½ÃÀ庸°í¼­
»óǰÄÚµå
1519968

¼¼°èÀÇ Drug Discovery¿ë AI ½ÃÀå(2024-2031³â)

Global AI in Drug Discovery Market 2024-2031

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Orion Market Research | ÆäÀÌÁö Á¤º¸: ¿µ¹® 175 Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Drug Discovery¿ë AI ½ÃÀåÀº ¿¹Ãø ±â°£(2024-2031³â)¿¡ CAGR 40.3%ÀÇ ºñ¾àÀûÀÎ ¼ºÀåÀÌ Àü¸ÁµË´Ï´Ù. ½ÃÀå ¼ºÀåÀÇ ¹è°æ¿¡´Â ¾à¹° ÃÖÀûÈ­, ¿µÇâ·Â Àִ ǥÀû¿¡ ´ëÇÑ °­Á¶, °¡»ó ½ºÅ©¸®´×¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡°¡ ÀÖÀ¸¸ç, AlÀº Àü ¼¼°è¿¡¼­ ´Ù¾çÇÑ ½ÃÇèÀ» Àå·ÁÇÏ¿© ¿¬±¸¸¦ °¡¼ÓÈ­ÇÕ´Ï´Ù. ¹Ì±¹ ½ÄǰÀǾ౹(FDA) ÀǾàǰÆò°¡¿¬±¸¼¾ÅÍ(CDER)¿¡ µû¸£¸é 2023³â ¹Ì±¹¿¡¼­ 55°³ÀÇ ½Å¾àÀÌ ½ÂÀÎ ¹× Ãâ½ÃµÉ ¿¹Á¤À̸ç, 2023³â ½ÂÀÎµÈ ½Å¾àÀÇ 51.0%¿¡ ÇØ´çÇÏ´Â 55°³ ǰ¸ñ Áß 28°³ ǰ¸ñÀº ½Å°æ°è ¼Õ»ó ÅðÇ༺ Áúȯ, ½É°¢ÇÏ°í »ý¸íÀ» À§ÇùÇÏ´Â Áø±Õ¼º °¨¿°, ½É°¢ÇÑ Ä­µð´ÙÁõ, ħ½À¼º Ä­µð´ÙÁõ, ³ú ¹ß´Þ¿¡ ¿µÇâÀ» ¹ÌÄ¡´Â À¯Àü¼º ½Å°æÁúȯÀÎ ·¹Æ®ÁõÈıº µî Èñ±ÍÁúȯÀ» ´ë»óÀ¸·Î Çϰí ÀÖÀ¸¸ç, Èñ±ÍÁúȯġ·áÁ¦·Î ÁöÁ¤µÇ¾ú½À´Ï´Ù.

½ÃÀå ¿ªÇÐ

¾à¹°ÀÇ À¯È¿¼º ¹× µ¶¼º ¿¹Ãø¿¡¼­ ¸Ó½Å·¯´×(ML)ÀÇ ¿ªÇÒ Áõ´ë

ÀáÀçÀû Ä¡·á ºÐÀÚÀÇ µ¶¼º°ú È¿´ÉÀ» ¿¹ÃøÇÏ´Â °ÍÀº Á¦¾à È­Çп¡¼­ AIÀÇ ÁÖ¿ä ¿ëµµ Áß ÇϳªÀÔ´Ï´Ù. ±âÁ¸ÀÇ ÀǾàǰ °³¹ß ¹æ¹ýÀº È­ÇÕ¹°ÀÌ ÀÎü¿¡ ¹ÌÄ¥ ¼ö ÀÖ´Â ¿µÇâÀ» Æò°¡Çϱâ À§ÇØ ³ëµ¿Áý¾àÀûÀÌ°í ½Ã°£ÀÌ ¸¹ÀÌ °É¸®´Â ½ÇÇè¿¡ ÀÇÁ¸ÇÏ´Â °æ¿ì°¡ ¸¹¾Ò½À´Ï´Ù. ÀÌ·¯ÇÑ Á¦¾àÀº ¸Ó½Å·¯´×°ú °°Àº AI ±â¹ýÀ» ÅëÇØ ÇØ°áÇÒ ¼ö Àִµ¥, ML ¾Ë°í¸®ÁòÀº ¹æ´ëÇÑ µ¥ÀÌÅÍ Á¶»ç¿¡¼­ Àΰ£ ¿¬±¸ÀÚ°¡ ³õÄ¥ ¼ö ÀÖ´Â ÆÐÅϰú Ãß¼¼¸¦ ¹ß°ßÇÒ ¼ö ÀÖ½À´Ï´Ù. ±âÁ¸ ¹æ½Ä¿¡ ºñÇØ ºÎÀÛ¿ëÀÌ ÀûÀº »õ·Î¿î »ý¸®È°¼º¹°ÁúÀ» ÈξÀ ºü¸£°Ô Á¦¾ÈÇÒ ¼ö ÀÖ½À´Ï´Ù.

AI¸¦ ½Å¾à°³¹ß ÇÁ·Î¼¼½º¿¡ ÅëÇÕÇÏ¿© ºñ¿ë Àý°¨ÀÇ °¡´É¼º

Ư¡°ú ±â´ÉÀ» °¡Áø »õ·Î¿î ºÐÀÚÀÇ °³¹ßÀº AI°¡ ½Å¾à°³¹ß¿¡ Ȱ¿ëµÇ´Â ¶Ç ´Ù¸¥ Áß¿äÇÑ ¹æ¹ýÀÔ´Ï´Ù. ±âÁ¸ ±â¼ú¿¡¼­´Â ±âÁ¸ ºÐÀÚ¸¦ ½Äº°ÇÏ°í º¯Çü½ÃŰ´Â ³ëµ¿·Â°ú ½Ã°£ÀÌ ¸¹ÀÌ ¼Ò¿äµÇ´Â ÇÁ·Î¼¼½º¿¡ ÀÇÁ¸ÇÏ´Â °æ¿ì°¡ ¸¹¾Ò½À´Ï´Ù. ¹Ý¸é, AI¸¦ Ȱ¿ëÇÑ ¹æ¹ýÀº ¿øÇϴ Ư¼ºÀ̳ª Ȱ¼ºÀ» °¡Áø »õ·Î¿î È­ÇÕ¹°À» ºü¸£°í È¿°úÀûÀ¸·Î ±¸ÃàÇÒ ¼ö ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î ÃÖ±Ù µö·¯´×(DL) ¾Ë°í¸®ÁòÀº ¿ëÇØµµ, Ȱ¼º µî ¹Ù¶÷Á÷ÇÑ Æ¯¼ºÀ» °¡Áø »õ·Î¿î Ä¡·áÁ¦ ºÐÀÚ¸¦ Á¦¾ÈÇϱâ À§ÇØ ¾Ë·ÁÁø ¾à¹° È­ÇÕ¹°°ú ÇØ´ç Ư¼ºÀÇ µ¥ÀÌÅͼ¼Æ®·Î ÈÆ·ÃµÇ¾ú½À´Ï´Ù. ÀÌ´Â ½Å¾à Èĺ¸¹°ÁúÀ» ½Å¼ÓÇϰí È¿°úÀûÀ¸·Î ¼³°èÇÒ ¼ö ÀÖ´Â ÀÌ·¯ÇÑ ¹æ¹ýÀÇ °¡´É¼ºÀ» º¸¿©ÁÝ´Ï´Ù.

½ÃÀå ¼¼ºÐÈ­

  • ½ÃÀåÀº ÄÄÆ÷³ÍÆ®¸¦ ±âÁØÀ¸·Î ¼ÒÇÁÆ®¿þ¾î ¹× ¼­ºñ½º·Î ±¸ºÐµË´Ï´Ù.
  • Ä¡·á ¿µ¿ª¿¡ µû¶ó ½ÃÀåÀº Á¾¾ç, °¨¿°, ½Å°æ, ´ë»ç¼º Áúȯ, ½ÉÇ÷°ü Áúȯ, ¸é¿ª, ±âŸ(¿°Áõ¼º Áúȯ)·Î ±¸ºÐµË´Ï´Ù.
  • ¿ëµµº°·Î´Â ¾à¹° ÃÖÀûÈ­ ¹× Àç»ç¿ë, ÀüÀÓ»ó½ÃÇè, ¾à¹° ½ºÅ©¸®´×À¸·Î ±¸ºÐµË´Ï´Ù.
  • ÃÖÁ¾»ç¿ëÀÚ¸¦ ±âÁØÀ¸·Î ½ÃÀåÀº Á¦¾à ¹× »ý¸í°øÇÐ ±â¾÷, CRO ¹× ¿¬±¸¼¾ÅÍ, Çмú ¹× Á¤ºÎ ±â°üÀ¸·Î ±¸ºÐµË´Ï´Ù.

Á¾¾ç ¿µ¿ªÀÌ °¡Àå Å« ºÎ¹®À» Â÷ÁöÇÒ °ÍÀ¸·Î Àü¸Á

½ÃÀå ¼¼ºÐÈ­¿¡¼­ Á¾¾ç ºÐ¾ß°¡ °¡Àå Å« Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¼ºÀåÀ» Áö¿øÇÏ´Â ÁÖ¿ä ¿äÀÎÀ¸·Î´Â ¹æ´ëÇÑ µ¥ÀÌÅͼ¼Æ®¸¦ ¼±º°Çϰí ÀλçÀÌÆ®À» µµÃâÇϱâ À§ÇØ ¸¸µé¾îÁø ÇöÀçÀÇ AI ½Ã½ºÅÛÀÇ °­È­°¡ ÀÖÀ¸¸ç, AI¸¦ Ȱ¿ëÇϸé ȯÀÚ¿¡°Ô ¸ÂÃã Ä¡·á¸¦ Á¦°øÇÒ ¼ö ÀÖ½À´Ï´Ù. ȯÀÚÀÇ º´·Â ¹× À¯ÀüÀÚ ¼­¿­À» Á¦°øÇÏ´Â °Í ¿Ü¿¡µµ ½ºÄµÀ» ÅëÇØ Á¾¾çÀ» Á¶±â¿¡ ¹ß°ßÇϰí ȯÀÚ ¸ÂÃãÇü ¾à¹° Åõ¿© ÆÐÅÏÀ» È®¸³ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î 2024³â 4¿ù ¹Ì±¹ ±¹¸³º¸°Ç¿ø(NIH)Àº Á¾¾ç³» °³º° ¼¼Æ÷ÀÇ µ¥ÀÌÅ͸¦ Ȱ¿ëÇØ ÇØ´ç »ç¶÷ÀÇ Á¾¾çÀÌ Æ¯Á¤ ¾à¹°¿¡ ¹ÝÀÀÇÒÁö ¿©ºÎ¸¦ ¿¹ÃøÇÏ´Â ÀΰøÁö´É(AI) ÅøÀ» °³¹ßÇß½À´Ï´Ù. ÀÌ ¿¬±¸´Â ÀüÀÌ ÇнÀ(metastasis learning)À̶ó´Â ¸Ó½Å·¯´× ±â¼úÀ» »ç¿ëÇÏ¿© ³Î¸® ÀÌ¿ë °¡´ÉÇÑ ´ë·® RNA ½ÃÄö½Ì µ¥ÀÌÅ͸¦ »ç¿ëÇÏ¿© ¾à¹° ¹ÝÀÀÀ» ¿¹ÃøÇÏ´Â AI ¸ðµ¨À» ÈÆ·Ã½ÃŲ ÈÄ, ´ÜÀÏ ¼¼Æ÷ÀÇ RNA ½ÃÄö½Ì µ¥ÀÌÅ͸¦ »ç¿ëÇÏ¿© ¸ðµ¨À» ¹Ì¼¼ Á¶Á¤ÇÒ ¼ö ÀÖ´ÂÁö ¿©ºÎ¸¦ Á¶»çÇß½À´Ï´Ù.

¾à¹°ÀÇ ÃÖÀûÈ­ ¹× Àç»ç¿ëÀÌ »ó´çÇÑ ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÕ´Ï´Ù.

¾à¹° ÃÖÀûÈ­ ¹× Àç»ç¿ë ºÐ¾ß´Â ½ÃÀå¿¡¼­ »ó´çÇÑ Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¾à¹°ÀÇ È¿´É°ú ºÎÀÛ¿ëÀº µö·¯´×(DL) ¹× ¾à¹° ¸ðµ¨¸µ°ú °°Àº Çõ½ÅÀûÀÎ AI ½Ã½ºÅÛÀ» »ç¿ëÇÏ¿© Á¶»çÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ AI ±â¼úÀÇ ¹ßÀüÀ¸·Î ÀǾàǰÀÇ ¿¬±¸, ºñ±³, º¸´Ù È¿À²ÀûÀÎ ÇüÅ·ÎÀÇ Àç»ç¿ëÀÌ ¿ëÀÌÇØÁ® ºÎÀÛ¿ëÀÌ °¨¼ÒÇϰí Àü¹ÝÀûÀÎ È¿´ÉÀÌ Çâ»óµÇ°í ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î ¾×¼¾Ãò¾î´Â 2024³â 1¿ù Ŭ¶ó¿ìµå¿¡¼­ ÀÓ»ó½ÃÇèÀ» ½Ã¹Ä·¹À̼ÇÇÏ¿© Á¦¾à»ç ¹× »ý¸í°øÇÐ ±â¾÷ÀÌ È¯ÀÚ¸¦ À§ÇÑ Ä¡·á¹ýÀ» º¸´Ù ºü¸£°í ºñ¿ë È¿À²ÀûÀ¸·Î °³¹ßÇÒ ¼ö ÀÖµµ·Ï µ½´Â AI ±â¹Ý ÀÓ»ó½ÃÇè ¼³°è ±â¾÷ ÄöÆ®Çコ(QuantHealth)¸¦ ÀμöÇß´Ù, QuantHealthÀÇ Ç÷§ÆûÀº ÀÓ»ó½ÃÇèÀ» ´ë±Ô¸ð·Î ½Ã¹Ä·¹À̼ÇÇÏ¿© ¸®½ºÅ©¸¦ ÁÙÀ̰í ÀǾàǰ °³¹ßÀ» °¡¼ÓÈ­Çϰí ÃÖÀûÈ­ÇÒ ¼ö ÀÖµµ·Ï µµ¿ÍÁÖ´Â AI ±â¹Ý ÀÓ»ó½ÃÇè ¼³°è ±â¾÷ QuantHealth¿¡ ¾×¼¾Ãò¾î º¥Ã³½º¸¦ ÅëÇØ Àü·«Àû ÅõÀÚ¸¦ ´ÜÇàÇß´Ù°í ¹ßÇ¥Çß½À´Ï´Ù.

Áö¿ª Àü¸Á

¼¼°è ½Å¾à°³¹ß AI ½ÃÀåÀº ºÏ¹Ì(¹Ì±¹, ij³ª´Ù), À¯·´(¿µ±¹, ÀÌÅ»¸®¾Æ, ½ºÆäÀÎ, µ¶ÀÏ, ÇÁ¶û½º, ±âŸ À¯·´), ¾Æ½Ã¾ÆÅÂÆò¾ç(Àεµ, Áß±¹, ÀϺ», Çѱ¹, ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç), ±âŸ Áö¿ª(Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«, ¶óƾ¾Æ¸Þ¸®Ä«)À¸·Î ¼¼ºÐÈ­µË´Ï´Ù.

¾Æ½Ã¾ÆÅÂÆò¾ç ¿¬±¸ ¹× Á¦¾à-¹ÙÀÌ¿À ±â¾÷ÀÇ ¼ºÀå

  • ¾Æ½Ã¾ÆÅÂÆò¾ç ½ÃÀåÀº Çѱ¹, Áß±¹, Àεµ µîÀÇ ±¹°¡¿¡¼­ ¿¬±¸ ¹× Á¤¹ÐÀÇ·á ÇÁ·Î±×·¥¿¡ ´ëÇÑ Á¤ºÎ ÀÚ±Ý Áö¿ø Áõ°¡¿Í ÀÌ Áö¿ª¿¡ ÁøÃâÇÑ ÁÖ¿ä Á¦¾à»çµéÀÌ Al ±â¹Ý ±â¼úÀ» ½Å¾à ¿¬±¸°³¹ß¿¡ Ȱ¿ëÇÔ¿¡ µû¶ó ¼ºÀåÀÌ ¿¹»óµË´Ï´Ù. ÀÌ Áö¿ªÀÇ ½Å¾à°³¹ß ½ÃÀå¿¡¼­ÀÇ ÀÔÁö´Â »ê¾÷°è, Á¤ºÎ, ÇÐ°è ¹× ±â¼ú ÇÁ·Î¹ÙÀÌ´õ °£ÀÇ ÆÄÆ®³Ê½ÊÀ» ÅëÇÑ Çõ½Å ÃËÁø¿¡ ´ëÇÑ ³ë·ÂÀ¸·Î ´õ¿í °­È­µÇ°í ÀÖ½À´Ï´Ù.
  • 2023³â 12¿ù India Brand Equity Foundation, Biotechnology Presentation Industry Report¿¡ µû¸£¸é ÀεµÀÇ »ý¸í°øÇÐ »ê¾÷Àº 2025³â±îÁö 1,500¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀεµÀÇ ¹é½Å »ê¾÷Àº 20¾ï ´Þ·¯¿¡¼­ 50¾ï ´Þ·¯·Î ¼ºÀåÇÒ ¼ö Àִµ¥, ÀÌ´Â Àεµ¿Í ¼¼°èÀÇ »õ·Î¿î Á¦¾à ȸ»çµéÀÌ ¹é½ÅÀ» Æ÷Æ®Æú¸®¿ÀÀÇ Áß¿äÇÑ ºÎºÐÀ¸·Î »ï°í Àֱ⠶§¹®ÀÔ´Ï´Ù. Àεµ¿¡´Â 665°³ÀÇ ¹Ì±¹ FDA ½ÂÀÎ °øÀåÀÌ ÀÖ½À´Ï´Ù. Àü ¼¼°è ½Å¾àÇã°¡½Åû(ANDA)ÀÇ 44.0%, 1,400°³ ÀÌ»óÀÇ Á¦Á¶°øÀåÀÌ ¼¼°èº¸°Ç±â±¸(WHO)ÀÇ ¿ä±¸»çÇ×À» ÁؼöÇϰí ÀÖ½À´Ï´Ù. »ý¸í°øÇкο¡¼­´Â 1,484°³ÀÇ ÇÁ·ÎÁ§Æ®°¡ ÁøÇà ÁßÀÔ´Ï´Ù.

ºÏ¹Ì°¡ Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÕ´Ï´Ù.

ºÏ¹Ì´Â NuMedii, Inc, NVIDIA Corp, Recursion Pharmaceuticals Inc, Schrodinger, Inc, XtalPi Inc µî ´Ù¼öÀÇ À¯¸íÇÑ ½Å¾à°³¹ß AI ±â¾÷ ¹× ÇÁ·Î¹ÙÀÌ´õ°¡ Á¸ÀçÇϹǷΠū Á¡À¯À²À» Â÷ÁöÇϰí ÀÖ½À´Ï´Ù. ½ÃÀå ¼ºÀåÀÇ ¹è°æ¿¡´Â ¾à¹°ÀÇ ¿¬±¸, ¼³°è ¹× Àç»ç¿ëÀÌ Áõ°¡ÇÏ°í ¹Ì±¹ÀÇ ÁÖ¿ä IT ±â¾÷ÀÌ À¯¸íÇÑ ¿¬±¸ ±â°ü°ú Á¦ÈÞÇϰí ÀÖÀ¸¸ç, AI´Â Áúº´À» ºÐ¼®Çϰí Áúº´ °ü¸®¿¡ µµ¿òÀÌ µÇ´Â ÀûÀýÇÑ °á·ÐÀ» µµÃâÇÏ´Â µ¥¿¡µµ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ¹Ì±¹ ½ÄǰÀǾ౹(US FDA)¿¡ µû¸£¸é 2024³â 3¿ù, AI/ML ¼ººÐÀ» »ç¿ëÇÑ ÀǾàǰ ¹× »ý¹°ÇÐÀû Á¦Á¦ ½Åû °Ç¼ö°¡ ÃÖ±Ù ¼ö³â°£ Å©°Ô Áõ°¡ÇÏ¿© 2021³â¿¡´Â 100°Ç ÀÌ»óÀÇ ½ÅûÀÌ º¸°íµÇ¾ú½À´Ï´Ù. ÀǾàǰ °³¹ß ºÐ¾ßÀÇ ÇコÄɾî Á¶Á÷Àº ÀÇ»ç, Á¦¾à»ç ¹× º´¿ø¿¡ »õ·Î¿î ºñÁî´Ï½º °¡´É¼ºÀ» ¿­¾îÁÖ±â À§ÇØ »ý¼ºÇü AI¸¦ µµÀÔÇϰí ÀÖ½À´Ï´Ù. ¿©±â¿¡´Â ´õ ¶È¶ÈÇÑ µðÁöÅÐ ºñ¼­ °³¹ß, Á¶±â Áúº´ ½Äº°À» Áö¿øÇϱâ À§ÇÑ ´õ ³ªÀº ȯÀÚ µ¥ÀÌÅÍ ¼öÁý, ÀÇ·á ¹ßÀüÀ» À§ÇÑ ¼ö½Ê¾ï °³ÀÇ ¾à¸®ÇÐÀû ºÐÀÚ °Ë»ö µîÀÌ Æ÷ÇԵ˴ϴÙ. ¿¹¸¦ µé¾î 2024³â 3¿ù ¿£ºñµð¾ÆÀ£ºùÀº ½Å¾à°³¹ß, ÀÇ·á±â¼ú, µðÁöÅÐ Çコ ¹ßÀüÀ» À§ÇÑ »ý¼ºÇü AI ¸¶ÀÌÅ©·Î¼­ºñ½º¸¦ ¹ßÇ¥Çß½À´Ï´Ù. ¶ÇÇÑ Parabricks(R), MONAI, NeMo(TM), Riva ¹× Metropolis¸¦ Æ÷ÇÔÇÑ ¿£ºñµð¾Æ °¡¼Ó ¼ÒÇÁÆ®¿þ¾î °³¹ß ŰƮ ¹× ÅøÀº ½Å¾à °³¹ß, ÀÇ·á ¿µ»ó ¹× À¯Àüü ºÐ¼®À» À§ÇÑ ÇコÄÉ¾î ¿öÅ©Ç÷ο츦 °¡¼ÓÈ­ÇÕ´Ï´Ù. CUDA-X(TM) ¸¶ÀÌÅ©·Î¼­ºñ½º·Î ÀÌ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

Drug Discovery¿ë AI ½ÃÀå¿¡ Âü¿©Çϰí ÀÖ´Â ÁÖ¿ä ±â¾÷¿¡´Â Merck KGaA, NVIDIA Corp., Recursion Pharmaceuticals Inc., Schrodinger, Inc., Tencent Holdings Ltd. µîÀÌ ÀÖ½À´Ï´Ù. ½ÃÀå °æÀï·ÂÀ» À¯ÁöÇϱâ À§ÇØ ½ÃÀå ±â¾÷Àº Á¦ÈÞ, ÇÕº´, Àμö µîÀÇ Àü·«À» Àû¿ëÇÏ¿© »ç¾÷ È®´ë ¹× Á¦Ç° °³¹ß¿¡ ´õ¿í ´õ ÁÖ·ÂÇϰí ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå ¸®Æ÷Æ® °³¿ä

  • ¾÷°èÀÇ ÇöȲ ºÐ¼®°ú ¼ºÀå °¡´É¼º Àü¸Á
  • Á¶»ç ¹æ¹ý°ú Åø
  • ½ÃÀå ³»¿ª
    • ºÎ¹®º°
    • Áö¿ªº°

Á¦2Àå ½ÃÀå °³¿ä¿Í ÀλçÀÌÆ®

  • Á¶»ç ¹üÀ§
  • ¾Ö³Î¸®½ºÆ® ÀλçÀÌÆ®¿Í ÇöÀç ½ÃÀå µ¿Çâ
    • ÁÖ¿ä ½ÃÀå µ¿Çâ
    • ±ÇÀå»çÇ×
    • °á·Ð

Á¦3Àå °æÀï ±¸µµ

  • ÁÖ¿ä ±â¾÷ ºÐ¼®
  • Merck KGaA
    • °³¿ä
    • À繫 ºÐ¼®
    • SWOT ºÐ¼®
    • ÃÖ±Ù µ¿Çâ
  • NVIDIA Corporation
    • ȸ»ç °³¿ä
    • À繫 ºÐ¼®
    • SWOT ºÐ¼®
    • ÃÖ±Ù µ¿Çâ
  • Recursion Pharmaceuticals Inc.
    • °³¿ä
    • À繫 ºÐ¼®
    • SWOT ºÐ¼®
    • ÃÖ±Ù µ¿Çâ
  • Schrodinger, Inc.
    • °³¿ä
    • À繫 ºÐ¼®
    • SWOT ºÐ¼®
    • ÃÖ±Ù µ¿Çâ
  • Tencent Holdings Ltd.
    • °³¿ä
    • À繫 ºÐ¼®
    • SWOT ºÐ¼®
    • ÃÖ±Ù µ¿Çâ
  • ÁÖ¿ä Àü·« ºÐ¼®

Á¦4Àå ½ÃÀå ¼¼ºÐÈ­

  • ¼¼°èÀÇ Drug Discovery¿ë AI ½ÃÀå : ÄÄÆ÷³ÍÆ®º°
    • ¼ÒÇÁÆ®¿þ¾î
    • ¼­ºñ½º
  • ¼¼°èÀÇ Drug Discovery¿ë AI ½ÃÀå : Ä¡·á ¿µ¿ªº°
    • Á¾¾ç
    • °¨¿°Áõ
    • ½Å°æ
    • ´ë»ç¼º Áúȯ
    • ½ÉÇ÷°üÁúȯ
    • ¸é¿ª
    • ±âŸ(¿°Áõ¼º Áúȯ)
  • ¼¼°èÀÇ Drug Discovery¿ë AI ½ÃÀå : ¿ëµµº°
    • ¾àÁ¦ ÃÖÀûÈ­¡¤ÀçÀÌ¿ë
    • ÀüÀÓ»ó ½ÃÇè
    • ¾àÁ¦ ½ºÅ©¸®´×
  • ¼¼°èÀÇ Drug Discovery¿ë AI ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚº°
    • Á¦¾à¡¤¹ÙÀÌ¿ÀÅ×Å©³î·¯Áö ±â¾÷
    • CRO
    • ¿¬±¸ ¼¾ÅÍ, Çмú¡¤Á¤ºÎ±â°ü

Á¦5Àå Áö¿ª ºÐ¼®

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
  • À¯·´
    • ¿µ±¹
    • µ¶ÀÏ
    • ÀÌÅ»¸®¾Æ
    • ½ºÆäÀÎ
    • ÇÁ¶û½º
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • Áß±¹
    • Àεµ
    • ÀϺ»
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ¼¼°èÀÇ ±âŸ Áö¿ª
    • ¶óƾ¾Æ¸Þ¸®Ä«
    • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦6Àå ±â¾÷ °³¿ä

  • AiCure, LLC
  • Atomwise Inc.
  • BenevolentAI Group
  • BioXcel Therapeutics Inc.
  • BPGbio Inc.
  • Cloud Pharmaceuticals
  • Cyclica Inc.
  • Deep Genomics Inc.
  • Envisagenics
  • Euretos Services BV
  • Exscientia Plc.
  • Healx Ltd.
  • Iktos
  • Insilico Medicine
  • Lantern Pharma Inc.
  • NuMedii Inc.
  • Pepticom Ltd.
  • PHARNEXT SCA
  • Predictive Oncology Inc.
  • Turbine Ltd.
  • Valo Health Inc.
  • XtalPi Inc.
KSA 24.08.12

AI in Drug Discovery Market Size, Share & Trends Analysis Report by Component (Software and Services), by Therapeutic Area (Oncology, Infectious Diseases, Neurology, Metabolic Diseases, Cardiovascular Diseases, Immunology, and others), by Application (Drug Optimization and Repurposing, Preclinical Testing and Drug Screening) and by End-Users (Pharmaceutical & Biotechnology Companies, Contract Research Organizations (CROs) and Research Centers and Academic & Government Institutes), Forecast Period (2024-2031)

AI in drug discovery market is anticipated to grow at an exponential CAGR of 40.3% during the forecast period (2024-2031). The market growth is attributed to the increased demand for drug optimization, impactful target emphasis, and virtual screening, Al speeds up research by encouraging more diverse testing globally. According to the US Food and Drug Administration (FDA) Center for Drug Evaluation and Research (CDER), in 2023, 55 novel drugs were approved and marketed in the US. In 2023, 28 of 55, or 51.0% of novel drug approvals received orphan drug designation as they target rare diseases, including degenerative disease that damages the nervous system, Candidemia, and invasive candidiasis, which are serious and life-threatening fungal infections, Rett syndrome, a genetic, neurological disorder that affects brain development.

Market Dynamics

Increasing Role of Machine Learning (ML) in Predicting Drug Efficacy and Toxicity

Predicting the toxicity and efficacy of possible therapeutic molecules is one of the main uses of AI in medicinal chemistry. Traditional drug development methods frequently depend on labor-intensive and time-consuming experiments to evaluate a compound's possible effects on the human body. These restrictions can be solved by AI methods such as machine learning. ML algorithms can spot patterns and trends that human researchers would miss based on the examination of copious amounts of data. In comparison to employing traditional techniques, this can allow the proposal of new bioactive substances with minimal side effects in a significantly faster manner.

Integration of AI in Drug Discovery Process and Potential Cost Savings

Developing new molecules with characteristics and functions is another important way that AI is being used in medication discovery. Conventional techniques frequently rely on the labor- and slow-intensive process of identifying and modifying already-existing molecules. On the other hand, AI-based methods can make it possible to build new compounds quickly and effectively with desired characteristics and activities. For instance, to propose new therapeutic drug molecules with desirable properties such as solubility and activity, a deep learning (DL) algorithm was recently trained on a dataset of known drug compounds and their corresponding properties. This shows the potential of these methods for the quick and effective design of new drug candidates.

Market Segmentation

  • Based on the component, the market is segmented into software and services.
  • Based on the therapeutic area, the market is segmented into oncology, infectious diseases, neurology, metabolic diseases, cardiovascular diseases, immunology, and other (inflammatory diseases).
  • Based on the application, the market is segmented into drug optimization and repurposing, preclinical testing, and drug screening.
  • Based on the end-users, the market is segmented into pharmaceutical & biotechnology companies, contract research organizations (CROs) and research centers, and academic & government institutes.

Oncology is Projected to Hold the Largest Segment

The oncology segment is expected to hold the largest share of the market. The primary factors supporting the growth include enhancing current AI systems that are made to sift through massive data sets and derive insight. AI can be leveraged to provide patients with individualized treatments. In addition to providing patient histories and genetic sequences, scans can be used to establish a pattern for early cancer detection and patient-specific medication delivery. For instance, in April 2024, the National Institutes of Health (NIH) developed an artificial intelligence (AI) tool that uses data from individual cells inside tumors to predict whether a person's cancer will respond to a specific drug. In the new study, the researchers investigated whether they could use a machine learning technique called transfer learning to train an AI model to predict drug responses using widely available bulk RNA sequencing data, but then fine-tune that model using single-cell RNA sequencing data.

Drug Optimization and Repurposing Segment to Hold a Considerable Market Share

The drug optimization and repurposing segment is expected to hold a considerable share of the market. Drug efficacy, as well as side effects, can be researched using innovative AI systems such as Deep Learning (DL) and drug modeling. The development of AI technology has also facilitated the study, comparison, and repurposing of medications into more efficient forms, reducing adverse effects and increasing overall efficacy. For instance, in January 2024, Accenture announced it has made a strategic investment, through Accenture Ventures, in QuantHealth, an AI-powered clinical trial design company that simulates clinical trials in the cloud, allowing pharmaceutical and biotech companies to more quickly and cost-effectively develop treatments for patients. By simulating trials at scale, QuantHealth's platform can lower risks, and expedite, and optimize drug development.

Regional Outlook

Global AI in drug discovery market is further segmented based on geography including North America (the US, and Canada), Europe (UK, Italy, Spain, Germany, France, and the Rest of Europe), Asia-Pacific (India, China, Japan, South Korea, and Rest of Asia-Pacific), and the Rest of the World (the Middle East & Africa, and Latin America).

Growing Research and Pharmaceutical & Biotechnology Companies in Asia-Pacific

  • The Asia-Pacific market is expected to grow as a result of rising government financing for research and precision medicine programs in countries such as South Korea, China, and India, as well as a rise in the use of Al-based technologies in drug discovery research and development by significant pharmaceutical businesses operating in the area. The region's standing in the Al drug discovery market is further strengthened by its commitment to promoting innovation through partnerships between industry, academia, and technology providers.
  • According to the India Brand Equity Foundation, Biotechnology Presentation Industry Report, in December 2023, the Indian biotechnology industry is expected to reach $150.0 billion by 2025. India's vaccine industry can grow from $2.0 billion to $5.0 billion, as new Indian and global pharmaceutical companies are including vaccines as a key part of their portfolios. India has 665 FDA-approved plants in the US. 44.0% of the global abbreviated new drug applications (ANDA) and more than 1,400 manufacturing plants are compliant with (World Health Organization) WHO requirements. The Department of Biotechnology has 1,484 ongoing projects.

North America Holds Major Market Share

North America holds a significant share owing to numerous prominent AI in drug discovery companies and providers such as NuMedii, Inc., NVIDIA Corp., Recursion Pharmaceuticals Inc., Schrodinger, Inc., and XtalPi Inc. in the region. The market growth is attributed to increasing medication research, design, and repurposing, major US IT corporations have collaborated with esteemed institutes. AI is also being used to analyze diseases and draw relevant conclusions that can help with disease management. According to the US Food and Drug Administration (US FDA), in March 2024, a significant increase in the number of drug and biologic application submissions using AI/ML components over the past few years, with more than 100 submissions reported in 2021. Healthcare organizations in the drug development area are implementing generative AI to open up new business potential for physicians, pharmaceutical companies, and hospitals. These include developing smarter digital assistants, collecting better patient data to support early disease identification, and searching for billions of pharmacological molecules to advance medicine. For instance, in March 2024, NVIDIA Healthcare introduced generative AI Microservices to advance drug discovery, MedTech, and Digital Health. Additionally, NVIDIA accelerated software development kits and tools, including Parabricks(R), MONAI, NeMo(TM), Riva, and Metropolis, can now be accessed as NVIDIA CUDA-X(TM) microservices to accelerate healthcare workflows for drug discovery, medical imaging, and genomics analysis.

The major companies serving the AI in drug discovery market include Merck KGaA, NVIDIA Corp., Recursion Pharmaceuticals Inc., Schrodinger, Inc., and Tencent Holdings Ltd., among others. The market players are increasingly focusing on business expansion and product development by applying strategies such as collaborations, mergers, and acquisitions to stay competitive in the market.

Recent Development

  • In April 2024, Odyssey Therapeutics, Inc., a biotechnology company pioneering next-generation precision medicines, announced it entered a strategic research collaboration with Janssen Pharmaceutica NV, a Johnson & Johnson company, to jointly discover and optimize small molecule medicines against select therapeutic targets. The companies will combine their expertise in artificial intelligence (AI), machine learning (ML), computational chemistry, and drug discovery to unlock difficult-to-drug targets.
  • In February 2024, QIAGEN introduced an AI-derived biomedical knowledge base to accelerate data-driven drug discovery. QIAGEN Biomedical KB-AI contains over 640 million biomedical relationships, including gene, disease, and drug causal relationships, to aid in data-driven drug discovery.
  • In November 2023, Almirall and Absci announced an AI drug discovery partnership aimed at developing and commercializing AI-designed therapeutics to fight chronic and debilitating dermatological diseases. The partnership combines Absci's Integrated Drug Creation(TM) platform with Almirall's dermatological expertise to deliver life-changing medicines to patients, marking another step forward in AI drug creation.
  • In October 2023, Fujitsu and RIKEN collaborated to develop AI drug discovery technology utilizing generative AI to predict structural changes in proteins. An AI drug discovery technology that can predict structural changes of proteins from electron microscope images as a 3D density map in a wide range by utilizing generative AI.
  • In September 2022, Merck announced two new strategic drug discovery collaborations aimed at harnessing powerful artificial intelligence (AI)-driven design and discovery capabilities, further advancing the company's research efforts. The partnerships, with BenevolentAI, London, UK, and Exscientia, Oxford, UK, are expected to generate several novel clinical development drug candidates with first-in-class and best-in-class potential in key therapeutic areas of oncology, neurology, and immunology.

Table of Contents

1. Report Summary

  • Current Industry Analysis and Growth Potential Outlook
  • 1.1. Research Methods and Tools
  • 1.2. Market Breakdown
    • 1.2.1. By Segments
    • 1.2.2. By Region

2. Market Overview and Insights

  • 2.1. Scope of the Report
  • 2.2. Analyst Insight & Current Market Trends
    • 2.2.1. Key Market Trends
    • 2.2.2. Recommendations
    • 2.2.3. Conclusion

3. Competitive Landscape

  • 3.1. Key Company Analysis
  • 3.2. Merck KGaA
    • 3.2.1. Overview
    • 3.2.2. Financial Analysis
    • 3.2.3. SWOT Analysis
    • 3.2.4. Recent Developments
  • 3.3. NVIDIA Corporation
    • 3.3.1. Overview
    • 3.3.2. Financial Analysis
    • 3.3.3. SWOT Analysis
    • 3.3.4. Recent Developments
  • 3.4. Recursion Pharmaceuticals Inc.
    • 3.4.1. Overview
    • 3.4.2. Financial Analysis
    • 3.4.3. SWOT Analysis
    • 3.4.4. Recent Developments
  • 3.5. Schrodinger, Inc.
    • 3.5.1. Overview
    • 3.5.2. Financial Analysis
    • 3.5.3. SWOT Analysis
    • 3.5.4. Recent Developments
  • 3.6. Tencent Holdings Ltd.
    • 3.6.1. Overview
    • 3.6.2. Financial Analysis
    • 3.6.3. SWOT Analysis
    • 3.6.4. Recent Developments
  • 3.7. Key Strategy Analysis

4. Market Segmentation

  • 4.1. Global AI in Drug Discovery Market by Component
    • 4.1.1. Software
    • 4.1.2. Services
  • 4.2. Global AI in Drug Discovery Market by Therapeutic Area
    • 4.2.1. Oncology
    • 4.2.2. Infectious Diseases
    • 4.2.3. Neurology
    • 4.2.4. Metabolic Diseases
    • 4.2.5. Cardiovascular Diseases
    • 4.2.6. Immunology
    • 4.2.7. Other (Inflammatory Diseases)
  • 4.3. Global AI in Drug Discovery Market by Application
    • 4.3.1. Drug Optimization and Repurposing
    • 4.3.2. Preclinical Testing
    • 4.3.3. Drug Screening
  • 4.4. Global AI in Drug Discovery Market by End-Users
    • 4.4.1. Pharmaceutical & Biotechnology Companies
    • 4.4.2. Contract Research Organizations (CROs)
    • 4.4.3. Research Centers and Academic & Government Institutes

5. Regional Analysis

  • 5.1. North America
    • 5.1.1. United States
    • 5.1.2. Canada
  • 5.2. Europe
    • 5.2.1. UK
    • 5.2.2. Germany
    • 5.2.3. Italy
    • 5.2.4. Spain
    • 5.2.5. France
    • 5.2.6. Rest of Europe
  • 5.3. Asia-Pacific
    • 5.3.1. China
    • 5.3.2. India
    • 5.3.3. Japan
    • 5.3.4. South Korea
    • 5.3.5. Rest of Asia-Pacific
  • 5.4. Rest of the World
    • 5.4.1. Latin America
    • 5.4.2. Middle East & Africa

6. Company Profiles

  • 6.1. AiCure, LLC
  • 6.2. Atomwise Inc.
  • 6.3. BenevolentAI Group
  • 6.4. BioXcel Therapeutics Inc.
  • 6.5. BPGbio Inc.
  • 6.6. Cloud Pharmaceuticals
  • 6.7. Cyclica Inc.
  • 6.8. Deep Genomics Inc.
  • 6.9. Envisagenics
  • 6.10. Euretos Services BV
  • 6.11. Exscientia Plc.
  • 6.12. Healx Ltd.
  • 6.13. Iktos
  • 6.14. Insilico Medicine
  • 6.15. Lantern Pharma Inc.
  • 6.16. NuMedii Inc.
  • 6.17. Pepticom Ltd.
  • 6.18. PHARNEXT SCA
  • 6.19. Predictive Oncology Inc.
  • 6.20. Turbine Ltd.
  • 6.21. Valo Health Inc.
  • 6.22. XtalPi Inc.
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦