![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1519968
¼¼°èÀÇ Drug Discovery¿ë AI ½ÃÀå(2024-2031³â)Global AI in Drug Discovery Market 2024-2031 |
Drug Discovery¿ë AI ½ÃÀåÀº ¿¹Ãø ±â°£(2024-2031³â)¿¡ CAGR 40.3%ÀÇ ºñ¾àÀûÀÎ ¼ºÀåÀÌ Àü¸ÁµË´Ï´Ù. ½ÃÀå ¼ºÀåÀÇ ¹è°æ¿¡´Â ¾à¹° ÃÖÀûÈ, ¿µÇâ·Â Àִ ǥÀû¿¡ ´ëÇÑ °Á¶, °¡»ó ½ºÅ©¸®´×¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡°¡ ÀÖÀ¸¸ç, AlÀº Àü ¼¼°è¿¡¼ ´Ù¾çÇÑ ½ÃÇèÀ» Àå·ÁÇÏ¿© ¿¬±¸¸¦ °¡¼ÓÈÇÕ´Ï´Ù. ¹Ì±¹ ½ÄǰÀǾ౹(FDA) ÀǾàǰÆò°¡¿¬±¸¼¾ÅÍ(CDER)¿¡ µû¸£¸é 2023³â ¹Ì±¹¿¡¼ 55°³ÀÇ ½Å¾àÀÌ ½ÂÀÎ ¹× Ãâ½ÃµÉ ¿¹Á¤À̸ç, 2023³â ½ÂÀÎµÈ ½Å¾àÀÇ 51.0%¿¡ ÇØ´çÇÏ´Â 55°³ ǰ¸ñ Áß 28°³ ǰ¸ñÀº ½Å°æ°è ¼Õ»ó ÅðÇ༺ Áúȯ, ½É°¢ÇÏ°í »ý¸íÀ» À§ÇùÇÏ´Â Áø±Õ¼º °¨¿°, ½É°¢ÇÑ Äµð´ÙÁõ, ħ½À¼º ĵð´ÙÁõ, ³ú ¹ß´Þ¿¡ ¿µÇâÀ» ¹ÌÄ¡´Â À¯Àü¼º ½Å°æÁúȯÀÎ ·¹Æ®ÁõÈıº µî Èñ±ÍÁúȯÀ» ´ë»óÀ¸·Î Çϰí ÀÖÀ¸¸ç, Èñ±ÍÁúȯġ·áÁ¦·Î ÁöÁ¤µÇ¾ú½À´Ï´Ù.
½ÃÀå ¿ªÇÐ
¾à¹°ÀÇ À¯È¿¼º ¹× µ¶¼º ¿¹Ãø¿¡¼ ¸Ó½Å·¯´×(ML)ÀÇ ¿ªÇÒ Áõ´ë
ÀáÀçÀû Ä¡·á ºÐÀÚÀÇ µ¶¼º°ú È¿´ÉÀ» ¿¹ÃøÇÏ´Â °ÍÀº Á¦¾à ÈÇп¡¼ AIÀÇ ÁÖ¿ä ¿ëµµ Áß ÇϳªÀÔ´Ï´Ù. ±âÁ¸ÀÇ ÀǾàǰ °³¹ß ¹æ¹ýÀº ÈÇÕ¹°ÀÌ ÀÎü¿¡ ¹ÌÄ¥ ¼ö ÀÖ´Â ¿µÇâÀ» Æò°¡Çϱâ À§ÇØ ³ëµ¿Áý¾àÀûÀÌ°í ½Ã°£ÀÌ ¸¹ÀÌ °É¸®´Â ½ÇÇè¿¡ ÀÇÁ¸ÇÏ´Â °æ¿ì°¡ ¸¹¾Ò½À´Ï´Ù. ÀÌ·¯ÇÑ Á¦¾àÀº ¸Ó½Å·¯´×°ú °°Àº AI ±â¹ýÀ» ÅëÇØ ÇØ°áÇÒ ¼ö Àִµ¥, ML ¾Ë°í¸®ÁòÀº ¹æ´ëÇÑ µ¥ÀÌÅÍ Á¶»ç¿¡¼ Àΰ£ ¿¬±¸ÀÚ°¡ ³õÄ¥ ¼ö ÀÖ´Â ÆÐÅϰú Ãß¼¼¸¦ ¹ß°ßÇÒ ¼ö ÀÖ½À´Ï´Ù. ±âÁ¸ ¹æ½Ä¿¡ ºñÇØ ºÎÀÛ¿ëÀÌ ÀûÀº »õ·Î¿î »ý¸®È°¼º¹°ÁúÀ» ÈξÀ ºü¸£°Ô Á¦¾ÈÇÒ ¼ö ÀÖ½À´Ï´Ù.
AI¸¦ ½Å¾à°³¹ß ÇÁ·Î¼¼½º¿¡ ÅëÇÕÇÏ¿© ºñ¿ë Àý°¨ÀÇ °¡´É¼º
Ư¡°ú ±â´ÉÀ» °¡Áø »õ·Î¿î ºÐÀÚÀÇ °³¹ßÀº AI°¡ ½Å¾à°³¹ß¿¡ Ȱ¿ëµÇ´Â ¶Ç ´Ù¸¥ Áß¿äÇÑ ¹æ¹ýÀÔ´Ï´Ù. ±âÁ¸ ±â¼ú¿¡¼´Â ±âÁ¸ ºÐÀÚ¸¦ ½Äº°ÇÏ°í º¯Çü½ÃŰ´Â ³ëµ¿·Â°ú ½Ã°£ÀÌ ¸¹ÀÌ ¼Ò¿äµÇ´Â ÇÁ·Î¼¼½º¿¡ ÀÇÁ¸ÇÏ´Â °æ¿ì°¡ ¸¹¾Ò½À´Ï´Ù. ¹Ý¸é, AI¸¦ Ȱ¿ëÇÑ ¹æ¹ýÀº ¿øÇϴ Ư¼ºÀ̳ª Ȱ¼ºÀ» °¡Áø »õ·Î¿î ÈÇÕ¹°À» ºü¸£°í È¿°úÀûÀ¸·Î ±¸ÃàÇÒ ¼ö ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î ÃÖ±Ù µö·¯´×(DL) ¾Ë°í¸®ÁòÀº ¿ëÇØµµ, Ȱ¼º µî ¹Ù¶÷Á÷ÇÑ Æ¯¼ºÀ» °¡Áø »õ·Î¿î Ä¡·áÁ¦ ºÐÀÚ¸¦ Á¦¾ÈÇϱâ À§ÇØ ¾Ë·ÁÁø ¾à¹° ÈÇÕ¹°°ú ÇØ´ç Ư¼ºÀÇ µ¥ÀÌÅͼ¼Æ®·Î ÈÆ·ÃµÇ¾ú½À´Ï´Ù. ÀÌ´Â ½Å¾à Èĺ¸¹°ÁúÀ» ½Å¼ÓÇϰí È¿°úÀûÀ¸·Î ¼³°èÇÒ ¼ö ÀÖ´Â ÀÌ·¯ÇÑ ¹æ¹ýÀÇ °¡´É¼ºÀ» º¸¿©ÁÝ´Ï´Ù.
½ÃÀå ¼¼ºÐÈ
Á¾¾ç ¿µ¿ªÀÌ °¡Àå Å« ºÎ¹®À» Â÷ÁöÇÒ °ÍÀ¸·Î Àü¸Á
½ÃÀå ¼¼ºÐÈ¿¡¼ Á¾¾ç ºÐ¾ß°¡ °¡Àå Å« Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¼ºÀåÀ» Áö¿øÇÏ´Â ÁÖ¿ä ¿äÀÎÀ¸·Î´Â ¹æ´ëÇÑ µ¥ÀÌÅͼ¼Æ®¸¦ ¼±º°Çϰí ÀλçÀÌÆ®À» µµÃâÇϱâ À§ÇØ ¸¸µé¾îÁø ÇöÀçÀÇ AI ½Ã½ºÅÛÀÇ °È°¡ ÀÖÀ¸¸ç, AI¸¦ Ȱ¿ëÇϸé ȯÀÚ¿¡°Ô ¸ÂÃã Ä¡·á¸¦ Á¦°øÇÒ ¼ö ÀÖ½À´Ï´Ù. ȯÀÚÀÇ º´·Â ¹× À¯ÀüÀÚ ¼¿À» Á¦°øÇÏ´Â °Í ¿Ü¿¡µµ ½ºÄµÀ» ÅëÇØ Á¾¾çÀ» Á¶±â¿¡ ¹ß°ßÇϰí ȯÀÚ ¸ÂÃãÇü ¾à¹° Åõ¿© ÆÐÅÏÀ» È®¸³ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î 2024³â 4¿ù ¹Ì±¹ ±¹¸³º¸°Ç¿ø(NIH)Àº Á¾¾ç³» °³º° ¼¼Æ÷ÀÇ µ¥ÀÌÅ͸¦ Ȱ¿ëÇØ ÇØ´ç »ç¶÷ÀÇ Á¾¾çÀÌ Æ¯Á¤ ¾à¹°¿¡ ¹ÝÀÀÇÒÁö ¿©ºÎ¸¦ ¿¹ÃøÇÏ´Â ÀΰøÁö´É(AI) ÅøÀ» °³¹ßÇß½À´Ï´Ù. ÀÌ ¿¬±¸´Â ÀüÀÌ ÇнÀ(metastasis learning)À̶ó´Â ¸Ó½Å·¯´× ±â¼úÀ» »ç¿ëÇÏ¿© ³Î¸® ÀÌ¿ë °¡´ÉÇÑ ´ë·® RNA ½ÃÄö½Ì µ¥ÀÌÅ͸¦ »ç¿ëÇÏ¿© ¾à¹° ¹ÝÀÀÀ» ¿¹ÃøÇÏ´Â AI ¸ðµ¨À» ÈÆ·Ã½ÃŲ ÈÄ, ´ÜÀÏ ¼¼Æ÷ÀÇ RNA ½ÃÄö½Ì µ¥ÀÌÅ͸¦ »ç¿ëÇÏ¿© ¸ðµ¨À» ¹Ì¼¼ Á¶Á¤ÇÒ ¼ö ÀÖ´ÂÁö ¿©ºÎ¸¦ Á¶»çÇß½À´Ï´Ù.
¾à¹°ÀÇ ÃÖÀûÈ ¹× Àç»ç¿ëÀÌ »ó´çÇÑ ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÕ´Ï´Ù.
¾à¹° ÃÖÀûÈ ¹× Àç»ç¿ë ºÐ¾ß´Â ½ÃÀå¿¡¼ »ó´çÇÑ Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¾à¹°ÀÇ È¿´É°ú ºÎÀÛ¿ëÀº µö·¯´×(DL) ¹× ¾à¹° ¸ðµ¨¸µ°ú °°Àº Çõ½ÅÀûÀÎ AI ½Ã½ºÅÛÀ» »ç¿ëÇÏ¿© Á¶»çÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ AI ±â¼úÀÇ ¹ßÀüÀ¸·Î ÀǾàǰÀÇ ¿¬±¸, ºñ±³, º¸´Ù È¿À²ÀûÀÎ ÇüÅ·ÎÀÇ Àç»ç¿ëÀÌ ¿ëÀÌÇØÁ® ºÎÀÛ¿ëÀÌ °¨¼ÒÇϰí Àü¹ÝÀûÀÎ È¿´ÉÀÌ Çâ»óµÇ°í ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î ¾×¼¾Ãò¾î´Â 2024³â 1¿ù Ŭ¶ó¿ìµå¿¡¼ ÀÓ»ó½ÃÇèÀ» ½Ã¹Ä·¹À̼ÇÇÏ¿© Á¦¾à»ç ¹× »ý¸í°øÇÐ ±â¾÷ÀÌ È¯ÀÚ¸¦ À§ÇÑ Ä¡·á¹ýÀ» º¸´Ù ºü¸£°í ºñ¿ë È¿À²ÀûÀ¸·Î °³¹ßÇÒ ¼ö ÀÖµµ·Ï µ½´Â AI ±â¹Ý ÀÓ»ó½ÃÇè ¼³°è ±â¾÷ ÄöÆ®Çコ(QuantHealth)¸¦ ÀμöÇß´Ù, QuantHealthÀÇ Ç÷§ÆûÀº ÀÓ»ó½ÃÇèÀ» ´ë±Ô¸ð·Î ½Ã¹Ä·¹À̼ÇÇÏ¿© ¸®½ºÅ©¸¦ ÁÙÀ̰í ÀǾàǰ °³¹ßÀ» °¡¼ÓÈÇϰí ÃÖÀûÈÇÒ ¼ö ÀÖµµ·Ï µµ¿ÍÁÖ´Â AI ±â¹Ý ÀÓ»ó½ÃÇè ¼³°è ±â¾÷ QuantHealth¿¡ ¾×¼¾Ãò¾î º¥Ã³½º¸¦ ÅëÇØ Àü·«Àû ÅõÀÚ¸¦ ´ÜÇàÇß´Ù°í ¹ßÇ¥Çß½À´Ï´Ù.
¼¼°è ½Å¾à°³¹ß AI ½ÃÀåÀº ºÏ¹Ì(¹Ì±¹, ij³ª´Ù), À¯·´(¿µ±¹, ÀÌÅ»¸®¾Æ, ½ºÆäÀÎ, µ¶ÀÏ, ÇÁ¶û½º, ±âŸ À¯·´), ¾Æ½Ã¾ÆÅÂÆò¾ç(Àεµ, Áß±¹, ÀϺ», Çѱ¹, ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç), ±âŸ Áö¿ª(Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«, ¶óƾ¾Æ¸Þ¸®Ä«)À¸·Î ¼¼ºÐȵ˴ϴÙ.
¾Æ½Ã¾ÆÅÂÆò¾ç ¿¬±¸ ¹× Á¦¾à-¹ÙÀÌ¿À ±â¾÷ÀÇ ¼ºÀå
ºÏ¹Ì°¡ Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÕ´Ï´Ù.
ºÏ¹Ì´Â NuMedii, Inc, NVIDIA Corp, Recursion Pharmaceuticals Inc, Schrodinger, Inc, XtalPi Inc µî ´Ù¼öÀÇ À¯¸íÇÑ ½Å¾à°³¹ß AI ±â¾÷ ¹× ÇÁ·Î¹ÙÀÌ´õ°¡ Á¸ÀçÇϹǷΠū Á¡À¯À²À» Â÷ÁöÇϰí ÀÖ½À´Ï´Ù. ½ÃÀå ¼ºÀåÀÇ ¹è°æ¿¡´Â ¾à¹°ÀÇ ¿¬±¸, ¼³°è ¹× Àç»ç¿ëÀÌ Áõ°¡ÇÏ°í ¹Ì±¹ÀÇ ÁÖ¿ä IT ±â¾÷ÀÌ À¯¸íÇÑ ¿¬±¸ ±â°ü°ú Á¦ÈÞÇϰí ÀÖÀ¸¸ç, AI´Â Áúº´À» ºÐ¼®Çϰí Áúº´ °ü¸®¿¡ µµ¿òÀÌ µÇ´Â ÀûÀýÇÑ °á·ÐÀ» µµÃâÇÏ´Â µ¥¿¡µµ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ¹Ì±¹ ½ÄǰÀǾ౹(US FDA)¿¡ µû¸£¸é 2024³â 3¿ù, AI/ML ¼ººÐÀ» »ç¿ëÇÑ ÀǾàǰ ¹× »ý¹°ÇÐÀû Á¦Á¦ ½Åû °Ç¼ö°¡ ÃÖ±Ù ¼ö³â°£ Å©°Ô Áõ°¡ÇÏ¿© 2021³â¿¡´Â 100°Ç ÀÌ»óÀÇ ½ÅûÀÌ º¸°íµÇ¾ú½À´Ï´Ù. ÀǾàǰ °³¹ß ºÐ¾ßÀÇ ÇコÄɾî Á¶Á÷Àº ÀÇ»ç, Á¦¾à»ç ¹× º´¿ø¿¡ »õ·Î¿î ºñÁî´Ï½º °¡´É¼ºÀ» ¿¾îÁÖ±â À§ÇØ »ý¼ºÇü AI¸¦ µµÀÔÇϰí ÀÖ½À´Ï´Ù. ¿©±â¿¡´Â ´õ ¶È¶ÈÇÑ µðÁöÅÐ ºñ¼ °³¹ß, Á¶±â Áúº´ ½Äº°À» Áö¿øÇϱâ À§ÇÑ ´õ ³ªÀº ȯÀÚ µ¥ÀÌÅÍ ¼öÁý, ÀÇ·á ¹ßÀüÀ» À§ÇÑ ¼ö½Ê¾ï °³ÀÇ ¾à¸®ÇÐÀû ºÐÀÚ °Ë»ö µîÀÌ Æ÷ÇԵ˴ϴÙ. ¿¹¸¦ µé¾î 2024³â 3¿ù ¿£ºñµð¾ÆÀ£ºùÀº ½Å¾à°³¹ß, ÀÇ·á±â¼ú, µðÁöÅÐ Çコ ¹ßÀüÀ» À§ÇÑ »ý¼ºÇü AI ¸¶ÀÌÅ©·Î¼ºñ½º¸¦ ¹ßÇ¥Çß½À´Ï´Ù. ¶ÇÇÑ Parabricks(R), MONAI, NeMo(TM), Riva ¹× Metropolis¸¦ Æ÷ÇÔÇÑ ¿£ºñµð¾Æ °¡¼Ó ¼ÒÇÁÆ®¿þ¾î °³¹ß ŰƮ ¹× ÅøÀº ½Å¾à °³¹ß, ÀÇ·á ¿µ»ó ¹× À¯Àüü ºÐ¼®À» À§ÇÑ ÇコÄÉ¾î ¿öÅ©Ç÷ο츦 °¡¼ÓÈÇÕ´Ï´Ù. CUDA-X(TM) ¸¶ÀÌÅ©·Î¼ºñ½º·Î ÀÌ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.
Drug Discovery¿ë AI ½ÃÀå¿¡ Âü¿©Çϰí ÀÖ´Â ÁÖ¿ä ±â¾÷¿¡´Â Merck KGaA, NVIDIA Corp., Recursion Pharmaceuticals Inc., Schrodinger, Inc., Tencent Holdings Ltd. µîÀÌ ÀÖ½À´Ï´Ù. ½ÃÀå °æÀï·ÂÀ» À¯ÁöÇϱâ À§ÇØ ½ÃÀå ±â¾÷Àº Á¦ÈÞ, ÇÕº´, Àμö µîÀÇ Àü·«À» Àû¿ëÇÏ¿© »ç¾÷ È®´ë ¹× Á¦Ç° °³¹ß¿¡ ´õ¿í ´õ ÁÖ·ÂÇϰí ÀÖ½À´Ï´Ù.
AI in Drug Discovery Market Size, Share & Trends Analysis Report by Component (Software and Services), by Therapeutic Area (Oncology, Infectious Diseases, Neurology, Metabolic Diseases, Cardiovascular Diseases, Immunology, and others), by Application (Drug Optimization and Repurposing, Preclinical Testing and Drug Screening) and by End-Users (Pharmaceutical & Biotechnology Companies, Contract Research Organizations (CROs) and Research Centers and Academic & Government Institutes), Forecast Period (2024-2031)
AI in drug discovery market is anticipated to grow at an exponential CAGR of 40.3% during the forecast period (2024-2031). The market growth is attributed to the increased demand for drug optimization, impactful target emphasis, and virtual screening, Al speeds up research by encouraging more diverse testing globally. According to the US Food and Drug Administration (FDA) Center for Drug Evaluation and Research (CDER), in 2023, 55 novel drugs were approved and marketed in the US. In 2023, 28 of 55, or 51.0% of novel drug approvals received orphan drug designation as they target rare diseases, including degenerative disease that damages the nervous system, Candidemia, and invasive candidiasis, which are serious and life-threatening fungal infections, Rett syndrome, a genetic, neurological disorder that affects brain development.
Market Dynamics
Increasing Role of Machine Learning (ML) in Predicting Drug Efficacy and Toxicity
Predicting the toxicity and efficacy of possible therapeutic molecules is one of the main uses of AI in medicinal chemistry. Traditional drug development methods frequently depend on labor-intensive and time-consuming experiments to evaluate a compound's possible effects on the human body. These restrictions can be solved by AI methods such as machine learning. ML algorithms can spot patterns and trends that human researchers would miss based on the examination of copious amounts of data. In comparison to employing traditional techniques, this can allow the proposal of new bioactive substances with minimal side effects in a significantly faster manner.
Integration of AI in Drug Discovery Process and Potential Cost Savings
Developing new molecules with characteristics and functions is another important way that AI is being used in medication discovery. Conventional techniques frequently rely on the labor- and slow-intensive process of identifying and modifying already-existing molecules. On the other hand, AI-based methods can make it possible to build new compounds quickly and effectively with desired characteristics and activities. For instance, to propose new therapeutic drug molecules with desirable properties such as solubility and activity, a deep learning (DL) algorithm was recently trained on a dataset of known drug compounds and their corresponding properties. This shows the potential of these methods for the quick and effective design of new drug candidates.
Market Segmentation
Oncology is Projected to Hold the Largest Segment
The oncology segment is expected to hold the largest share of the market. The primary factors supporting the growth include enhancing current AI systems that are made to sift through massive data sets and derive insight. AI can be leveraged to provide patients with individualized treatments. In addition to providing patient histories and genetic sequences, scans can be used to establish a pattern for early cancer detection and patient-specific medication delivery. For instance, in April 2024, the National Institutes of Health (NIH) developed an artificial intelligence (AI) tool that uses data from individual cells inside tumors to predict whether a person's cancer will respond to a specific drug. In the new study, the researchers investigated whether they could use a machine learning technique called transfer learning to train an AI model to predict drug responses using widely available bulk RNA sequencing data, but then fine-tune that model using single-cell RNA sequencing data.
Drug Optimization and Repurposing Segment to Hold a Considerable Market Share
The drug optimization and repurposing segment is expected to hold a considerable share of the market. Drug efficacy, as well as side effects, can be researched using innovative AI systems such as Deep Learning (DL) and drug modeling. The development of AI technology has also facilitated the study, comparison, and repurposing of medications into more efficient forms, reducing adverse effects and increasing overall efficacy. For instance, in January 2024, Accenture announced it has made a strategic investment, through Accenture Ventures, in QuantHealth, an AI-powered clinical trial design company that simulates clinical trials in the cloud, allowing pharmaceutical and biotech companies to more quickly and cost-effectively develop treatments for patients. By simulating trials at scale, QuantHealth's platform can lower risks, and expedite, and optimize drug development.
Global AI in drug discovery market is further segmented based on geography including North America (the US, and Canada), Europe (UK, Italy, Spain, Germany, France, and the Rest of Europe), Asia-Pacific (India, China, Japan, South Korea, and Rest of Asia-Pacific), and the Rest of the World (the Middle East & Africa, and Latin America).
Growing Research and Pharmaceutical & Biotechnology Companies in Asia-Pacific
North America Holds Major Market Share
North America holds a significant share owing to numerous prominent AI in drug discovery companies and providers such as NuMedii, Inc., NVIDIA Corp., Recursion Pharmaceuticals Inc., Schrodinger, Inc., and XtalPi Inc. in the region. The market growth is attributed to increasing medication research, design, and repurposing, major US IT corporations have collaborated with esteemed institutes. AI is also being used to analyze diseases and draw relevant conclusions that can help with disease management. According to the US Food and Drug Administration (US FDA), in March 2024, a significant increase in the number of drug and biologic application submissions using AI/ML components over the past few years, with more than 100 submissions reported in 2021. Healthcare organizations in the drug development area are implementing generative AI to open up new business potential for physicians, pharmaceutical companies, and hospitals. These include developing smarter digital assistants, collecting better patient data to support early disease identification, and searching for billions of pharmacological molecules to advance medicine. For instance, in March 2024, NVIDIA Healthcare introduced generative AI Microservices to advance drug discovery, MedTech, and Digital Health. Additionally, NVIDIA accelerated software development kits and tools, including Parabricks(R), MONAI, NeMo(TM), Riva, and Metropolis, can now be accessed as NVIDIA CUDA-X(TM) microservices to accelerate healthcare workflows for drug discovery, medical imaging, and genomics analysis.
The major companies serving the AI in drug discovery market include Merck KGaA, NVIDIA Corp., Recursion Pharmaceuticals Inc., Schrodinger, Inc., and Tencent Holdings Ltd., among others. The market players are increasingly focusing on business expansion and product development by applying strategies such as collaborations, mergers, and acquisitions to stay competitive in the market.
Recent Development