½ÃÀ庸°í¼­
»óǰÄÚµå
1351104

¼¼°èÀÇ µ¥ÀÌÅÍ Ä«Å»·Î±× ½ÃÀå ¿¹Ãø(-2030³â) : ºÎ¹®º°, Áö¿ªº° ºÐ¼®

Data Catalog Market Forecasts to 2030 - Global Analysis By Component, Organization Size, Deployment Mode, Data Consumer, Metadata Type, End User and By Geography

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Stratistics Market Research Consulting | ÆäÀÌÁö Á¤º¸: ¿µ¹® 175+ Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Stratistics MRC¿¡ µû¸£¸é ¼¼°è µ¥ÀÌÅÍ Ä«Å»·Î±× ½ÃÀåÀº 2023³â 8¾ï 5,000¸¸ ´Þ·¯·Î ¿¹Ãø ±â°£ µ¿¾È 22.0%ÀÇ CAGR·Î ¼ºÀåÇØ 2030³â¿¡´Â 34¾ï 3,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

µ¥ÀÌÅÍ Ä«Å»·Î±×´Â ±ÇÇÑÀÌ ÀÖ´Â »ç¿ëÀÚ°¡ ±â¾÷¿¡¼­ »ç¿ëÇÒ ¼ö ÀÖ´Â °¡Àå Á¤È®ÇÏ°í ½Å·ÚÇÒ ¼ö ÀÖ´Â ºñÁö´Ï½º µ¥ÀÌÅÍ¿¡ ºü¸£°Ô ¾×¼¼½ºÇÒ ¼ö ÀÖ´Â Áß¾Ó ÁýÁᫎ ¼Ö·ç¼ÇÀÔ´Ï´Ù. ¶ÇÇÑ Á¶Á÷ ³» ¸ðµç Á¤º¸ ¹× µ¥ÀÌÅÍ ¼Ò½ºÀÇ Áß¾Ó ÀúÀå¼Ò ¿ªÇÒÀ» ¼öÇàÇÏ¿© ±â¼ú ¹× ºñÁö´Ï½º »ç¿ëÀÚ°¡ ÀÛ¾÷À» ¿Ï·áÇϰí, ÀÏ»ó ¾÷¹«¸¦ ¼öÇàÇϰí, ºÐ¼® º¸°í¼­¸¦ ÀÛ¼ºÇÏ´Â µ¥ ÇÊ¿äÇÑ µ¥ÀÌÅÍ ¼¼Æ®¸¦ °Ë»ö, ÁÖ¹®, ȹµæÇÒ ¼ö ÀÖµµ·Ï Áö¿øÇÕ´Ï´Ù. µ¥ÀÌÅÍ Ä«Å»·Î±×´Â ´ë·®ÀÇ µ¥ÀÌÅÍ·Î ÀÎÇØ ¸ðµç ´ë±â¾÷¿¡¼­ ¸Å¿ì Áß¿äÇØÁö°í ÀÖ½À´Ï´Ù.

SisenseÀÇ Á¶»ç¿¡ µû¸£¸é, Á¶»ç ´ë»ó ±â¾÷ÀÇ ¾à 55%´Â È¿À²¼º Çâ»óÀ» À§ÇØ, ¾à 47%´Â °í°´ Áö¿øÀ» À§ÇØ, ¾à 45%´Â ¹Ì·¡ °á°ú¸¦ ¿¹ÃøÇϱâ À§ÇØ µ¥ÀÌÅ͸¦ Ȱ¿ëÇϱ⠽ÃÀÛÇß´Ù°í ÇÕ´Ï´Ù. Áß¼Ò±â¾÷Àº ´ë±â¾÷º¸´Ù È¿À²¼ºÀ» Áß½ÃÇϱ⠶§¹®¿¡ µ¥ÀÌÅÍ Ä«Å»·Î±×¿Í °°Àº Á¦Ç°¿¡ ´ëÇÑ ¾÷°è ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.

¼¿ÇÁ ¼­ºñ½º ¾Ö³Î¸®Æ½½º Ȱ¿ë Áõ°¡

µ¥ÀÌÅÍ Ä«Å»·Î±×´Â µ¥ÀÌÅ͸¦ ºü¸£°í Á¤È®ÇÏ°Ô °Ë»öÇÒ ¼ö ÀÖ°ÔÇÔÀ¸·Î½á µ¥ÀÌÅÍ º¸¾ÈÀÇ Á߿伺À» ³ôÀ̰í ÀÖ½À´Ï´Ù. ÀÌ¿¡ µû¶ó µ¥ÀÌÅÍ Ä«Å»·Î±× ¼ÒÇÁÆ®¿þ¾î°¡ Á¦°øÇÏ´Â º¸¾È¿¡ ´ëÇÑ °í°´ÀÇ ÀνÄÀÌ ³ô¾ÆÁö¸é¼­ ¼¿ÇÁ ¼­ºñ½º ºÐ¼®Àº ´õ¿í ¾ÈÀüÇØÁ³½À´Ï´Ù. ±× °á°ú, ¸¹Àº Á¦Ç°µéÀÌ ÅëÇÕµÇ°í »õ·Î¿î Á¦Ç°µéÀÌ ½ÃÀå¿¡ Ãâ½ÃµÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Ãß¼¼´Â ¿¹Ãø ±â°£ µ¿¾È Áö¼ÓµÉ °ÍÀ¸·Î ¿¹»óµÇ¸ç, º¥´õ °£ °æÀïÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀÚ°¡ ºÐ¼® µ¥ÀÌÅÍÀÇ ¹ßÀü°ú »õ·Î¿î ½Ã´ëÀÇ ±â¾÷ ȯ°æ¿¡¼­ÀÇ µ¥ÀÌÅÍ Áõ°¡´Â µ¥ÀÌÅÍ Ä«Å»·Î±× ¼Ö·ç¼Ç Á¦°ø¾÷ü°¡ »õ·Ó°í À¯¿ëÇÑ Á¦Ç°À» µµÀÔÇÒ ¼ö ÀÖ´Â ¸Å·ÂÀûÀÎ ±âȸ¸¦ Á¦°øÇÏ´Â Áß¿äÇÑ ¿äÀÎÀ¸·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù. Ŭ¶ó¿ìµå´Â »ç¿ëÀÚ¿¡°Ô µ¥ÀÌÅÍ¿¡ ´ëÇÑ Áß¾Ó ÁýÁᫎ ºä¸¦ Á¦°øÇϰí Àú·ÅÇÑ ºñ¿ëÀ¸·Î ´õ ³ªÀº ¼º´ÉÀ» Á¦°øÇϱ⠶§¹®¿¡ ¼¿ÇÁ ¼­ºñ½º ºñÁö´Ï½ºÀÇ »ç¿ëÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.

º¸¾È ¹®Á¦ ¹× Ç¥ÁØÈ­ ºÎÁ·

±â¾÷µéÀº ºñÁ¤Çü µ¥ÀÌÅÍ ¹®Á¦·Î ÀÎÇØ īŻ·Î±× ¼Ö·ç¼Ç µµÀÔ¿¡ ¾î·Á¿òÀ» °Þ°í ÀÖ½À´Ï´Ù. µ¥ÀÌÅÍ °úÇÐÀÚµéÀº ¸ðµ¨¸µ¿¡ ÇÊ¿äÇÑ ±â¾÷ µ¥ÀÌÅ͸¦ ¾ò°Å³ª ºÐ¼® ÆÀ¿¡ ÀλçÀÌÆ®¸¦ Á¦°øÇϱâ À§ÇØ ´Ù¾çÇÑ ÃâóÀÇ ÆÛÁö µ¥ÀÌÅÍ ¼¼Æ®ÀÇ º¹À⼺À» °ü¸®ÇØ¾ß ÇÕ´Ï´Ù. µ¥ÀÌÅÍÀÇ ±âÇϱ޼öÀûÀÎ Áõ°¡¸¦ °í·ÁÇÒ ¶§, ÀÌ »óÅ´ Àå±âÀûÀ¸·Î Áö¼ÓµÉ ¼ö ¾ø½À´Ï´Ù. ¶ÇÇÑ, ·¹°Å½Ã µ¥ÀÌÅÍ¿Í µ¥ÀÌÅÍ ¿þ¾îÇϿ콺 À¯Áö¿¡ ÅõÀÚÇÏ´Â ¸¹Àº ±â¾÷µéÀº ´Ù¾çÇÑ ¼Ò½ºÀÇ ÆÛÁö µ¥ÀÌÅÍ ¼¼Æ® »çÀÏ·Î¿Í ¿À·£ ±â°£ µ¿¾È À¯ÈÞ µ¥ÀÌÅÍ ¾ÆÄ«À̺긦 º¸À¯ÇÏ°Ô µË´Ï´Ù. ¶ÇÇÑ, ÀÌ·¯ÇÑ µ¥ÀÌÅÍ ¼¼Æ®´Â µ¥ÀÌÅÍ Ä«Å»·Î±×¸¦ ±¸ÇöÇÏ´Â µ¥ ¾î·Á¿òÀ» °Þ´Â °æ¿ì°¡ ¸¹½À´Ï´Ù.

»ê¾÷°èÀÇ µðÁöÅÐ Æ®·£½ºÆ÷¸ÞÀ̼Ç

µðÁöÅÐ ½Ã´ë¿¡ °æÀï·ÂÀ» À¯ÁöÇÏ°í °ü·Ã¼ºÀ» À¯ÁöÇϱâ À§ÇØ ¸ðµç »ê¾÷ ºÐ¾ß¿¡¼­ µðÁöÅÐ Æ®·£½ºÆ÷¸ÞÀ̼ÇÀÌ ÃßÁøµÇ°í ÀÖ½À´Ï´Ù. ±â¾÷µéÀº Ŭ¶ó¿ìµå ÄÄÇ»ÆÃ, ºòµ¥ÀÌÅÍ ºÐ¼®, »ç¹°ÀÎÅͳÝ(IoT), ÀΰøÁö´É(AI) µîÀÇ ±â¼úÀ» Ȱ¿ëÇØ °í°´ °æÇèÀ» °³¼±Çϰí, ¾÷¹«¸¦ °£¼ÒÈ­Çϸç, ÀÇ»ç°áÁ¤ °úÁ¤À» ÃÖÀûÈ­ÇϰíÀÚ ³ë·ÂÇß½À´Ï´Ù. ¶ÇÇÑ, µðÁöÅÐ Æ®·£½ºÆ÷¸ÞÀ̼ÇÀ» À§ÇÑ ¼ÒÇÁÆ®¿þ¾î¿Í ¼­ºñ½º¸¦ Á¦°øÇÏ´Â ±â¾÷°ú µðÁöÅÐ Àü·«¿¡ ÁßÁ¡À» µÐ ÄÁ¼³ÆÃ ȸ»çµéÀº ¸ðµÎ Á¶Á÷ÀÇ ÀÌ·¯ÇÑ ÀüȯÀ» Áö¿øÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» ´ã´çÇϰí ÀÖ½À´Ï´Ù.

¿¹»ê°ú ÀÚ¿øÀÇ Á¦¾àÁ¶°Ç

µ¥ÀÌÅÍ Ä«Å»·Î±×¸¦ µµÀÔÇÏ´Â µ¥´Â ºñ¿ë°ú ÀÚ¿ø Ãø¸é¿¡¼­ ¸¹Àº ¾î·Á¿òÀÌ µû¸¨´Ï´Ù. Á¶Á÷Àº µ¥ÀÌÅÍ Ä«Å»·Î±× µµ±¸ÀÇ ±¸¸Å ¹× µµÀÔÀ» À§ÇÑ Ãʱâ ÅõÀÚ»Ó¸¸ ¾Æ´Ï¶ó ½Ã½ºÅÛ À¯Áö, ¾÷µ¥ÀÌÆ® ¹× Áö¿øÀ» À§ÇÑ Áö¼ÓÀûÀÎ ÀÚ±ÝÀ» È®º¸ÇØ¾ß ÇÕ´Ï´Ù. ¶ÇÇÑ, ƯÈ÷ ¿¹»êÀÌ ÇÑÁ¤µÈ ¼Ò±Ô¸ð Á¶Á÷¿¡¼­´Â ÀçÁ¤Àû, ÀÎÀû ÀÚ¿øÀÌ ºÎÁ·ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¾î·Á¿òÀº ºñ¿ë ÃßÁ¤ÀÇ º¹À⼺°ú ¿¹»óÄ¡ ¸øÇÑ ºñ¿ë ¹ß»ý °¡´É¼ºÀ¸·Î ÀÎÇØ ´õ¿í ¾î·Á¿öÁö¸ç, µ¥ÀÌÅÍ Ä«Å»·Î±× °èȹÀÇ ¼º°øÀ» À§Çؼ­´Â ½ÅÁßÇÑ À繫 °èȹ°ú ÀÚ¿ø ¹èºÐÀÌ Áß¿äÇÏ´Ù´Â Á¡À» °­Á¶ÇÕ´Ï´Ù.

COVID-19ÀÇ ¿µÇâ:

Á¶Á÷ÀÌ µðÁöÅÐ ºñÁö´Ï½º Àüȯ°ú ¿ø°Ý ±Ù¹«¸¦ µµÀÔÇϱâ À§ÇÑ ³ë·ÂÀ» °­È­ÇÔ¿¡ µû¶ó COVID-19 »çÅ´ µ¥ÀÌÅÍ Ä«Å»·Î±× ½ÃÀå¿¡ Å« ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. È¿°úÀûÀÎ µ¥ÀÌÅÍ °ü¸®¿Í Çù¾÷¿¡ ´ëÇÑ Çʿ伺ÀÌ ³ô¾ÆÁö¸é¼­ µ¥ÀÌÅÍ Ä«Å»·Î±× ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ±×·¯³ª ¿¹»ê Á¦ÇѰú °æÁ¦ Àü¸ÁÀÇ ºÒÈ®½Ç¼ºµµ ½ÃÀå ¿ªÇп¡ ¿µÇâÀ» ¹ÌÃÄ ÀϺΠ±â¾÷Àº µ¥ÀÌÅÍ Ä«Å»·Î±×¿¡ ´ëÇÑ ÅõÀÚ¸¦ ¿¬±âÇϰųª Àç°ËÅäÇϰí ÀÖ½À´Ï´Ù. ÀüüÀûÀ¸·Î º¼ ¶§, ÆÒµ¥¹ÍÀº ±Þº¯ÇÏ´Â ºñÁö´Ï½º ȯ°æ¿¡¼­ µ¥ÀÌÅÍ Ä«Å»·Î±×ÀÇ °¡Ä¡¸¦ ºÎ°¢½ÃÄ×°í, ½ÃÀå¿¡ ±âȸ¿Í µµÀüÀ» µ¿½Ã¿¡ °¡Á®´ÙÁÖ¾ú½À´Ï´Ù.

¿¹Ãø±â°£ µ¿¾È IT¡¤Åë½Å ºÐ¾ß°¡ °¡Àå Å« ºñÁßÀ» Â÷ÁöÇÒ °ÍÀ¸·Î Àü¸Á

¿¹Ãø ±â°£ µ¿¾È IT ¹× Åë½Å ºÐ¾ß°¡ °¡Àå Å« ¼öÀÍ Á¡À¯À²À» Â÷ÁöÇß½À´Ï´Ù. ÀÌ »ê¾÷¿¡¼­ ³×Æ®¿öÅ© ¸ÞŸµ¥ÀÌÅͰ¡ ±¤¹üÀ§ÇÏ°Ô »ç¿ëµÇ°í ÀÖ´Â °ÍÀÌ °¡Àå Å« Á¡À¯À²ÀÇ ¿øÀÎÀ¸·Î ÃßÁ¤µË´Ï´Ù. ³×Æ®¿öÅ© ¸ÞŸµ¥ÀÌÅÍ´Â ½ºÀ§Ä¡, ¹æÈ­º®, ¶ó¿ìÅÍ, ÆÐŶ ºê·ÎÄ¿¸¦ Æ÷ÇÔÇÑ ÇöÀç ³×Æ®¿öÅ© ¾ÆÅ°ÅØÃ³ ³»ÀÇ ¸ðµç Åë½Å ±â·ÏÀ» À¯ÁöÇÔÀ¸·Î½á ³×Æ®¿öÅ© Åë½Å¿¡ ´ëÇÑ Á¾ÇÕÀûÀÎ ¼¼ºÎ Á¤º¸¸¦ Á¦°øÇÕ´Ï´Ù. ¶ÇÇÑ, ³×Æ®¿öÅ© ¸ÞŸµ¥ÀÌÅÍ´Â È®Àå °¡´ÉÇϸç, ºÐ¼®±â°¡ ÆÐŶ µ¥ÀÌÅ͸¦ ¼öÁý, Á¤·Ä, ó¸®ÇÏ°í ³×Æ®¿öÅ© Æ®·¡ÇÈ, »ç¿ë·®, ¿ë·®, ¾ÖÇø®ÄÉÀÌ¼Ç ¼º´É¿¡ ´ëÇÑ ±×·¡ÇÁ¿Í Åë°è·Î À妽ÌÇÏ¿© ¿Ïº®ÇÑ ³×Æ®¿öÅ© ¸ð´ÏÅ͸µÀÌ °¡´ÉÇÕ´Ï´Ù. ¸ð´ÏÅ͸µÀÌ °¡´ÉÇÕ´Ï´Ù. ±â¼ú ¸ÞŸµ¥ÀÌÅÍ¿Í ºñÁö´Ï½º ¸ÞŸµ¥ÀÌÅÍ´Â ±âº»ÀûÀ¸·Î µ¥ÀÌÅÍ¿¡ °üÇÑ µ¥ÀÌÅÍ´Ù. ´ëºÎºÐÀÇ º¸¾È ±â°üÀº ÀÌ·¯ÇÑ º¸¾È ¼Ö·ç¼ÇÀ» °³¹ßÇÒ ¶§ ¸ÞŸµ¥ÀÌÅÍÀÇ ÀλçÀÌÆ®¸¦ Ȱ¿ëÇϰí ÀÖ½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È ºñÁö´Ï½º ÀÎÅÚ¸®Àü½º µµ±¸ ºÎ¹®Àº °¡Àå ³ôÀº CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»ó

ºñÁö´Ï½º ÀÎÅÚ¸®Àü½º µµ±¸ ºÐ¾ß´Â ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGR·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ºñÁö´Ï½º ÀÎÅÚ¸®Àü½º(BI)´Â ÀÎÇÁ¶ó, µ¥ÀÌÅÍ µµ±¸, ¸ð¹ü »ç·Ê, µ¥ÀÌÅÍ ¸¶ÀÌ´×, µ¥ÀÌÅÍ ½Ã°¢È­, ºñÁö´Ï½º ºÐ¼®À» °áÇÕÇÏ¿© Á¶Á÷ÀÌ µ¥ÀÌÅÍ ±â¹Ý ÀÇ»ç°áÁ¤À» ³»¸± ¼ö ÀÖµµ·Ï Áö¿øÇÕ´Ï´Ù. ºñÁö´Ï½º ÀÎÅÚ¸®Àü½º ÆÀÀº µ¥ÀÌÅÍ Ä«Å»·Î±×¸¦ »ç¿ëÇÏ¿© ´ë½Ãº¸µå¸¦ Áß¾Ó ÁýÁßÈ­ÇÏ°í º¸°í¸¦ ÀÚµ¿È­ÇÏ¿© È¿°úÀûÀÎ ºÐ¼®À» ¼öÇàÇÕ´Ï´Ù. ¶ÇÇÑ, ºñÁö´Ï½º ÀÎÅÚ¸®Àü½º(BI)´Â Åë°èÀû ¸ðµ¨¸µ ±â¹ýÀÇ Áö¿øÀ» ÇÊ¿ä·Î ÇÏ´Â ºñÁö´Ï½º ÀÇ»ç°áÁ¤ÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ¼ºÀåÇϰí ÀÖÀ¸¸ç, ÇϵӰú °°Àº BI µµ±¸´Â µ¥ÀÌÅÍ ¸ðµ¨, ¾Ë°í¸®Áò, Äõ¸® »ý¼º ¹× °ü¸®¿¡ ´ëÇÑ ±íÀº ±â¼úÀû Áö½ÄÀ» ÇÊ¿ä·Î ÇÕ´Ï´Ù.

ÃÖ´ë Á¡À¯À² Áö¿ª:

½ÃÀå Á¡À¯À²ÀÌ °¡Àå ³ôÀº Áö¿ªÀº ¿¹»ó ±â°£ µ¿¾È ºÏ¹Ì Áö¿ªÀÌ µÉ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù. ºÏ¹Ì Áö¿ª¿¡¼­´Â µðÁöÅÐ ±â¼úÀÇ ±¤¹üÀ§ÇÑ »ç¿ë°ú ºñÁö´Ï½º ÀÎÅÚ¸®Àü½º ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¸¦ ¸ðµÎ º¼ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¼¿ÇÁ ¼­ºñ½º ºÐ¼®ÀÇ ¼ö¿ë, ÀüÅëÀûÀÎ Á¶Á÷ÀÇ ±Þ¼ÓÇÑ È®Àå, ¸ðµç »ê¾÷¿¡¼­ ¹æ´ëÇÑ ¾çÀÇ µ¥ÀÌÅÍ ¼öÁýÀ¸·Î ÀÎÇØ µ¥ÀÌÅÍ Ä«Å»·Î±× ½Ã½ºÅÛ ¹× ¼­ºñ½º¿¡ ´ëÇÑ ¼ö¿ä°¡ Å©°Ô Áõ°¡Çß½À´Ï´Ù. ÀÌ·¯ÇÑ ¿äÀεéÀº ·ÎÄà µ¥ÀÌÅÍ Ä«Å»·Î±× ½ÃÀåÀÇ ¼ºÀåÀ» °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª:

¿¹Ãø ±â°£ µ¿¾È À¯·´ Áö¿ªÀÌ °¡Àå ³ôÀº CAGR·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¼¼°è¿¡¼­ °¡Àå Áß¿äÇÑ ±â¼ú Çãºê Áß ÀϺδ À¯·´¿¡ À§Ä¡Çϰí ÀÖÀ¸¸ç, À¯·´Àº Ãֽбâ¼úÀÇ Áß¿äÇÑ ÃßÁøÀÚÀÌÀÚ Ã¤ÅÃÀÚÀÔ´Ï´Ù. µðÁöÅÐ ±â¼úÀÇ ÀÌÁ¡À» ½ÇÇöÇÏ´Â °ÍÀº À¯·´ °æÁ¦¿Í »çȸÀÇ ¼ºÀå°ú ¼º°ø¿¡ ÇʼöÀûÀÔ´Ï´Ù. ¶ÇÇÑ, À¯·´ µ¥ÀÌÅÍ ÀÎÅ¥º£ÀÌÅÍ´Â EU º»ºÎ¿¡ À§Ä¡ÇÑ ±â¾÷°¡ ¹× ÆÀ¿¡°Ô Àü¹® ¾×¼¿·¯·¹ÀÌÆÃ ÇÁ·Î±×·¥°ú ÃÑ 5¹é¸¸ À¯·ÎÀÇ ÀÚ±ÝÀ» Á¦°øÇϰí ÀÖÀ¸¸ç, EDI´Â ½º¸¶Æ® ½ÃƼ, ¿¡³ÊÁö ¹× ȯ°æ, ÀÎÅÍ³Ý ¹× ¹Ìµð¾î, Àδõ½ºÆ®¸® 4.0, ¼Ò¸Å µî ´Ù¾çÇÑ ºÐ¾ß¿¡¼­ EU ±â¾÷ ¹× ÆÀ°ú Çù·ÂÇϰí ÀÖ½À´Ï´Ù. µî ´Ù¾çÇÑ ºÐ¾ß¿¡¼­ À¯·´ Àü¿ªÀÇ ºòµ¥ÀÌÅÍ Çõ½Å°¡ ¹× ±â¾÷°¡µé¿¡°Ô ÃÊÁ¡À» ¸ÂÃß°í ÀÖÀ¸¸ç, EU ±â¾÷ ¹× µ¥ÀÌÅÍ Á¦°ø¾÷üµéÀÌ Á÷¸éÇÑ ½ÇÁ¦ »ê¾÷Àû °úÁ¦¿¡ ´ëÀÀÇϱâ À§ÇØ ³ë·ÂÇϰí ÀÖ½À´Ï´Ù.

¹«·á ¸ÂÃãÇü ¼­ºñ½º

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½°ú °°Àº ¹«·á ¸ÂÃãÇü ¿É¼Ç Áß Çϳª¸¦ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù:

  • ȸ»ç ÇÁ·ÎÇÊ
    • Ãß°¡ ½ÃÀå ±â¾÷ÀÇ Á¾ÇÕÀûÀÎ ÇÁ·ÎÆÄÀϸµ(ÃÖ´ë 3°³»ç±îÁö)
    • ÁÖ¿ä ±â¾÷ SWOT ºÐ¼®(3°³»ç±îÁö)
  • Áö¿ª ¼¼ºÐÈ­
    • °í°´ÀÇ °ü½É¿¡ µû¸¥ ÁÖ¿ä ±¹°¡º° ½ÃÀå ÃßÁ¤ ¹× ¿¹Ãø, CAGR(Âü°í: Ÿ´ç¼º °ËÅä¿¡ µû¸¥)
  • °æÀï»ç º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¸®Àû ÀÔÁö, Àü·«Àû Á¦ÈÞ¸¦ ±â¹ÝÀ¸·Î ÇÑ ÁÖ¿ä ±â¾÷ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

  • °³¿ä
  • ÀÌÇØ°ü°èÀÚ
  • Á¶»ç ¹üÀ§
  • Á¶»ç ¹æ¹ý
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ °ËÁõ
    • Á¶»ç Á¢±Ù¹ý
  • Á¶»ç ¼Ò½º
    • 1Â÷ Á¶»ç ¼Ò½º
    • 2Â÷ Á¶»ç ¼Ò½º
    • °¡Á¤

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

  • ¼ºÀå ÃËÁø¿äÀÎ
  • ¼ºÀå ¾ïÁ¦¿äÀÎ
  • ±âȸ
  • À§Çù
  • ÃÖÁ¾»ç¿ëÀÚ ºÐ¼®
  • ½ÅÈï ½ÃÀå
  • ½ÅÁ¾ Äڷγª¹ÙÀÌ·¯½º °¨¿°Áõ(COVID-19)ÀÇ ¿µÇâ

Á¦4Àå Porter's Five Forces ºÐ¼®

  • °ø±Þ ±â¾÷ÀÇ ±³¼··Â
  • ±¸¸ÅÀÚÀÇ ±³¼··Â
  • ´ëüǰÀÇ À§Çù
  • ½Å±Ô Âü¿©¾÷üÀÇ À§Çù
  • °æÀï ±â¾÷ °£ÀÇ °æÀï °ü°è

Á¦5Àå ¼¼°è µ¥ÀÌÅÍ Ä«Å»·Î±× ½ÃÀå : ÄÄÆ÷³ÍÆ®º°

  • ¼Ö·ç¼Ç
    • µ¶¸³Çü ¼Ö·ç¼Ç
    • ÅëÇÕ ¼Ö·ç¼Ç
  • ¼­ºñ½º
    • ÇÁ·ÎÆä¼Å³Î¼­ºñ½º
      • ¼­Æ÷Æ® ¹× º¸¼ö ¼­ºñ½º
      • ÄÁ¼³ÆÃ ¼­ºñ½º
      • µµÀÔ ¹× ÅëÇÕ ¼­ºñ½º
    • ¸Å´ÏÁöµå ¼­ºñ½º
  • ±âŸ ÄÄÆ÷³ÍÆ®

Á¦6Àå ¼¼°è µ¥ÀÌÅÍ Ä«Å»·Î±× ½ÃÀå : Á¶Á÷ ±Ô¸ðº°

  • Áß¼Ò±â¾÷
  • ´ë±â¾÷

Á¦7Àå ¼¼°è µ¥ÀÌÅÍ Ä«Å»·Î±× ½ÃÀå : Àü°³ ¹æ½Äº°

  • Ŭ¶ó¿ìµå
  • ¿ÂÇÁ·¹¹Ì½º

Á¦8Àå ¼¼°èÀÇ µ¥ÀÌÅÍ Ä«Å»·Î±× ½ÃÀå : µ¥ÀÌÅÍ ¼ÒºñÀÚº°

  • ºñÁö´Ï½º ÀÎÅÚ¸®Àü½º Åø
    • µ¥ÀÌÅÍ ÅëÇÕ°ú ETL
    • º¸°í¼­ ÀÛ¼º°ú ½Ã°¢È­
    • Äõ¸®¿Í ºÐ¼®
  • ±â¾÷ ¾ÖÇø®ÄÉÀ̼Ç
    • ERP(Àü»çÀû ÀÚ¿ø °èȹ)
    • °ø±Þ¸Á °ü¸® ½Ã½ºÅÛ
  • ¸ð¹ÙÀÏ ¹× À¥ ¾ÖÇø®ÄÉÀ̼Ç
    • È÷Æ®¸Ê ºÐ¼®
    • À¥ Çൿ ºÐ¼®
    • ¸¶ÄÏ ÀÚµ¿È­
  • ±âŸ µ¥ÀÌÅÍ ¼ÒºñÀÚ

Á¦9Àå ¼¼°è µ¥ÀÌÅÍ Ä«Å»·Î±× ½ÃÀå : ¸ÞŸµ¥ÀÌÅÍ À¯Çüº°

  • ±â¼ú ¸ÞŸµ¥ÀÌÅÍ
  • ºñÁö´Ï½º ¸ÞŸµ¥ÀÌÅÍ
  • ¿î¿µ ¸ÞŸµ¥ÀÌÅÍ
  • ±âŸ ¸ÞŸµ¥ÀÌÅÍ À¯Çü

Á¦10Àå ¼¼°è µ¥ÀÌÅÍ Ä«Å»·Î±× ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚº°

  • BFSI
  • ¼Ò¸Å¿Í E-Commerce
  • Á¦Á¶¾÷
  • Á¤ºÎ¿Í ¹æÀ§
  • ÇコÄɾî¿Í »ý¸í°úÇÐ
  • IT¿Í Åë½Å
  • ¹Ìµð¾î¿Í ¿£ÅÍÅ×ÀÎ¸ÕÆ®
  • ¼ö¼Û°ú ¹°·ù
  • ¿¬±¸¿Í Çмú
  • Á¤ºÎ¿Í ¹æÀ§
  • ¼ö¼Û±â°ü
  • ¼®À¯¡¤°¡½º
  • ±âŸ ÃÖÁ¾»ç¿ëÀÚ

Á¦11Àå ¼¼°èÀÇ µ¥ÀÌÅÍ Ä«Å»·Î±× ½ÃÀå : Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ´ºÁú·£µå
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ³²¹Ì
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • Ä¥·¹
    • ±âŸ ³²¹Ì
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®
    • īŸ¸£
    • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦12Àå ÁÖ¿ä ¹ßÀü

  • °è¾à, ÆÄÆ®³Ê½Ê, Çù¾÷, ÇÕÀÛÅõÀÚ
  • Àμö¿Í ÇÕº´
  • ½ÅÁ¦Ç° ¹ß¸Å
  • »ç¾÷ È®´ë
  • ±âŸ ÁÖ¿ä Àü·«

Á¦13Àå ±â¾÷ °³¿ä

  • Hitachi Vantara Corporation
  • Google
  • Oracle Corporation
  • Altair Engineering, Inc
  • Precisely Inc
  • Microsoft Corporation
  • Tamr, Inc
  • Alation, Inc
  • SAP SE
  • Collibra NV
  • Apache Software Foundation
  • IBM Corporation
  • Zaloni, Inc
  • Alteryx, Inc
  • Datawatch Corporation
  • Talend Inc
  • Boomi, Inc
  • Informatica Inc
  • Amazon Web Services, Inc
  • TIBCO Software Inc
ksm 23.10.20

According to Stratistics MRC, the Global Data Catalog Market is accounted for $0.85 billion in 2023 and is expected to reach $3.43 billion by 2030 growing at a CAGR of 22.0% during the forecast period. A data catalog is a centralized solution that enables authorized users to have quick access to the most accurate and reliable business data available to the company. Moreover, it serves as a central repository for all information and data sources within an organization, allowing technical and business users to look for, order, and obtain the datasets they need to complete tasks, conduct routine business operations, and generate analytical reports. Due to the abundance of data, data cataloging is becoming crucial for every large company.

According to a study by Sisense, about 55% of the companies studied have started to use data to improve efficiency, about 47% to support customers, and about 45% to predict future outcomes. Since small firms are more concerned with efficiency than larger enterprises, the industry is seeing an increase in the demand for products like data catalogs.

Market Dynamics:

Driver:

Increasing use of self-service analytics

Data catalogs have increased the importance of data security by making data retrieval quick and precise. Self-service analytics are therefore safer, as customers are more aware of the security provided by data catalog software. As a result, numerous products are integrated, and new products are released onto the market. The trend is anticipated to continue throughout the projected period, boosting vendor competition. Additionally, the expanding self-analytic data advancement and the intensified data in the new-age corporate environment are vital factors that offer appealing opportunities for expanding data catalog solution providers to introduce new and highly useful. Since the cloud offers users a centralized view of their data and performs better at a lower cost, self-service businesses are increasingly using it.

Restraint:

Security problems and a lack of standardization

Businesses struggle with unstructured data problems, which makes it difficult to adopt catalog solutions. To obtain enterprise data for modeling or to provide insights for their analytics teams, data scientists must manage the complexity of fuzzy data sets from various sources, which is a difficult task. This condition cannot last in the long run, given the exponential growth of data. In addition, many companies that invest in maintaining legacy data or data warehouses end up with silos of fuzzily organized data sets from a variety of sources and archives of idle data for protracted periods. Moreover, these datasets frequently present difficulties when implementing data catalogs.

Opportunity:

Industry digital transformation

To remain competitive and relevant in the digital age, there has been a push for digital transformation across all industries. Through the use of technologies like cloud computing, big data analytics, IoT, and AI, businesses sought to improve customer experiences, streamline operations, and optimize decision-making processes. Moreover, companies providing software and services for digital transformation as well as consulting firms with a focus on digital strategy all played a significant role in assisting organizations with this transition.

Threat:

Budget and resource restrictions

The difficulties with implementing a data catalog in terms of cost and resource implications are numerous. Organizations must set aside ongoing funds for system upkeep, updates, and support in addition to the initial investment in purchasing and deploying data catalog tools. Furthermore, resources, both financial and human, may be strained as a result, especially in smaller organizations with tighter budgets. The difficulties are made even more difficult by the complexity of cost estimation and the potential for unanticipated costs, underscoring the significance of careful financial planning and resource allocation for the success of data catalog initiatives.

COVID-19 Impact:

Due to organizations stepping up their efforts to transform into digital businesses and adopt remote working practices, the COVID-19 pandemic had a significant effect on the data catalog market. Data catalog solutions are in higher demand as a result of the growing need for effective data management and collaboration. Additionally, budget restrictions and economic uncertainty, however, also had an impact on market dynamics, causing some businesses to postpone or rethink their investments in data catalogs. Overall, the pandemic highlighted the value of data cataloging in a business environment that is rapidly changing, creating both opportunities and challenges for the market.

The IT and Telecom segment is expected to be the largest during the forecast period

During the anticipated period, the IT and telecom segment held the largest revenue share. The industry's extensive use of network metadata can be blamed for the largest share. By maintaining a record of all communications within the current network architecture, including switches, firewalls, routers, and packet brokers, network metadata provides comprehensive details of network communications. Moreover, network metadata is scalable and can enable full network monitoring as an analyzer gathers packet data, sorts, processes, and indexes it with graphs and statistics regarding network traffic, usage, capacity, and application performance. Both technical and business metadata are essentially data about data. When developing these security solutions, the majority of security agencies also use metadata insights.

The business intelligence tools segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the business intelligence tools segment is anticipated to grow at the highest CAGR. Business intelligence (BI) combines infrastructure, data tools, best practices, data mining, data visualization, and business analytics to help organizations make more data-driven decisions. Business intelligence teams use data catalogs to centralize dashboards and automate reporting in order to conduct effective analytics. Additionally, business intelligence (BI) is growing as more decisions involving their operations require assistance from statistical modeling methods. BI tools like Hadoop require in-depth technical knowledge for the creation and management of data models, algorithms, and queries.

Region with largest share:

The largest market share is anticipated for the North American region during the anticipated period. In North America, both the extensive use of digital technology and the rising demand for business intelligence solutions have increased. Additionally, the acceptance of self-service analytics, rapid traditional organization expansion, and the collection of enormous volumes of data from all industries have all led to a significant increase in demand for data catalog systems and services. These factors have accelerated the growth of the local data catalog market.

Region with highest CAGR:

During the forecast period, the Europe region is anticipated to grow at the highest CAGR. Some of the most important tech hubs in the world are located in Europe, which are a significant driver and adopter of modern technology. Realizing the advantages of digital technologies is essential for the growth and success of the European economy and society. Moreover, the European Data Incubator offers entrepreneurs and teams with EU headquarters specialized acceleration programs and funding totalling EUR 5 million. In order to address real industry challenges presented by EU corporate and data providers across a wide range of sectors, including smart cities, energy and environment, internet and media, Industry 4.0, and retail, EDI focuses on big data innovators and entrepreneurs from across Europe.

Key players in the market:

Some of the key players in Data Catalog market include: Hitachi Vantara Corporation, Google, Oracle Corporation, Altair Engineering, Inc , Precisely Inc, Microsoft Corporation, Tamr, Inc, Alation, Inc, SAP SE, Collibra NV, Apache Software Foundation, IBM Corporation, Zaloni, Inc, Alteryx, Inc, Datawatch Corporation , Talend Inc, Boomi, Inc, Informatica Inc, Amazon Web Services, Inc and TIBCO Software Inc.

Key Developments:

In August 2023, Google Cloud and El Salvador signed a seven-year agreement under which the Silicon Valley giant will install its Distributed Cloud (GDC) and a cloud center of excellence in the country, according to a release. GDC involves hardware and software solutions that extend Google Cloud's infrastructure and services locally.

In June 2023, Hitachi Vantara, the modern infrastructure, data management and digital solutions subsidiary of Hitachi, Ltd., today announced two new global partnership agreements with Cisco. The agreements bring Hitachi Vantara into Cisco's Service Provider and Solution Technology Integrator partner programs, respectively, enabling Hitachi Vantara to seamlessly integrate Cisco technologies with its storage products and position the company as a leading data center infrastructure and hybrid cloud managed services provider.

In February 2023, Technology company Oracle Corp. has signed a contract with Accenture to improve the training Department of Veterans Affairs clinicians receive on using the VA's Cerner Millennium-based electronic health record platform. Speaking with FedScoop, Oracle Executive Vice President Ken Glueck said Oracle-owned Cerner had determined it needed additional support from consultancy firm Accenture after identifying this as an area where program improvement is needed.

Components Covered:

  • Solutions
  • Services
  • Other Components

Organization Sizes Covered:

  • SMEs
  • Large Enterprises

Deployment Modes Covered:

  • Cloud
  • On-Premises

Data Consumers Covered:

  • Business Intelligence Tools
  • Enterprise Applications
  • Mobile and Web Applications
  • Other Data Consumers

Metadata Types Covered:

  • Technical Metadata
  • Business Metadata
  • Operational Metadata
  • Other Metadata Types

End Users Covered:

  • BFSI
  • Retail and E-Commerce
  • Manufacturing
  • Government and Defence
  • Healthcare and Life Sciences
  • IT and Telecom
  • Media and Entertainment
  • Transportation and Logistics
  • Research and Academia
  • Government and Defense
  • Transportation
  • Oil and Gas
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2021, 2022, 2023, 2026, and 2030
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 End User Analysis
  • 3.7 Emerging Markets
  • 3.8 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Data Catalog Market, By Component

  • 5.1 Introduction
  • 5.2 Solutions
    • 5.2.1 Standalone Solution
    • 5.2.2 Integrated Solution
  • 5.3 Services
    • 5.3.1 Professional Service
      • 5.3.1.1 Support and Maintenance Services
      • 5.3.1.2 Consulting Services
      • 5.3.1.3 Deployment and Integration Services
    • 5.3.2 Managed Services
  • 5.4 Other Components

6 Global Data Catalog Market, By Organization Size

  • 6.1 Introduction
  • 6.2 SMEs
  • 6.3 Large Enterprises

7 Global Data Catalog Market, By Deployment Mode

  • 7.1 Introduction
  • 7.2 Cloud
  • 7.3 On-Premises

8 Global Data Catalog Market, By Data Consumer

  • 8.1 Introduction
  • 8.2 Business Intelligence Tools
    • 8.2.1 Data Integration and ETL
    • 8.2.2 Reporting and Visualization
    • 8.2.3 Query and Analysis
  • 8.3 Enterprise Applications
    • 8.3.1 ERP(Enterprise Resource Planning)
    • 8.3.2 Supply Chain Management System
  • 8.4 Mobile and Web Applications
    • 8.4.1 Heat Map Analytics
    • 8.4.2 Web Behavioral Analysis
    • 8.4.3 Market Automation
  • 8.5 Other Data Consumers

9 Global Data Catalog Market, By Metadata Type

  • 9.1 Introduction
  • 9.2 Technical Metadata
  • 9.3 Business Metadata
  • 9.4 Operational Metadata
  • 9.5 Other Metadata Types

10 Global Data Catalog Market, By End User

  • 10.1 Introduction
  • 10.2 BFSI
  • 10.3 Retail and eCommerce
  • 10.4 Manufacturing
  • 10.5 Government and Defence
  • 10.6 Healthcare and Life Sciences
  • 10.7 IT and Telecom
  • 10.8 Media and Entertainment
  • 10.9 Transportation and Logistics
  • 10.10 Research and Academia
  • 10.11 Government and Defense
  • 10.12 Transportation
  • 10.13 Oil and Gas
  • 10.14 Other End Users

11 Global Data Catalog Market, By Geography

  • 11.1 Introduction
  • 11.2 North America
    • 11.2.1 US
    • 11.2.2 Canada
    • 11.2.3 Mexico
  • 11.3 Europe
    • 11.3.1 Germany
    • 11.3.2 UK
    • 11.3.3 Italy
    • 11.3.4 France
    • 11.3.5 Spain
    • 11.3.6 Rest of Europe
  • 11.4 Asia Pacific
    • 11.4.1 Japan
    • 11.4.2 China
    • 11.4.3 India
    • 11.4.4 Australia
    • 11.4.5 New Zealand
    • 11.4.6 South Korea
    • 11.4.7 Rest of Asia Pacific
  • 11.5 South America
    • 11.5.1 Argentina
    • 11.5.2 Brazil
    • 11.5.3 Chile
    • 11.5.4 Rest of South America
  • 11.6 Middle East & Africa
    • 11.6.1 Saudi Arabia
    • 11.6.2 UAE
    • 11.6.3 Qatar
    • 11.6.4 South Africa
    • 11.6.5 Rest of Middle East & Africa

12 Key Developments

  • 12.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 12.2 Acquisitions & Mergers
  • 12.3 New Product Launch
  • 12.4 Expansions
  • 12.5 Other Key Strategies

13 Company Profiling

  • 13.1 Hitachi Vantara Corporation
  • 13.2 Google
  • 13.3 Oracle Corporation
  • 13.4 Altair Engineering, Inc
  • 13.5 Precisely Inc
  • 13.6 Microsoft Corporation
  • 13.7 Tamr, Inc
  • 13.8 Alation, Inc
  • 13.9 SAP SE
  • 13.10 Collibra NV
  • 13.11 Apache Software Foundation
  • 13.12 IBM Corporation
  • 13.13 Zaloni, Inc
  • 13.14 Alteryx, Inc
  • 13.15 Datawatch Corporation
  • 13.16 Talend Inc
  • 13.17 Boomi, Inc
  • 13.18 Informatica Inc
  • 13.19 Amazon Web Services, Inc
  • 13.20 TIBCO Software Inc
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦