![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1371876
¼¼°è ÀÓ»ó½ÃÇè ºÐ¾ß ÀΰøÁö´É(AI) ½ÃÀå : Àü°³ ¸ðµåº°, ±â¼úº°, ¿ëµµº°, ÃÖÁ¾»ç¿ëÀÚº° ¹× Áö¿ªº° ºÐ¼®(-2030³â)_Artificial Intelligence in Clinical Trials Market Forecasts to 2030 - Global Analysis By Deployment Mode, Technology, Application, End User and By Geography |
Stratistics MRC¿¡ µû¸£¸é ¼¼°è ÀÓ»ó½ÃÇè ºÐ¾ß ÀΰøÁö´É(AI) ½ÃÀåÀº 2023³â¿¡ 18¾ï 8,000¸¸ ´Þ·¯¸¦ Â÷ÁöÇϰí, 2030³â¿¡´Â 92¾ï 8,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ¿¹Ãø ±â°£ Áß º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR) 25.6%·Î ¼ºÀåÇÒ Àü¸ÁÀÔ´Ï´Ù.
¼¼°è ÀÓ»ó½ÃÇè ºÐ¾ß ÀΰøÁö´É(AI)Àº ÀÓ»ó½ÃÇèÀ̳ª â¾à°úÁ¤¿¡¼ ÀΰøÁö´É Åø°ú ¼Ö·ç¼ÇÀÇ »ç¿ëÀ» °¡¸®Å°¸ç, ½ÃÇè °èȹÀÇ ¼³°è, ½ÃÇè ½Ç½Ã ½Ã¼³ÀÇ ¼±ÅÃ, ȯÀÚ¸ðÁý ¹× ¸ð´ÏÅ͸µ½Ã½ºÅÛÀÇ °èȹ µîÀ» Æ÷ÇÔÇÕ´Ï´Ù. º¸´Ù ½Å¼ÓÇÏ°Ô °á°ú¸¦ Á¦°øÇϰí ÀÓ»ó½ÃÇè¿¡¼ »ç¿ëÇÏ´Â Áý´ÜÀÇ ´Ù¾ç¼ºÀ» ³ôÀÓÀ¸·Î½á ÀÓ»ó½ÃÇè¿¡¼ AI ±â¼úÀ» »ç¿ëÇÏ¸é ±âÁ¸ÀÇ ÀÓ»ó½ÃÇè ÀýÂ÷ÀÇ ´ÜÁ¡À» ±Øº¹ÇÒ ¼ö ÀÖ½À´Ï´Ù.
¼¼°èº¸°Ç±â±¸(WHO)¿¡ µû¸£¸é 2021³â ¹Ì±¹Àº ÀÓ»ó½ÃÇè ºÐ¾ß¿¡¼ ÁÖµµÇϰí ÀÖÀ¸¸ç Áö³ 20³â°£ ¾à 15¸¸ 7618°ÇÀÇ ÀÓ»ó½ÃÇèÀÌ µî·ÏµÇ¾ú½À´Ï´Ù.
À¯ÀüÀÚ Ä¡·áÁ¦¿Í ¾Ï Ä¡·áÁ¦¸¦ °³¹ßÇÏ´Â ºÎ¹®¿¡¼ ÁøÇàµÇ°í ÀÖ´Â ¿¬±¸°³¹ßÀº AI Åø°ú ±â¼úÀ» ÀÀ¿ëÇÏ¿© ÀÌ·¯ÇÑ Áúȯ¿¡ ´ëÇÑ »õ·Î¿î °·ÂÇÑ Ä¡·á¹ýÀ» ¸¸µé¾î³¾ ±âȸ¸¦ Á¦½ÃÇϰí ÀÖ½À´Ï´Ù. ƯÁ¤ Áúº´ÀÇ ¿øÀÎÀ» È®ÀÎÇϰí ÀáÀçÀû Ä¡·á¹ýÀÇ È¿´ÉÀ» Á¶»çÇϱâÀ§ÇÑ ½ÃÇè °èȹÀ» ¼ö¸³ÇÏ´Â ÇÁ·Î¼¼½º¸¦ °¡¼ÓÈÇϱâ À§ÇØ AI ±â¹Ý ÀÓ»ó½ÃÇèÀ» »ç¿ëÇÏ´Â °ÍÀº À¯ÀüÀû ¹è°æÀÔ´Ï´Ù. ¹ßÀü°ú ÀϺΠÈñ±ÍÁúȯÀÇ ¿¬±¸·Î ÃÖ±Ù Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¼±Áø±¹°ú ½ÅÈï ±¹°¡ ¸ðµÎ Á¤ºÎ°¡ ÀÓ»ó½ÃÇèÀ» ÃßÁøÇϰí ȯÀÚ Âü¿©¸¦ ÃËÁøÇÏ´Â µ¥ ÁÖ·ÂÇϰí ÀÖÀ¸¸ç, ÀÌ´Â ½ÃÀåÀ» È®´ëÇϰí ÀÖ½À´Ï´Ù.
°Ç° °ü¸®¿¡¼ AIÀÇ ±ÔÁ¦ »óȲÀº ¿©ÀüÈ÷ ÁøÈÇϰí ÀÖ½À´Ï´Ù. AI ½Ã½ºÅÛÀÌ ½ÄǰÀǾ౹(FDA)ÀÌ Á¤ÇÏ´Â ±ÔÁ¦ ¿ä°ÇÀ» È®½ÇÈ÷ ÃæÁ·ÇÏ´Â °ÍÀÌ µµÀÔÀÇ À庮ÀÌ µÉ °¡´É¼ºÀÌ ÀÖ½À´Ï´Ù. AI ¼Ö·ç¼ÇÀÇ °³¹ß°ú ±¸Çö¿¡´Â ºñ¿ë°ú ºñ¿ëÀÌ ¸¹ÀÌ µì´Ï´Ù. ¶ÇÇÑ ¼Ò±Ô¸ð ¿¬±¸ ±â°ü°ú ÀÇ·á Á¦°ø¾÷ü´Â ÀÚ±Ý ¹× Àü¹® Áö½Ä Ãø¸é¿¡¼ °úÁ¦¿¡ Á÷¸éÇÒ ¼ö ÀÖ½À´Ï´Ù.
Áö³ 5³â°£ ÀÓ»ó½ÃÇèÀ» À§ÇÑ AI ¼ÒÇÁÆ®¿þ¾î ¹× ¼ºñ½º¸¦ Á¦°øÇÏ´Â »ç¾÷¿¡ ´ëÇØ ¼¼°è¿¡ °ÅÁ¡À» µÎ°í ÀÖ´Â ¸¹Àº ÅõÀÚÀÚµé·ÎºÎÅÍ 25¾ï ´Þ·¯ °¡±îÀÌ ÅõÀڵǰí ÀÖÀ¸¸ç, ÀÌ´Â AI¸¦ Ȱ¿ëÇÑ ÀÓ»ó½ÃÇè ½ÃÀå¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö°í ÀÖ´Â Áõ°Å°¡ µÇ°í ÀÖ½À´Ï´Ù. venture rounds¿¡ À̾î seed financing rounds°¡ ÀÚ±ÝÀÇ ´ëºÎºÐÀ» Á¶´ÞÇß½À´Ï´Ù. ¶ÇÇÑ Bristol-Myers Squibb, Merck, Novartis, Pfizer, Sanofi µî ÁÖ¿ä Á¦¾à ȸ»çµµ ÀÓ»ó½ÃÇèÀ» À§ÇÑ AI ¼ÒÇÁÆ®¿þ¾î ¹× ¼ºñ½º Á¦°ø¾÷ü¿¡ ÅõÀÚÇϰí ÀÖÀ¸¸ç, ±¤¹üÀ§ÇÑ ½ÃÀå ±âȸ°¡ È®»êµÇ°í ÀÖ½À´Ï´Ù.
ÀÓ»ó½ÃÇèÀÇ AI ±â¼úÀº ÀÓ»ó½ÃÇèÀÇ ÁøÀü¿¡ µµ¿òÀÌ µÇ´Â Áß¿äÇÑ ÅëÂû·ÂÀ» ¾ò±â À§ÇØ ±âÁ¸ÀÇ ¹æ´ëÇÑ µ¥ÀÌÅͼ¼Æ® ºÐ¼®ÀÌ ÇÊ¿äÇÕ´Ï´Ù. Äڷγª ¹ÙÀÌ·¯½º¿Í °°Àº »õ·Î ¹ß°ßµÇ°Å³ª È®ÀεÇÁö ¾ÊÀº Áúº´¿¡ ´ëÇÑ Ä¡·áÁ¦¸¦ °³¹ßÇϱâ À§Çؼ´Â ÇöÀç »ç¿ë °¡´ÉÇÑ µ¥ÀÌÅÍ ¼¼Æ®·Î´Â ÃæºÐÇÏÁö ¾ÊÀ» ¼ö ÀÖ½À´Ï´Ù. °ú°Å µ¥ÀÌÅͰ¡ ½Å·ÚÇÒ ¼ö ¾ø´Â °æ¿ì AI ±â¹Ý ¼Ö·ç¼ÇÀÇ È¿°ú´Â Á¦¾àÀ» ¹ÞÀ» ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÂüÁ¶ µ¥ÀÌÅÍ ¼¼Æ® Áß Çϳª¿¡ ÆíÇâÀÌ ÀÖÀ¸¸é AI°¡ Áö¿øÇÏ´Â ÀÓ»ó½ÃÇèÀÇ °á·Ð°ú °á°ú¿¡ ÆíÇâÀÌ ¹ß»ýÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ »óȲÀº ½ÃÀå È®´ë¸¦ Á¦ÇÑÇÒ ¼ö ÀÖ½À´Ï´Ù.
COVID-19ÀÇ À¯ÇàÀº AI ±â¹Ý ±â¼úÀÇ ÀÌ¿ë Áõ°¡¸¦ ÃËÁøÇß½À´Ï´Ù. AI ±â¹ÝÀÇ ÀǾàǰ °³¹ß ¹× ÀÓ»ó½ÃÇè ¼Ö·ç¼ÇÀº ±â¼úÀûÀ¸·Î ÷´Ü â¾à ¹× °³¹ß ¼Ö·ç¼ÇÀÇ Ã¤¿ë Áõ°¡¿Í ¸ðÁýµÈ ȯÀÚ µ¥ÀÌÅÍ ºÐ¼® µî ´Ù¾çÇÑ ¿äÀο¡ ÀÇÇØ ³Î¸® »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. COVID-19ÀÇ °á°ú, ¸¹Àº ÀÓ»ó½ÃÇèÀÌ º¸·ùµÇ°í ¸¹Àº ´ë±â¾÷µéÀÌ ÀÌ ±â°£¿¡ Á¢±ÙÇÒ ¼ö Àִ ȯÀÚ µ¥ÀÌÅÍÀÇ Áý°è¿¡ ÁÖ·ÂÇÏ°Ô µÇ¾ú±â ¶§¹®¿¡ ºÐ»êÇü ÀǾàǰ ÀÓ»ó½ÃÇèµµ Áõ°¡Çß½À´Ï´Ù.
¾Ï Ä¡·á¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿Í ÀÌ ºÐ¾ß¿¡¼ ½Ç½ÃµÇ´Â ÀǾàǰ ÀÓ»ó½ÃÇèÀÇ ¼ö°¡ ¸¹À½ÀÌ ÀÌ ÀÀ¿ë ºÐ¾ß¿¡¼ AI ´ëÀÀ ±â¼úÀÇ Ã¤¿ë¿¡ ¿µÇâÀ» ¹ÌÄ¡°í Àֱ⠶§¹®¿¡ ¿¹Ãø ±â°£ Áß ¾Ï ¿µ¿ª ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. °Ô´Ù°¡ ¸¹Àº ¼±¼öµéÀÌ ÀÓ»ó½ÃÇèÀ» À§ÇØ Á¾¾çÇп¡ ÃÊÁ¡À» ¸ÂÃá AI µµ±¸¸¦ ¸¸µé°í Ȱ¿ëÇϰí ÀÖÀ¸¸ç, ÀÌ´Â ÀÌ ºÐ¾ßÀÇ È®´ë¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù.
Á¦¾à ±â¾÷ ºÎ¹®Àº ºü¸£°Ô È®´ëµÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. AI ´ëÀÀ ±â¼úÀÇ Ã¤¿ëÀÌ ÁøÇàµÊÀ¸·Î½á ÀÓ»ó½ÃÇèÀÇ »ý»ê¼º°ú À¯È¿¼ºÀ» ³ôÀÏ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ AI¸¦ ¿¬±¸ °³¹ß ¹× °³¹ß ÇÁ·Î¼¼½º ÀüüÀÇ µµ±¸·Î Ȱ¿ëÇϱâ À§ÇØ ¾÷°è¸¦ ³Ñ¾î¼´Â Á¦ÈÞ¿Í Çù·Âµµ ÀÌ·ç¾îÁö°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿ä¼Ò´ÂÀÌ ºÎ¹®ÀÇ ¼ºÀåÀ» µÞ¹ÞħÇÕ´Ï´Ù.
ºÏ¹Ì´Â ÇöÀç AI ±â¹Ý ÀÓ»ó½ÃÇè ¼Ö·ç¼Ç Á¦°ø¾÷ü ½ÃÀåÀ» µ¶Á¡Çϰí ÀÖÀ¸¸ç, ÀÌ ¿ìÀ§´Â ¿¹Ãø ±â°£ µ¿¾È °è¼ÓµÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. À̰ÍÀº ÀÌ Áö¿ª¿¡ AI ±â¹ÝÀÇ ½ÅÈï ±â¾÷ÀÌ ¿©·¯ Á¸ÀçÇÏ´Â °ÍÀÌ ¹è°æ¿¡ ÀÖ½À´Ï´Ù. ÀǾàǰ ½ÃÇè °á°ú¸¦ °³¼±Çϱâ À§ÇØ AI ±â¹Ý ±â¼úÀÌ Ã¤ÅõǾî ÀÌ·¯ÇÑ ±â¼ú¿¡ ´ëÇÑ ÀνÄÀÌ ³ô¾ÆÁö°í ÀÖ´Â °ÍÀÌ ÀÌ Áö¿ª¿¡¼ ½ÃÀå ¼ºÀåÀÇ ¿øµ¿·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÀÌ Áö¿ªÀÇ AI ±â¹Ý ÀÓ»ó½ÃÇè ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä´Â Á¤ºÎÀÇ Àå·ÁÀûÀÎ ³ë·Â°ú ´ë±â¾÷ÀÇ Àü·«Àû initiativeÀÇ È®´ë¿¡ ÀÇÇØ °ßÀεǰí ÀÖ½À´Ï´Ù.
AI ±â¹Ý ÅøÀÇ µµÀÔÀÌ ÁøÇàµÇ°í, ´Ù¾çÇÑ °Ç° °ü¸® ºÐ¾ß¿¡¼ÀÇ AI µµÀÔÀ» À§ÇÑ Á¤ºÎÀÇ ´ëó°¡ ÃßÁøÇϰí Àֱ⠶§¹®¿¡ ¾Æ½Ã¾ÆÅÂÆò¾çÀº AI ±â¹ÝÀÇ ÀÓ»ó½ÃÇè ¼Ö·ç¼Ç Á¦°ø¾÷ü ½ÃÀåÀÇ ¼ºÀå·üÀÌ °¡Àå ³ôÀ» °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ±¤¹üÀ§ÇÑ È¯ÀÚ ±â¹Ý°ú ³·Àº ½ÃÇè ºñ¿ëÀ¸·Î ¾Æ½Ã¾Æ¿¡¼´Â ÀÓ»ó½ÃÇè ¸ðÁýÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. °Ô´Ù°¡ NovotechÀÇ CEO¿¡ µû¸£¸é ÀÓ»ó ´Ü°èÀÇ »ý¸í °øÇÐ ±â¾÷Àº ÇöÀç, ƯÈ÷ °¨¿°Áõ¿¡¼ ȯÀÚ µî·ÏÀ» °¡¼ÓÈÇϱâ À§ÇØ ¾Æ½Ã¾ÆÅÂÆò¾çÀ» ÀνÄÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿ä¼Ò´Â AI ±â¹Ý ÀÓ»ó½ÃÇè ºÐ¼® ¹× ÇØ¼® ¼Ö·ç¼ÇÀÇ Ã¤ÅÃÀ» Áõ°¡½ÃŰ°í ½ÃÀå È®´ë·Î À̾îÁú °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
According to Stratistics MRC, the Global Artificial Intelligence (AI) in Clinical Trials Market is accounted for $1.88 billion in 2023 and is expected to reach $9.28 billion by 2030 growing at a CAGR of 25.6% during the forecast period. Artificial intelligence (AI) in clinical trials refers to the use of artificial intelligence tools and solutions in clinical trials and drug discovery processes, including designing the trial plan, choosing the trial site, and planning the patient recruitment and monitoring systems. By producing results more quickly and increasing the diversity of the population used in a clinical trial, the use of AI technology in clinical trials aids in overcoming the drawbacks of traditional clinical trial procedures.
According to the World Health Organization, in 2021, the USA is leading in the clinical trial field and has registered approximately 157,618 clinical trials over the last two decades.
The research and development conducted in the division that develops genetic and oncological drugs presents an opportunity to apply AI tools and technology to create new, potent treatments for these diseases. The use of AI-based clinical trials to expedite the process of identifying the cause of origin of a specific disease and designing a trial plan to examine the efficacy of a potential treatment has increased recently due to developments in the genetic context and research on some rare diseases. Additionally, governments in both developed and developing countries are working hard to promote clinical trials and entice patients to participate, which is expanding the market.
The regulatory landscape for AI in healthcare is still evolving. Ensuring that AI systems meet regulatory requirements, such as those set by the Food and Drug Administration (FDA), can be a barrier to adoption. Developing and implementing AI solutions can be expensive and resource-intensive. Moreover, smaller research organizations and healthcare providers may face challenges in terms of funding and expertise.
In the last five years, close to $2.5 billion has been invested in businesses that provide AI software and services for clinical trials by a number of investors based all over the world, which serves as evidence of the increased interest in the market for clinical trials that use AI. Following venture rounds, seed financing rounds were used to raise the majority of the money. Moreover, major pharmaceutical companies, including Bristol-Myers Squibb, Merck, Novartis, Pfizer, and Sanofi, have also invested in AI software and service providers for clinical trials, opening up a wide range of market opportunities.
AI technology in clinical trials necessitates the analysis of sizable pre-existing datasets in order to produce significant insights that will aid in the advancement of clinical trials. To create medications for any newly discovered or unidentified diseases, such as the Corona virus, the datasets currently available may not be sufficient. The effectiveness of AI-based solutions may be constrained in cases where historical data cannot be trusted. Additionally, the existence of bias in any of the reference datasets may result in biased conclusions and outcomes in clinical trials supported by AI. These situations might limit market expansion.
The COVID-19 epidemic prompted a rise in the use of AI-based technologies. AI-based drug development and drug trial solutions are becoming more widely used due to a number of factors, including the increasing adoption of technologically advanced drug discovery and development solutions and the analysis of recruited patient data. Decentralized drug trials also saw a rise as a result of COVID-19, which caused many trials to be put on hold and led many major players to focus on compiling patient data that was accessible during this period.
The oncology segment is anticipated to hold the largest market share during the forecast period due to the rising demand for cancer treatments and the significant number of drug trials conducted in this field, both of which have influenced the adoption of AI-enabled technologies in this application space. Additionally, a lot of players are creating and utilizing AI tools with an oncology focus for clinical trials, which is driving the segment's expansion.
It is anticipated that the pharmaceutical companies segment will expand rapidly. The increasing adoption of AI-enabled technologies can increase clinical trials' productivity and efficacy. Additionally, cross-industry partnerships and collaborations are also being made in order to use AI as a tool for R&D and the entire development process. Such elements are propelling this segment's growth.
North America currently dominates the market for providers of AI-based clinical trial solutions, and this dominance is anticipated to persist over the forecast period. This is explained by the fact that the area is home to several AI-based start-ups. The adoption of AI-based technologies to improve the results of drug trials and rising awareness of these technologies are driving market growth in the area. The demand for AI-based clinical trial solutions in the region is also being driven by encouraging government initiatives and growing strategic initiatives by major players.
Due to the increasing adoption of AI-based tools and supportive government initiatives for the adoption of AI in various healthcare fields, Asia Pacific is expected to have the highest growth rate for the market for providers of AI-based clinical trial solutions. Due to an extensive patient base and low trial costs, clinical trial recruitment is growing in Asia. Additionally, according to the CEO of Novotech, clinical-phase biotechnology companies now recognize Asia Pacific for accelerated patient enrollment, particularly in infectious diseases. These elements are predicted to increase the adoption of AI-based clinical trial analysis and interpretation solutions, leading to market expansion.
Some of the key players in Artificial Intelligence (AI) in Clinical Trials market include: AiCure, LLC, Antidote Technologies, Ardigen, BioAge Labs, Inc., BioSymetrics, CONSILX, Deep 6 AI, DEEP LENS AI, Euretos, Exscientia, GNS Healthcare, Verily, Halo Health Systems, IBM Watson, Innoplexus, Intelligencia, IQVIA, Koneksa Health, Median Technologies, Mendel.ai, Pharmaseal, Phesi, Saama Technologies, Signant Health, Symphony AI, Trials.ai and Unlearn.AI, Inc.
In October 2023, SymphonyAI, a leader in predictive and generative AI enterprise AI SaaS, today announced the Sensa Investigation Hub, a generative AI-enabled investigation and case management platform that propels financial institutions into the future of financial crime management.
In August 2023, EY announces strategic alliance with SymphonyAI to help digitally transform organizations with generative AI-enabled retail and financial services platforms. The Alliance will also support the expansion of AI-based solution delivery for retailers, including computer vision-based intelligence capabilites to improve store operations. It will also help to enhance customer experience and digital-industrial manufacturing, through asset management and worker connection solutions, which are intended to progress operations, yields and safety.
In February 2022, Unlearn and Merck KGaA have announced a partnership to accelerate drug trials using medical digital twins of patients. Unlearn uses recent developments from deep learning to create digital twins of patients in clinical trials. The new technique allows drug researchers to reduce the size of control arms by 30% or more and generate reliable clinical evidence in less time. Merck plans to focus on late-stage clinical trials for immunology drugs initially.