¯³ª 2017³âºÎÅÍ 2019³â±îÁö´Â ÇöÀúÇÑ È£ÀüÀÌ ÀϾ Ç×°ø±â³ª ¿ìÁÖ ÀüÀÚ±â±â µî ƯÁ¤ÇÑ Á¼Àº ÃÖÁ¾ ½ÃÀå ºÐ¾ß¿¡¼­ ÇöÀúÇÑ ¼ºÀåÀÌ º¸¿´½À´Ï´Ù. ±×·¯³ª 2020³â¿¡´Â ÆÒµ¥¹ÍÀÌ ÀÌ ¼ºÀå ±Ëµµ¸¦ ¹æÇØÇÏ¿© ¹æÀ§¿ë ÀüÀÚ±â±â ¼ö¿ä°¡ 11% °¨¼ÒÇß½À´Ï´Ù. ¹Ì±¹ÀÇ ÁÖµµ±ÇÀÌ ±³Ã¼µÊ¿¡ µû¶ó 2022³â±îÁöÀÇ ±¹¹æ ÁöÃâÀº ¾ïÁ¦µÇ¾ú½À´Ï´Ù. ±×·³¿¡µµ ºÒ±¸Çϰí 2023³â¿¡´Â ¹Ì»çÀϰú ¹Ì»çÀÏ ¹æÀ§ ½Ã½ºÅÛ¿¡ ÃÊÁ¡À» ¸ÂÃá ¼Ò±Ô¸ðÀÇ Á¤¹ÐÇÑ À¯·´ ¹æÀ§ ÀüÀÚ ½ÃÀå¿¡ »õ·Î¿î ºñÁî´Ï½º ±âȸ°¡ »ý±æ °ÍÀ¸·Î ¿¹»óµÇ¾ú½À´Ï´Ù.

Ç×°ø¿ìÁÖ ¹× ¹æÀ§ MLCC »ê¾÷ °³¿ä

Ç×°ø¿ìÁÖ ¹× ¹æÀ§¿ë MLCC ½ÃÀåÀº Àû´çÈ÷ ÅëÇÕµÇ¾î »óÀ§ 5°³»ç¿¡¼­ 44.17%¸¦ Â÷ÁöÇϰí ÀÖ½À´Ï´Ù. ÀÌ ½ÃÀå ÁÖ¿ä ±â¾÷Àº ´ÙÀ½°ú °°½À´Ï´Ù. Murata Manufacturing, Samsung Electro-Mechanics, Taiyo Yuden, Walsin Technology Corporation ¹× Yageo Corporation(¾ËÆÄºª¼ø Á¤·Ä).

±âŸ ÇýÅÃ

  • ¿¢¼¿ Çü½Ä ½ÃÀå ¿¹Ãø(ME) ½ÃÆ®
  • 3°³¿ù°£ÀÇ ¾Ö³Î¸®½ºÆ® ¼­Æ÷Æ®

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à ¹× ÁÖ¿ä Á¶»ç °á°ú

Á¦2Àå º¸°í¼­ Á¦¾È

Á¦3Àå ¼­¹®

  • Á¶»ç ÀüÁ¦Á¶°Ç ¹× ½ÃÀå Á¤ÀÇ
  • Á¶»ç ¹üÀ§
  • Á¶»ç ¹æ¹ý

Á¦4Àå ÁÖ¿ä »ê¾÷ µ¿Çâ

  • ¹«ÀÎ Ç×°ø±â »ý»ê
    • ¼¼°èÀÇ ¹«ÀÎ Ç×°ø±â »ý»ê ´ë¼ö
  • ±º»ç ÁöÃâ
    • ¼¼°èÀÇ ±º»ç ÁöÃâ
  • ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©
  • ¹ë·ùüÀÎ ¹× À¯Åëä³Î ºÐ¼®

Á¦5Àå ½ÃÀå ¼¼ºÐÈ­

  • Â÷·® À¯Çüº°
    • À¯ÀÎ Ç×°ø±â
    • ¹«ÀÎ Ç×°ø±â
  • ÄÉÀ̽º »çÀÌÁ
    • 0 201
    • 0 402
    • 0 603
    • 1 005
    • 1 210
    • ±âŸ
  • Àü¾Ðº°
    • 600V-1100V
    • 600V ¹Ì¸¸
    • 1100V ÀÌ»ó
  • Á¤Àü ¿ë·®º°
    • 10¥ìF-100¥ìF
    • 10¥ìF ¹Ì¸¸
    • 100¥ìF ÀÌ»ó
  • À¯Àü À¯Çüº°
    • Ŭ·¡½º 1
    • Ŭ·¡½º 2
  • Áö¿ªº°
    • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • À¯·´
    • ºÏ¹Ì
    • ¼¼°è ±âŸ Áö¿ª

Á¦6Àå °æÀï ±¸µµ

  • ÁÖ¿ä Àü·« µ¿Çâ
  • ½ÃÀå Á¡À¯À² ºÐ¼®
  • ±â¾÷ »óȲ
  • ±â¾÷ ÇÁ·ÎÆÄÀÏ
    • Kyocera AVX Components Corporation(Kyocera Corporation)
    • Maruwa Co ltd
    • Murata Manufacturing Co., Ltd
    • Nippon Chemi-Con Corporation
    • Samsung Electro-Mechanics
    • Samwha Capacitor Group
    • Taiyo Yuden Co., Ltd
    • TDK Corporation
    • Vishay Intertechnology Inc.
    • Walsin Technology Corporation
    • Yageo Corporation

Á¦7Àå CEO¿¡ ´ëÇÑ ÁÖ¿ä Àü·«Àû Áú¹®

Á¦8Àå ºÎ·Ï

  • ¼¼°è °³¿ä
    • °³¿ä
    • Porter's Five Forces ºÐ¼® ÇÁ·¹ÀÓ¿öÅ©
    • ¼¼°è ¹ë·ùüÀÎ ºÐ¼®
    • ½ÃÀå ¿ªÇÐ(DROs)
  • Á¤º¸¿ø ¹× Âü°í¹®Çå
  • µµÇ¥ À϶÷
  • ÁÖ¿ä ÀλçÀÌÆ®
  • µ¥ÀÌÅÍ ÆÑ
  • ¿ë¾îÁý
AJY 25.04.14

The Aerospace and Defence MLCC Market size is estimated at 1.09 billion USD in 2024, and is expected to reach 2.86 billion USD by 2029, growing at a CAGR of 21.39% during the forecast period (2024-2029).

Aerospace and Defence MLCC - Market - IMG1

Optimized avionic MLCC selection enhances aerospace and defense systems

  • The aerospace and defense industries are witnessing a rapid transformation with the increasing adoption of advanced avionics technologies, including AI, IoT, and 5G communications. These trends drive the need for MLCCs with higher capacitance, lower ESR, and improved reliability to support cutting-edge electronic systems in aircraft. Case sizes 0 201 and 0 402 MLCCs are popular for compact and lightweight electronic circuits in avionics. Their small form factor and high capacitance make them ideal for miniaturized devices, such as flight control systems, navigation systems, and communication equipment in UAVs and other small aircraft. The trend toward miniaturization and weight reduction in avionics drives the demand for case sizes 0 201 and 0 402 MLCCs.
  • Case sizes 0 603 and 1 005 MLCCs balance compactness and capacitance, making them versatile components in various avionic applications. They are commonly used in cockpit displays, sensor systems, and power distribution networks in manned and unmanned aerial vehicles. The increasing adoption of advanced avionics systems in modern aircraft enhances the demand for case sizes 0 603 and 1 005 MLCCs.
  • Case size 1 210 MLCCs offer higher capacitance values and are well-suited for power management, energy storage, and filtering applications in avionics. These larger-sized MLCCs are commonly utilized in critical avionic systems like radar systems, satellite communications, and advanced avionics control units. The evolving need for more powerful and sophisticated avionic technologies contributes to the demand for case sizes 1 210 and other MLCCs. The demand for UAVs and MAVs is growing, and MLCCs play a vital role in ensuring stable and efficient electronic components for successful operation.

The global aerospace and defense MLCC market thrives amid rising defense expenditures and geopolitical dynamics

  • The aerospace and defense MLCC market experiences robust growth globally. In Asia-Pacific, led by China and India, the segment generated USD 362.03 million in 2022, with a projected surge to USD 1.06 billion by 2028, showcasing a robust CAGR of 20.37% from 2023 to 2028. India, with a substantial INR 5.94 lakh crore budget for FY 2023-24, emphasizes MLCCs' pivotal role in advancing defense capabilities, particularly in unmanned aerial vehicles (UAVs).
  • Europe witnessed a noteworthy uptick in defense spending, reaching USD 116.05 million by 2021, reflecting a 3% increase from 2020 to 2021. Amid the Russia-Ukraine conflict in 2022, Europe reinforced its defense capabilities, resulting in a 14% surge in defense expenditures to USD 345 billion. MLCCs play a vital role in this context, ensuring signal integrity in military aircraft and defense systems and contributing to the sector's envisioned revenue target of USD 331.16 million by 2028.
  • North America, as the dominant force in global military expenditures, invests significantly in defense, with a cumulative expenditure of USD 912 billion in 2022. The aerospace and defense sector, particularly in the United States, contributes USD 391 billion to the economy, with MLCCs playing a pivotal role in ensuring the reliable operation of military aircraft and electronic warfare defense systems.
  • The Rest of the World, encompassing the Middle East, Africa, and South America, grapples with geopolitical challenges, terrorism threats, and increased defense spending. Across these regions, the aerospace and defense MLCC market reflects a convergence of economic dynamics, geopolitical influences, and defense priorities, with MLCCs emerging as critical components ensuring the reliability and efficiency of aerospace and defense systems.

Global Aerospace and Defence MLCC Market Trends

Growing demand for improved surveillance solutions is propelling the market

  • The demand for MLCCs is rising in the aerospace and defense (A&D) sectors, especially in applications such as military aircraft and electronic warfare defense systems like UAVs. These industries require reliable power electronic systems that utilize components with specific functionalities. MLCCs are crucial in meeting these demands as they offer high reliability, optimal performance with a high-quality factor, effective EMI suppression, noise reduction, line filtering, energy storage capabilities, decoupling of high-frequency noise, and voltage regulation capabilities. MLCCs are critical in ensuring the dependable operation of UAVs and other aerospace and defense power electronic systems.
  • The production of UAVs experienced a significant 14% increase from 3.847 million in 2021 to 4.448 million in 2022. This growth has led to a substantial rise in the demand for MLCCs, particularly for UAVs, specifically for high-voltage power supply applications. MLCCs play critical roles in UAVs as power supply bypass capacitors, input/output filters in DC-DC converters, smoothing capacitors, and essential components in digital circuits and LCD modules. A&D companies are increasingly recognizing the value and significance of MLCCs in meeting their specific requirements and enhancing the performance of their systems.
  • Advancements in MLCCs, including smaller sizes and enhanced capabilities, have increased demand. This has led to the development of more capable autopilot systems and the expansion of real-time UAV applications facilitated by the compact integration of MLCCs without compromising functionality. Improved capabilities of MLCCs, such as high reliability and fast response times, have fueled the adoption of real-time UAV applications.

Growing geopolitical tensions and the modernization plans to replace aging military aircraft are propelling military spending

  • MLCCs are vital components in defense electronics, providing crucial energy storage and signal filtering capabilities. The demand for MLCCs is directly influenced by fluctuations in defense spending, with increased spending driving higher demand, particularly in areas such as missile systems and defense communication equipment. However, the decline in defense spending during the COVID-19 pandemic negatively affected the MLCC market as the industry shifted focus to medical technology. As defense spending stabilizes, the demand for MLCCs in defense electronics is expected to rebound.
  • The COVID-19 pandemic had significant implications for defense electronics as global priorities shifted toward medical technology and laboratory test equipment. This led to a decline in demand for high-reliability defense electronics, requiring efforts to stabilize the high-voltage defense markets. The pandemic also adversely affected many defense vertical platforms, highlighting the importance of adaptability and resilience in the face of unexpected disruptions.
  • Between 2012 and 2016, government-imposed sequestering resulted in a stagnant defense market. However, a notable turnaround occurred from 2017 to 2019, with remarkable growth in specific narrow end-market areas such as aircraft and space electronics. However, the pandemic disrupted this growth trajectory in 2020, causing an 11% decline in defense electronics demand. The shift in the US leadership restrained defense spending through 2022. Nonetheless, 2023 was expected to bring new opportunities in the small and precise European markets for defense electronics, focused on missiles and missile defense systems.

Aerospace and Defence MLCC Industry Overview

The Aerospace and Defence MLCC Market is moderately consolidated, with the top five companies occupying 44.17%. The major players in this market are Murata Manufacturing Co., Ltd, Samsung Electro-Mechanics, Taiyo Yuden Co., Ltd, Walsin Technology Corporation and Yageo Corporation (sorted alphabetically).

Additional Benefits:

  • The market estimate (ME) sheet in Excel format
  • 3 months of analyst support

TABLE OF CONTENTS

1 EXECUTIVE SUMMARY & KEY FINDINGS

2 REPORT OFFERS

3 INTRODUCTION

  • 3.1 Study Assumptions & Market Definition
  • 3.2 Scope of the Study
  • 3.3 Research Methodology

4 KEY INDUSTRY TRENDS

  • 4.1 Aerial Vehicle Production
    • 4.1.1 Global Unmanned Aerial Vehicles Production
  • 4.2 Military Spending
    • 4.2.1 Global Military Spending
  • 4.3 Regulatory Framework
  • 4.4 Value Chain & Distribution Channel Analysis

5 MARKET SEGMENTATION (includes market size in Value in USD and Volume, Forecasts up to 2029 and analysis of growth prospects)

  • 5.1 Vehicle Type
    • 5.1.1 Manned Aerial Vehicle
    • 5.1.2 Unmanned Aerial Vehicle
  • 5.2 Case Size
    • 5.2.1 0 201
    • 5.2.2 0 402
    • 5.2.3 0 603
    • 5.2.4 1 005
    • 5.2.5 1 210
    • 5.2.6 Others
  • 5.3 Voltage
    • 5.3.1 600V to 1100V
    • 5.3.2 Less than 600V
    • 5.3.3 More than 1100V
  • 5.4 Capacitance
    • 5.4.1 10 μF to 100 μF
    • 5.4.2 Less than 10 μF
    • 5.4.3 More than 100 μF
  • 5.5 Dielectric Type
    • 5.5.1 Class 1
    • 5.5.2 Class 2
  • 5.6 Region
    • 5.6.1 Asia-Pacific
    • 5.6.2 Europe
    • 5.6.3 North America
    • 5.6.4 Rest of the World

6 COMPETITIVE LANDSCAPE

  • 6.1 Key Strategic Moves
  • 6.2 Market Share Analysis
  • 6.3 Company Landscape
  • 6.4 Company Profiles
    • 6.4.1 Kyocera AVX Components Corporation (Kyocera Corporation)
    • 6.4.2 Maruwa Co ltd
    • 6.4.3 Murata Manufacturing Co., Ltd
    • 6.4.4 Nippon Chemi-Con Corporation
    • 6.4.5 Samsung Electro-Mechanics
    • 6.4.6 Samwha Capacitor Group
    • 6.4.7 Taiyo Yuden Co., Ltd
    • 6.4.8 TDK Corporation
    • 6.4.9 Vishay Intertechnology Inc.
    • 6.4.10 Walsin Technology Corporation
    • 6.4.11 Yageo Corporation

7 KEY STRATEGIC QUESTIONS FOR MLCC CEOS

8 APPENDIX

  • 8.1 Global Overview
    • 8.1.1 Overview
    • 8.1.2 Porter's Five Forces Framework
    • 8.1.3 Global Value Chain Analysis
    • 8.1.4 Market Dynamics (DROs)
  • 8.2 Sources & References
  • 8.3 List of Tables & Figures
  • 8.4 Primary Insights
  • 8.5 Data Pack
  • 8.6 Glossary of Terms
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦