시장보고서
상품코드
1872360

세계의 벡터 데이터베이스 솔루션 시장 : 시장 점유율과 순위, 전체 판매 및 수요 예측(2025-2031년)

Vector Database Solution - Global Market Share and Ranking, Overall Sales and Demand Forecast 2025-2031

발행일: | 리서치사: QYResearch | 페이지 정보: 영문 | 배송안내 : 2-3일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

세계의 벡터 데이터베이스 솔루션 시장 규모는 2024년에 38억 9,200만 달러로 추정되며, 2025년부터 2031년까지 예측 기간 동안 CAGR 22.6%로 성장하여 2031년까지 157억 2,500만 달러로 확대될 것으로 예측됩니다.

벡터 데이터베이스 솔루션은 벡터 데이터의 처리 및 저장을 목적으로 설계 및 최적화된 데이터베이스 시스템입니다. 벡터 데이터는 기하학적 데이터, 지리적 공간 데이터, 시계열 데이터 등 크기와 방향을 가진 데이터를 말합니다. 기존의 관계형 데이터베이스가 스칼라 데이터 처리에 적합한 반면, 벡터 데이터베이스는 벡터 데이터의 효율적인 처리에 중점을 두어 보다 빠르고 유연한 쿼리 및 분석 기능을 제공합니다.

인공지능, 이미지 인식, 대규모 언어 모델(LLM), 추천 시스템 등의 기술이 고차원 벡터 데이터 관리 및 검색 성능에 대한 요구가 점점 더 높아지고 있는 가운데, 벡터 데이터베이스 솔루션은 차세대 데이터 인프라의 중요한 구성요소로 빠르게 확산되고 있습니다. 빠르게 확산되고 있습니다. 이러한 종류의 솔루션은 크게 클라우드 기반 호스팅 배포와 로컬 프라이빗 배포의 두 가지 범주로 나뉩니다. 전자는 중소기업이나 개인 개발자에게 적합하며, 탄력적인 확장성, 편리한 접근성, 빠른 반복 개발 등의 장점이 있습니다. 후자는 데이터 주권 및 개인 정보 보호 준수에 대한 엄격한 요구 사항을 가진 대기업에 적합하며 더 강력한 성능 최적화 및 맞춤형 통합을 실현할 수 있습니다. 애플리케이션 수준에서 벡터 데이터베이스는 자연어 검색, 이미지 및 동영상 컨텐츠 검색, 개인화 추천, 지식 Q&A 시스템 등의 시나리오에 널리 활용되어 개인 사용자에게는 보다 자연스러운 대화형 경험을, 기업에는 보다 스마트한 데이터 검색 및 분석 기능을 제공합니다. 분석 능력을 제공합니다.

세계 벡터 데이터베이스 솔루션의 주요 벤더로는 Zilliz, Faiss, Redis 등이 있으며, 상위 3개사의 점유율은 전 세계 약 40%를 차지하고 있습니다. 북미가 가장 큰 시장으로 약 37%의 점유율을 차지하고 있습니다. 제품 유형별로는 클라우드 기반이 가장 큰 부문으로 약 65%의 점유율을 차지하고 있습니다. 동시에 다운스트림 분야에서는 기업이 가장 큰 분야로 약 80%의 점유율을 차지하고 있습니다.

향후 멀티모달 AI 모델의 보급에 따라 벡터화 데이터의 종류와 양은 계속 증가할 것이며, 벡터 데이터베이스는 '가속 엔진'에서 '인지 인프라'로 진화할 것입니다. 이러한 추세에 따라 데이터베이스 벤더는 다음과 같은 점에서 조속한 대응이 요구됩니다 : 첫째, 10억 개 이상의 벡터 인덱싱과 근사치 검색의 효율화를 위해 GPU를 지원하는 이기종 컴퓨팅 지원 프레임워크를 구축해야 합니다. 둘째, 대규모 언어 모델(ChatGPT, Claude 등)과 같은 RAG 아키텍처와의 네이티브 통합을 강화하여 AI 에이전트의 기억 중추가 될 수 있도록 합니다. 셋째, 보안, 컴플라이언스, 설명가능성 측면에서 ACL(액세스 제어 목록), 감사 로그, 엔드투엔드 암호화 등의 기능을 지원하여 기업 차원의 도입 요건을 충족시켜야 합니다. 넷째, 표준화된 인터페이스와 생태계 통합을 추진하고, 주류 데이터 레이크 및 MLOps 플랫폼과 원활하게 연동하여 범용 지식 검색 인프라를 형성합니다.

요컨대, 벡터 데이터베이스는 'AI 검색 도구'에서 '지능화 데이터 시스템의 핵심 허브'로 진화하고 있으며, 그 미래 발전은 빅 모델 생태계의 진화 경로와 밀접하게 연관되어 있습니다. 기반 인덱싱 기술, 이기종 혼합 컴퓨팅 최적화, 클라우드 네이티브 아키텍처 혁신에 대한 지속적인 투자와 혁신을 통해서만 제조업체는 진정한 차별화를 이루고 미래의 지능형 데이터 인프라를 주도할 수 있습니다.

이 보고서는 벡터 데이터베이스 솔루션 세계 시장에 대해 총 매출액, 주요 기업의 시장 점유율 및 순위에 초점을 맞추고 지역별, 국가별, 유형별, 용도별 분석을 통해 포괄적으로 제시하는 것을 목표로 합니다.

벡터 데이터베이스 솔루션 시장의 규모, 추정 및 예측은 2024년을 기준 연도로 하여 2020년에서 2031년까지의 기간의 과거 데이터와 예측 데이터를 포함하는 매출액으로 제시되었습니다. 정량적, 정성적 분석을 통해 독자들이 비즈니스/성장 전략을 수립하고, 시장 경쟁 상황을 평가하고, 현재 시장에서의 위치를 분석하고, 벡터 데이터베이스 솔루션에 대한 정보에 입각한 비즈니스 의사결정을 내릴 수 있도록 돕습니다.

시장 세분화

기업별

  • Zilliz
  • Faiss
  • Redis
  • Tinybird
  • Vespa
  • Vald
  • Pinecone
  • Weaviate
  • Amazon Web Services
  • Solix Technologies

유형별 부문

  • 클라우드 기반
  • 온프레미스

용도별 부문

  • 개인용
  • 기업용

지역별

  • 북미
    • 미국
    • 캐나다
  • 아시아태평양
    • 중국
    • 일본
    • 한국
    • 동남아시아
    • 인도
    • 호주
    • 기타 아시아태평양
  • 유럽
    • 독일
    • 프랑스
    • 영국
    • 이탈리아
    • 네덜란드
    • 북유럽 국가
    • 기타 유럽
  • 라틴아메리카
    • 멕시코
    • 브라질
    • 기타 라틴아메리카
  • 중동 및 아프리카
    • 튀르키예
    • 사우디아라비아
    • 아랍에미리트
    • 기타 중동 및 아프리카
KSM 25.12.05

자주 묻는 질문

  • 세계 벡터 데이터베이스 솔루션 시장 규모는 어떻게 예측되나요?
  • 벡터 데이터베이스 솔루션의 주요 벤더는 어디인가요?
  • 북미 지역의 벡터 데이터베이스 솔루션 시장 점유율은 얼마인가요?
  • 클라우드 기반 벡터 데이터베이스 솔루션의 시장 점유율은 어떻게 되나요?
  • 기업용 벡터 데이터베이스 솔루션의 시장 점유율은 얼마인가요?

The global market for Vector Database Solution was estimated to be worth US$ 3892 million in 2024 and is forecast to a readjusted size of US$ 15725 million by 2031 with a CAGR of 22.6% during the forecast period 2025-2031.

Vector Database Solution is a database system designed and optimized to process and store vector data. Vector data refers to data with magnitude and direction, such as geometric data, geospatial data, time series data, etc. Traditional relational databases are usually more suitable for processing scalar data, while vector databases focus on efficiently processing vector data, providing faster and more flexible query and analysis capabilities.

As technologies such as artificial intelligence, image recognition, large language models (LLMs) and recommendation systems place higher and higher demands on high-dimensional vector data management and search performance, vector database solutions are rapidly becoming a key component of the next-generation data infrastructure. This type of solution is mainly divided into two categories: cloud-based hosting deployment and local private deployment: the former is suitable for small and medium-sized enterprises or individual developers, with the advantages of elastic expansion, convenient access and rapid iteration, while the latter is more suitable for large enterprises with strict requirements on data sovereignty and privacy compliance, and can achieve stronger performance optimization and customized integration. At the application level, vector databases are widely used in scenarios such as natural language retrieval, image and video content search, personalized recommendation, and knowledge question-and-answer systems, bringing a more natural interactive experience to individual users and providing enterprises with smarter data retrieval and analysis capabilities.

The core vendors of global vector database solutions include Zilliz, Faiss and Redis, and the top three vendors account for about 40% of the global market share. North America is the largest market, accounting for about 37% of the market share. In terms of product types, cloud-based is the largest segment, accounting for about 65% of the share. At the same time, in terms of downstream, enterprises are the largest downstream field, accounting for about 80% of the share.

In the future, with the widespread application of multimodal AI models, the type and volume of vectorized data will continue to grow, pushing vector databases from "acceleration engines" to "cognitive infrastructure". Under this trend, database vendors need to make early arrangements in the following aspects: First, build a GPU-friendly heterogeneous computing support framework to improve the efficiency of vector indexing and approximate search above one billion levels; second, strengthen native integration with RAG architectures such as large language models (such as ChatGPT and Claude) to become the memory center of AI Agent; third, around security, compliance and explainability, develop support for ACL, audit logs, end-to-end encryption and other functions to meet enterprise-level deployment requirements; fourth, promote standardized interfaces and ecological integration, seamlessly connect with mainstream data lakes and MLOps platforms, and form a general knowledge retrieval infrastructure.

In short, vector databases are evolving from "AI search tools" to "key hubs of intelligent data systems", and their future development will be deeply tied to the evolution path of the big model ecosystem. Only by continuously investing in breakthroughs in underlying indexing technology, heterogeneous computing optimization, and cloud-native architecture innovation can manufacturers truly stand out and seize the commanding heights of future intelligent data infrastructure.

This report aims to provide a comprehensive presentation of the global market for Vector Database Solution, focusing on the total sales revenue, key companies market share and ranking, together with an analysis of Vector Database Solution by region & country, by Type, and by Application.

The Vector Database Solution market size, estimations, and forecasts are provided in terms of sales revenue ($ millions), considering 2024 as the base year, with history and forecast data for the period from 2020 to 2031. With both quantitative and qualitative analysis, to help readers develop business/growth strategies, assess the market competitive situation, analyze their position in the current marketplace, and make informed business decisions regarding Vector Database Solution.

Market Segmentation

By Company

  • Zilliz
  • Faiss
  • Redis
  • Tinybird
  • Vespa
  • Vald
  • Pinecone
  • Weaviate
  • Amazon Web Services
  • Solix Technologies

Segment by Type

  • Cloud Based
  • On-Premises

Segment by Application

  • Personal
  • Enterprise

By Region

  • North America
    • United States
    • Canada
  • Asia-Pacific
    • China
    • Japan
    • South Korea
    • Southeast Asia
    • India
    • Australia
    • Rest of Asia-Pacific
  • Europe
    • Germany
    • France
    • U.K.
    • Italy
    • Netherlands
    • Nordic Countries
    • Rest of Europe
  • Latin America
    • Mexico
    • Brazil
    • Rest of Latin America
  • Middle East & Africa
    • Turkey
    • Saudi Arabia
    • UAE
    • Rest of MEA

Chapter Outline

Chapter 1: Introduces the report scope of the report, global total market size. This chapter also provides the market dynamics, latest developments of the market, the driving factors and restrictive factors of the market, the challenges and risks faced by manufacturers in the industry, and the analysis of relevant policies in the industry.

Chapter 2: Detailed analysis of Vector Database Solution company competitive landscape, revenue market share, latest development plan, merger, and acquisition information, etc.

Chapter 3: Provides the analysis of various market segments by Type, covering the market size and development potential of each market segment, to help readers find the blue ocean market in different market segments.

Chapter 4: Provides the analysis of various market segments by Application, covering the market size and development potential of each market segment, to help readers find the blue ocean market in different downstream markets.

Chapter 5: Revenue of Vector Database Solution in regional level. It provides a quantitative analysis of the market size and development potential of each region and introduces the market development, future development prospects, market space, and market size of each country in the world.

Chapter 6: Revenue of Vector Database Solution in country level. It provides sigmate data by Type, and by Application for each country/region.

Chapter 7: Provides profiles of key players, introducing the basic situation of the main companies in the market in detail, including product revenue, gross margin, product introduction, recent development, etc.

Chapter 8: Analysis of industrial chain, including the upstream and downstream of the industry.

Chapter 9: Conclusion.

Table of Contents

1 Market Overview

  • 1.1 Vector Database Solution Product Introduction
  • 1.2 Global Vector Database Solution Market Size Forecast (2020-2031)
  • 1.3 Vector Database Solution Market Trends & Drivers
    • 1.3.1 Vector Database Solution Industry Trends
    • 1.3.2 Vector Database Solution Market Drivers & Opportunity
    • 1.3.3 Vector Database Solution Market Challenges
    • 1.3.4 Vector Database Solution Market Restraints
  • 1.4 Assumptions and Limitations
  • 1.5 Study Objectives
  • 1.6 Years Considered

2 Competitive Analysis by Company

  • 2.1 Global Vector Database Solution Players Revenue Ranking (2024)
  • 2.2 Global Vector Database Solution Revenue by Company (2020-2025)
  • 2.3 Key Companies Vector Database Solution Manufacturing Base Distribution and Headquarters
  • 2.4 Key Companies Vector Database Solution Product Offered
  • 2.5 Key Companies Time to Begin Mass Production of Vector Database Solution
  • 2.6 Vector Database Solution Market Competitive Analysis
    • 2.6.1 Vector Database Solution Market Concentration Rate (2020-2025)
    • 2.6.2 Global 5 and 10 Largest Companies by Vector Database Solution Revenue in 2024
    • 2.6.3 Global Top Companies by Company Type (Tier 1, Tier 2, and Tier 3) & (based on the Revenue in Vector Database Solution as of 2024)
  • 2.7 Mergers & Acquisitions, Expansion

3 Segmentation by Type

  • 3.1 Introduction by Type
    • 3.1.1 Cloud Based
    • 3.1.2 On-Premises
  • 3.2 Global Vector Database Solution Sales Value by Type
    • 3.2.1 Global Vector Database Solution Sales Value by Type (2020 VS 2024 VS 2031)
    • 3.2.2 Global Vector Database Solution Sales Value, by Type (2020-2031)
    • 3.2.3 Global Vector Database Solution Sales Value, by Type (%) (2020-2031)

4 Segmentation by Application

  • 4.1 Introduction by Application
    • 4.1.1 Personal
    • 4.1.2 Enterprise
  • 4.2 Global Vector Database Solution Sales Value by Application
    • 4.2.1 Global Vector Database Solution Sales Value by Application (2020 VS 2024 VS 2031)
    • 4.2.2 Global Vector Database Solution Sales Value, by Application (2020-2031)
    • 4.2.3 Global Vector Database Solution Sales Value, by Application (%) (2020-2031)

5 Segmentation by Region

  • 5.1 Global Vector Database Solution Sales Value by Region
    • 5.1.1 Global Vector Database Solution Sales Value by Region: 2020 VS 2024 VS 2031
    • 5.1.2 Global Vector Database Solution Sales Value by Region (2020-2025)
    • 5.1.3 Global Vector Database Solution Sales Value by Region (2026-2031)
    • 5.1.4 Global Vector Database Solution Sales Value by Region (%), (2020-2031)
  • 5.2 North America
    • 5.2.1 North America Vector Database Solution Sales Value, 2020-2031
    • 5.2.2 North America Vector Database Solution Sales Value by Country (%), 2024 VS 2031
  • 5.3 Europe
    • 5.3.1 Europe Vector Database Solution Sales Value, 2020-2031
    • 5.3.2 Europe Vector Database Solution Sales Value by Country (%), 2024 VS 2031
  • 5.4 Asia Pacific
    • 5.4.1 Asia Pacific Vector Database Solution Sales Value, 2020-2031
    • 5.4.2 Asia Pacific Vector Database Solution Sales Value by Region (%), 2024 VS 2031
  • 5.5 South America
    • 5.5.1 South America Vector Database Solution Sales Value, 2020-2031
    • 5.5.2 South America Vector Database Solution Sales Value by Country (%), 2024 VS 2031
  • 5.6 Middle East & Africa
    • 5.6.1 Middle East & Africa Vector Database Solution Sales Value, 2020-2031
    • 5.6.2 Middle East & Africa Vector Database Solution Sales Value by Country (%), 2024 VS 2031

6 Segmentation by Key Countries/Regions

  • 6.1 Key Countries/Regions Vector Database Solution Sales Value Growth Trends, 2020 VS 2024 VS 2031
  • 6.2 Key Countries/Regions Vector Database Solution Sales Value, 2020-2031
  • 6.3 United States
    • 6.3.1 United States Vector Database Solution Sales Value, 2020-2031
    • 6.3.2 United States Vector Database Solution Sales Value by Type (%), 2024 VS 2031
    • 6.3.3 United States Vector Database Solution Sales Value by Application, 2024 VS 2031
  • 6.4 Europe
    • 6.4.1 Europe Vector Database Solution Sales Value, 2020-2031
    • 6.4.2 Europe Vector Database Solution Sales Value by Type (%), 2024 VS 2031
    • 6.4.3 Europe Vector Database Solution Sales Value by Application, 2024 VS 2031
  • 6.5 China
    • 6.5.1 China Vector Database Solution Sales Value, 2020-2031
    • 6.5.2 China Vector Database Solution Sales Value by Type (%), 2024 VS 2031
    • 6.5.3 China Vector Database Solution Sales Value by Application, 2024 VS 2031
  • 6.6 Japan
    • 6.6.1 Japan Vector Database Solution Sales Value, 2020-2031
    • 6.6.2 Japan Vector Database Solution Sales Value by Type (%), 2024 VS 2031
    • 6.6.3 Japan Vector Database Solution Sales Value by Application, 2024 VS 2031
  • 6.7 South Korea
    • 6.7.1 South Korea Vector Database Solution Sales Value, 2020-2031
    • 6.7.2 South Korea Vector Database Solution Sales Value by Type (%), 2024 VS 2031
    • 6.7.3 South Korea Vector Database Solution Sales Value by Application, 2024 VS 2031
  • 6.8 Southeast Asia
    • 6.8.1 Southeast Asia Vector Database Solution Sales Value, 2020-2031
    • 6.8.2 Southeast Asia Vector Database Solution Sales Value by Type (%), 2024 VS 2031
    • 6.8.3 Southeast Asia Vector Database Solution Sales Value by Application, 2024 VS 2031
  • 6.9 India
    • 6.9.1 India Vector Database Solution Sales Value, 2020-2031
    • 6.9.2 India Vector Database Solution Sales Value by Type (%), 2024 VS 2031
    • 6.9.3 India Vector Database Solution Sales Value by Application, 2024 VS 2031

7 Company Profiles

  • 7.1 Zilliz
    • 7.1.1 Zilliz Profile
    • 7.1.2 Zilliz Main Business
    • 7.1.3 Zilliz Vector Database Solution Products, Services and Solutions
    • 7.1.4 Zilliz Vector Database Solution Revenue (US$ Million) & (2020-2025)
    • 7.1.5 Zilliz Recent Developments
  • 7.2 Faiss
    • 7.2.1 Faiss Profile
    • 7.2.2 Faiss Main Business
    • 7.2.3 Faiss Vector Database Solution Products, Services and Solutions
    • 7.2.4 Faiss Vector Database Solution Revenue (US$ Million) & (2020-2025)
    • 7.2.5 Faiss Recent Developments
  • 7.3 Redis
    • 7.3.1 Redis Profile
    • 7.3.2 Redis Main Business
    • 7.3.3 Redis Vector Database Solution Products, Services and Solutions
    • 7.3.4 Redis Vector Database Solution Revenue (US$ Million) & (2020-2025)
    • 7.3.5 Redis Recent Developments
  • 7.4 Tinybird
    • 7.4.1 Tinybird Profile
    • 7.4.2 Tinybird Main Business
    • 7.4.3 Tinybird Vector Database Solution Products, Services and Solutions
    • 7.4.4 Tinybird Vector Database Solution Revenue (US$ Million) & (2020-2025)
    • 7.4.5 Tinybird Recent Developments
  • 7.5 Vespa
    • 7.5.1 Vespa Profile
    • 7.5.2 Vespa Main Business
    • 7.5.3 Vespa Vector Database Solution Products, Services and Solutions
    • 7.5.4 Vespa Vector Database Solution Revenue (US$ Million) & (2020-2025)
    • 7.5.5 Vespa Recent Developments
  • 7.6 Vald
    • 7.6.1 Vald Profile
    • 7.6.2 Vald Main Business
    • 7.6.3 Vald Vector Database Solution Products, Services and Solutions
    • 7.6.4 Vald Vector Database Solution Revenue (US$ Million) & (2020-2025)
    • 7.6.5 Vald Recent Developments
  • 7.7 Pinecone
    • 7.7.1 Pinecone Profile
    • 7.7.2 Pinecone Main Business
    • 7.7.3 Pinecone Vector Database Solution Products, Services and Solutions
    • 7.7.4 Pinecone Vector Database Solution Revenue (US$ Million) & (2020-2025)
    • 7.7.5 Pinecone Recent Developments
  • 7.8 Weaviate
    • 7.8.1 Weaviate Profile
    • 7.8.2 Weaviate Main Business
    • 7.8.3 Weaviate Vector Database Solution Products, Services and Solutions
    • 7.8.4 Weaviate Vector Database Solution Revenue (US$ Million) & (2020-2025)
    • 7.8.5 Weaviate Recent Developments
  • 7.9 Amazon Web Services
    • 7.9.1 Amazon Web Services Profile
    • 7.9.2 Amazon Web Services Main Business
    • 7.9.3 Amazon Web Services Vector Database Solution Products, Services and Solutions
    • 7.9.4 Amazon Web Services Vector Database Solution Revenue (US$ Million) & (2020-2025)
    • 7.9.5 Amazon Web Services Recent Developments
  • 7.10 Solix Technologies
    • 7.10.1 Solix Technologies Profile
    • 7.10.2 Solix Technologies Main Business
    • 7.10.3 Solix Technologies Vector Database Solution Products, Services and Solutions
    • 7.10.4 Solix Technologies Vector Database Solution Revenue (US$ Million) & (2020-2025)
    • 7.10.5 Solix Technologies Recent Developments

8 Industry Chain Analysis

  • 8.1 Vector Database Solution Industrial Chain
  • 8.2 Vector Database Solution Upstream Analysis
    • 8.2.1 Key Raw Materials
    • 8.2.2 Raw Materials Key Suppliers
    • 8.2.3 Manufacturing Cost Structure
  • 8.3 Midstream Analysis
  • 8.4 Downstream Analysis (Customers Analysis)
  • 8.5 Sales Model and Sales Channels
    • 8.5.1 Vector Database Solution Sales Model
    • 8.5.2 Sales Channel
    • 8.5.3 Vector Database Solution Distributors

9 Research Findings and Conclusion

10 Appendix

  • 10.1 Research Methodology
    • 10.1.1 Methodology/Research Approach
      • 10.1.1.1 Research Programs/Design
      • 10.1.1.2 Market Size Estimation
      • 10.1.1.3 Market Breakdown and Data Triangulation
    • 10.1.2 Data Source
      • 10.1.2.1 Secondary Sources
      • 10.1.2.2 Primary Sources
  • 10.2 Author Details
  • 10.3 Disclaimer
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제