½ÃÀ庸°í¼­
»óǰÄÚµå
1372035

¼¼°è ¼¼Æ÷ À¯ÀüÇÐ ½ÃÀå : Á¦Ç°º°, ±â¼úº°, ¿ëµµº°, ÃÖÁ¾ »ç¿ëÀÚº°, Áö¿ªº° ºÐ¼®(-2030³â)

Cytogenetics Market Forecasts to 2030 - Global Analysis By Product, Technique, Application, End User and By Geography

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Stratistics Market Research Consulting | ÆäÀÌÁö Á¤º¸: ¿µ¹® 200+ Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Stratistics MRC¿¡ µû¸£¸é ¼¼°è ¼¼Æ÷À¯ÀüÇÐ ½ÃÀåÀº 2023³â¿¡ 27¾ï ´Þ·¯¸¦ Â÷ÁöÇÏ°í ¿¹Ãø ±â°£ µ¿¾È º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR) 11.8%¸¦ ³ªÅ¸³¾ Àü¸ÁÀ̸ç 2030³â¿¡´Â 61¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ°í ÀÖ½À´Ï´Ù.

À¯±âüÀÇ À¯ÀüÀû ±¸¼º¿¡¼­ ¿°»öü, À¯ÀüÀÚ ¹× À̵éÀÇ ±¸Á¶Àû ¹× ¼öÄ¡Àû µ¹¿¬º¯ÀÌ¿¡ ´ëÇÑ ¿¬±¸´Â ¼¼Æ÷ À¯ÀüÇÐÀÇ ±¤¹üÀ§ÇÑ ¹üÁÖ¿¡ ¼ÓÇÏ¸ç ±¤¹üÀ§ÇÑ ¹æ¹ý, Àåºñ ¹× ¼­ºñ½º¸¦ Æ÷ÇÔÇÕ´Ï´Ù. ¼¼Æ÷À¯ÀüÇÐÀº À¯ÀüÀû ÀÌ»óÀÇ ¹ß°ß, À¯ÀüÀû ÁúȯÀÇ °ËÃâ, ¾Ï°ú °°Àº ÁúȯÀÇ À¯ÀüÀû ¹è°æÀÇ ÀÌÇØ¿¡ µµ¿òÀÌ µÇ´Â ¸Å¿ì Áß¿äÇÑ ºÐ¾ßÀÔ´Ï´Ù. ±× ÀÀ¿ë ºÐ¾ß´Â ÀÓ»ó Áø´Ü, Á¶»ç, ¸ÂÃãÇü ÀÇ·áÀÔ´Ï´Ù.

WHO¿¡ µû¸£¸é 2018³â¿¡´Â ¾à 1,810¸¸¸íÀÌ »õ·Ó°Ô ¾ÏÀ¸·Î Áø´ÜµÇ¾î 960¸¸¸íÀÌ ¾ÏÀ¸·Î »ç¸ÁÇϰí ÀÖ½À´Ï´Ù.

¼¼Æ÷ À¯ÀüÇп¡ ´ëÇÑ ³ôÀº ¼ö¿ä

¼¼Æ÷ À¯ÀüÇÐ ¼ö¿ä Áõ°¡¿¡´Â ¿©·¯ °¡Áö ÀÌÀ¯°¡ ÀÖ½À´Ï´Ù. ¿ì¼±, ¾Ï, Ãâ»ý½Ã ±âÇü, À¯Àü¼º ÁúȯÀ» ÀÌÇØÇÏ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù. °Ô´Ù°¡ Á¤¹Ð ÀÇ·á°¡ Á¡Á¡ º¸±ÞµÊ¿¡ µû¶ó À¯ÀüÀÚ Áø´Ü°ú °³ÀÎÈ­µÈ Ä¡·á °èȹÀÌ Á¡Á¡ ´õ Áß¿äÇØÁö°í ÀÖ½À´Ï´Ù. °Ô´Ù°¡ °Ç°­°ú Áúº´¿¡ ´ëÇÑ À¯ÀüÀû °ü¿©ÀÇ ÀÌÇØ È®´ë ¹× ³ëÈ­¿¡ ÀÇÇØ ÀÓ»ó, Á¶»ç, Áø´Ü ¿ëµµ¿¡ À־ÀÇ ¼¼Æ÷À¯ÀüÇÐ°Ë»ç ¼ö¿ä´Â Áõ°¡ÀÇ ±æÀ» µû¶ó°¡°í ÀÖ½À´Ï´Ù. µû¶ó¼­ Àΰ£ °Ô³ð°ú Áúº´ À¯ÀüÇп¡ °üÇÑ ¿¬±¸ÀÇ È®´ë°¡ ¼ö¿ä¸¦ Áõ°¡½Ã۰í ÀÖ½À´Ï´Ù.

³ôÀº ºñ¿ë

¼¼Æ÷ À¯ÀüÇÐÀû °Ë»ç´Â Àü¹®ÀûÀÎ µµ±¸, ¼Ò¸ðǰ, ÈÆ·Ã¹ÞÀº ÀÛ¾÷ÀÚÀÇ »ç¿ëÀÌ ÇÊ¿äÇϸç, ¸ðµÎ ºñ¿ëÀÌ ¸¹ÀÌ µì´Ï´Ù. ȯÀÚ´Â Á¾Á¾ ÀÌ·¯ÇÑ ºñ¿ëÀ» û±¸Çϰí À¯Àü Áø´Ü ¹× »ó´ãÀ» ¹Þ´Â ´É·ÂÀ» Á¦ÇÑÇÕ´Ï´Ù. ¶ÇÇÑ º´¿ø°ú ¿¬±¸½Ã¼³ÀÇ °æ¿ì °æÁ¦ÀûÀÎ ¾î·Á¿òÀÌ ¹ß»ýÇÒ ¼ö ÀÖ½À´Ï´Ù. »õ·Î¿î ¼¼Æ÷ À¯ÀüÇÐ ±â¼úÀÇ °³¹ß¿Í »ç¿ëÀº ¶ÇÇÑ ³ôÀº ºñ¿ëÀ¸·Î ¹æÇع޽À´Ï´Ù. µû¶ó¼­ ÀÌ·¯ÇÑ Ãø¸éÀº ½ÃÀå ¼ºÀåÀ» ¹æÇØÇϰí ÀÖ½À´Ï´Ù.

¾Ï Ä¡·áÀÇ »õ·Î¿î Çõ½Å

¾Ï ¹ß»ý·üÀÌ »ó½ÂÇÔ¿¡ µû¶ó ¼ö¸¹Àº ºÐÀÚ¼¼Æ÷ À¯ÀüÇÐÀû ±â¼úÀÌ ¾Ï Áø´Ü¿¡ ÀÚÁÖ »ç¿ëµÇ°Ô µÇ¾ú½À´Ï´Ù. ¶ÇÇÑ ¿°»öü ¼öÁØ¿¡¼­ ¾Ï¿¡ ´ëÇÑ ÀÌÇØ°¡ ±í¾îÁü¿¡ µû¶ó ¼¼Æ÷ À¯ÀüÇÐÀÇ ¼öÀÍÀÌ È®´ëµÇ°í ÀÖÀ¸¸ç, ÀÌ´Â ¾Ï ¿¬±¸ÀÇ ¼ºÀå¿¡ ÀÇÇØ µÞ¹ÞħµÇ°í ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, ÀÌ ½ÃÀåÀÇ °³Ã´Àº ¾Ï°ú °ü·ÃµÈ À¯ÀüÀÚ ¸¶Ä¿¿¡ ´ëÇÑ Áß¿äÇÑ Á¤º¸¸¦ Á¦°øÇÏ´Â FISH¿Í CGH ÀýÂ÷ÀÇ »ç¿ë¿¡ ÀÇÇØ ÃËÁøµÇ°í ÀÖ½À´Ï´Ù. FISH, ¿°»öü À̹ÌÁö ºÐ¼®, À¯µ¿ ºÐ·ù, genomic in-situ hybridization(GISH)´Â ÇÕ¼º ½Ä¹° ¿°»öü¸¦ ¸¸µå´Â µ¥ »ç¿ëµÇ´Â ¹æ½ÄÀ¸·Î À¯ÀüÁöµµ, ¹°¸®Áöµµ, ºÐÀÚÁöµµ, ºñ±³Áöµµ¸¦ ¸¸µå´Â µ¥ »ç¿ëµË´Ï´Ù. ¶ÇÇÑ, ÀÛ¹° °³·®¿¡¼­ ºÐÀÚ ¼¼Æ÷ À¯ÀüÇÐÀÇ ÀÀ¿ë ºÐ¾ßÀÇ È®Àå°ú ÀÌÁ¡Àº ½ÃÀå ¼ºÀåÀ» Áö¿øÇÕ´Ï´Ù.

ºÒ¸®ÇÑ º¸»ó

ºÒ¸®ÇÑ º¸»ó °üÇàÀº ¼¼Æ÷ À¯ÀüÇÐ »ê¾÷¿¡ ÇØ·Ó½À´Ï´Ù. °Ç°­ °ü¸® Á¦°ø¾÷ü´Â Àϰü¼ºÀÌ ¾ø°Å³ª ºÒÃæºÐÇÑ °áÁ¦·Î ÀÎÇØ ¼¼Æ÷À¯ÀüÇÐÀû °Ë»ç³ª Ä¡·á¸¦ ¹ÞÀ» °¡´É¼ºÀÌ ³·¾Æ ȯÀÚÀÇ Á¢±ÙÀÌ Á¦Çѵ˴ϴÙ. ¶ÇÇÑ, ÀÌ´Â ¼ö¿ä¸¦ ÁÙÀ̰í R&DÀÇ °æÁ¦Àû Àμ¾Æ¼ºê¸¦ °¨¼Ò½ÃÅ´À¸·Î½á ½ÃÀå¿¡ ¿µÇâÀ» ¹ÌĨ´Ï´Ù. °Ô´Ù°¡ ÃÖ÷´Ü ¼¼Æ÷À¯ÀüÇÐÀû °Ë»ç¿¡ ´ëÇÑ Á¢±ÙÀ» µÑ·¯½Î°í ÀǰßÀÌ ´ë¸³ÇÏ¿© ȯÀÚ°¡ ¾ÏÀ̳ª À¯Àü¼º Áúȯ µîÀÇ Áúȯ¿¡ ´ëÇÑ Áß¿äÇÑ À¯ÀüÀÚ Áø´ÜÀ» ¹ÞÁö ¸øÇÒ °¡´É¼ºµµ ÀÖ½À´Ï´Ù. µû¶ó¼­ ½ÃÀå È®´ëÀÇ Å« ¹æÇذ¡ µÇ°í ÀÖ½À´Ï´Ù.

COVID-19ÀÇ ¿µÇâ

¼¼Æ÷ À¯ÀüÇÐ ½ÃÀåÀº COVID-19ÀÇ Å« À¯Çà¿¡ ÀÇÇØ ºÎÁ¤ÀûÀÎ ¿µÇâÀ» ¹Þ¾Ò½À´Ï´Ù. ºÀ¼â¿Í ÀÚ¿øÀÇ ÀçºÐ¹è´Â ¿¬±¸¼ÒÀÇ ¾÷¹«¿¡ ÁöÀåÀ» ÁÖ¾ú°í À¯ÀüÀÚ °Ë»ç Áö¿¬°ú ȯÀÚ Á¢±Ù ¹®Á¦¸¦ ÀÏÀ¸Ä×½À´Ï´Ù. ¶ÇÇÑ °æÁ¦ ºÒÈ®½Ç¼ºÀ¸·Î ÀÎÇØ ¿¬±¸ ¹× °Ë»ç ÇÁ·ÎÁ§Æ®ÀÇ ÀÚ±ÝÀÌ Á¦ÇÑµÇ°í °ø±Þ¸Á Áß´ÜÀ¸·Î ÀÎÇØ ÇÊ¿äÇÑ °Ë»ç ¿ëǰ¿¡ ´ëÇÑ Á¢±ÙÀÌ ¹æÇصǾú½À´Ï´Ù. ¶ÇÇÑ ÇмúÀû, ÀÓ»óÀû ¿¬±¸ Ȱµ¿µµ ÀúÇØµÇ¾î ÀÓ»óÀû, °úÇÐÀûÀÎ ÈÄÅ𸦠ÃÊ·¡Çß½À´Ï´Ù. µû¶ó¼­ ÀÌ·¯ÇÑ ¿äÀεéÀº ½ÃÀå ¼ºÀåÀ» ÇöÀúÇÏ°Ô ÀúÇØÇß½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È ÇÙÇü °Ë»ç ºÐ¾ß°¡ ÃÖ´ë°¡ µÉ Àü¸ÁÀÔ´Ï´Ù.

karyotyping ºÎ¹®ÀÌ ÃÖ´ë Á¡À¯À²À» Â÷ÁöÇÏ´Â °ÍÀ¸·Î ÃßÁ¤µË´Ï´Ù. ÀϹÝÀûÀ¸·Î Ç÷¾× ¶Ç´Â Á¶Á÷ »ùÇÿ¡¼­ »ç¶÷ÀÇ Àüü ¿°»öü¸¦ ½Ã°¢È­ÇÏ°í °Ë»çÇÕ´Ï´Ù. ¶ÇÇÑ, karyotypingÀº ¿°»öü ±¸Á¶¿Í ¼öÄ¡ ÀÌ»óÀÇ °ËÃâÀ» º¸Á¶Çϰí, ¾Ï, À¯Àü¼º Áúȯ, Ãâ»ý Àü °Ë»çÀÇ Áø´Ü¿¡ µµ¿òÀÌ µË´Ï´Ù. ¶ÇÇÑ, ½ºÆåÆ®·³ ÇÙÇü °Ë»ç ¹× Çü±¤ in situ ÇÏÀ̺긮µåÈ­(FISH)¿Í °°Àº º¸´Ù Á¤±³ÇÑ ±â¼úÀº º¸´Ù ³ôÀº ÇØ»óµµ¸¦ Á¦°øÇÏÁö¸¸, Á¾·¡ÀÇ ÇÙÇü °Ë»ç ÀýÂ÷´Â ¿°»öü ¿°»ö ¹× Çö¹Ì°æ °Ë»ç¸¦ Æ÷ÇÔÇÕ´Ï´Ù. µË´Ï´Ù. µû¶ó¼­ ¿°»öü ÀÌ»ó°ú À¯Àüº´¿¡ ´ëÇÑ ±ÍÁßÇÑ ÀλçÀÌÆ®·Î KaryotypingÀº ÀÓ»ó ¹× ¿¬±¸ ¼¼Æ÷ À¯ÀüÇÐÀÇ Á߿伺À» °è¼Ó À¯ÁöÇϰí ÀÖ½À´Ï´Ù.

¸ÂÃãÇü ÀÇ·á ºÎ¹®Àº ¿¹Ãø ±â°£ Áß °¡Àå ³ôÀº º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR)ÀÌ ¿¹»óµË´Ï´Ù.

¸ÂÃãÇü ÀÇ·á ºÎ¹®Àº ȯÀÚÀÇ À¯ÀüÀÚ ÇÁ·ÎÆÄÀÏ¿¡ ÀǷḦ ÀûÀÀ½ÃŰ´Â ºÐ¾ß°¡ ±Þ¼ÓÈ÷ È®´ëµÇ°í Àֱ⠶§¹®¿¡ ¿¹Ãø ±â°£ µ¿¾È º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR)ÀÌ °¡Àå ³ôÀ» °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÓ»óÀÇ´Â ¿°»öü ºÐ¼® ¹× ºÐÀÚ °Ë»ç¿Í °°Àº ¼¼Æ÷ À¯ÀüÇÐ ÀýÂ÷¸¦ ÀÌ¿ëÇÏ¿© ¾à¹° ¿ä¹ý¿¡ ´ëÇÑ ¹ÝÀÀ, Áúº´¿¡ °É¸®±â ½±°í ÀϹÝÀûÀÎ °Ç°­ »óÅ¿¡ ¿µÇâÀ» ¹ÌÄ¡´Â À¯ÀüÀû Â÷À̸¦ ãÀ» ¼ö ÀÖ½À´Ï´Ù. ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀÌ ¹æ¹ýÀº º¸´Ù Á¤È®ÇÑ Áø´Ü ¹× Ä¡·á ¼±ÅÃÀ» °¡´ÉÇÏ°Ô Çϰí, Ä¡·á °á°ú¸¦ °³¼±Çϰí, ¾Ç¿µÇâÀ» °¨¼Ò½Ãŵ´Ï´Ù. °Ô´Ù°¡, À¯ÀüüÇÐ¿Í ¼¼Æ÷À¯ÀüÇÐ ±â¼úÀÇ Çâ»óÀ¸·Î, ¸ÂÃãÇü ÀÇ·á´Â ƯÀÌÇÑ Áúº´, ¾à¸® À¯ÀüüÇÐ, ¾ÏÀÇ µ¿Á¤¿¡ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí, ȯÀÚÀÇ À¯ÀüÀÚ ÇÁ·ÎÆÄÀÏ¿¡ ±âÃÊÇÏ¿© °³º°È­µÈ Ç¥Àû Ä¡·á °èȹÀ» Á¦°ø ÇÏ´Â °ÍÀ¸·Î ÀÇ·á¿¡ Çõ¸íÀ» °¡Á®¿À°í ÀÖ½À´Ï´Ù. µû¶ó¼­ ½ÃÀå ±Ô¸ð¸¦ È®´ëÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù.

ÃÖ´ë Á¡À¯À²À» Â÷ÁöÇÏ´Â Áö¿ª

¾Æ½Ã¾ÆÅÂÆò¾çÀº ¼¼°è Á¤ºÎ¿Í Çмú ±â°üµéÀÌ ÀÚ±Ý Á¦°ø°ú Çù·Â ³ë·ÂÀ» ÅëÇØ À¯ÀüÀÚ ¿¬±¸ ¹× Áø´ÜÀ» Àû±ØÀûÀ¸·Î Àå·ÁÇϱ⠶§¹®¿¡ ÃßÁ¤ ±â°£ µ¿¾È ÃÖ´ë ½ÃÀå Á¡À¯À²À» ¾ò¾ú½À´Ï´Ù. ¿¹¸¦ µé¾î, ÀεµÀÇ Genome India Project´Â Àεµ °Ô³ðÀÇ Á¾ÇÕÀû ÀÎÁöµµ¸¦ ¸¸µé·Á°íÇÕ´Ï´Ù. °Ô´Ù°¡ Áß±¹°ú ÀϺ»°ú °°Àº ±¹°¡µéÀº À¯ÀüÀÚ Áø´Ü ¹× ¸ÂÃãÇü ÀǷḦ ¹ßÀü½Ã۱â À§ÇØ À¯ÀüüÇÐÀÇ ³ë·ÂÀ» ½ÃÀÛÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¾Æ½Ã¾ÆÅÂÆò¾çÀº ´ë±Ô¸ðÀÇ ´Ù¾çÇÑ Àα¸¿¡ ÀÇÇØ Áö¿øµÇ´Â ÀÌ·¯ÇÑ ÇÁ·Î±×·¥À» ÅëÇØ À¯ÀüÀÚ ¿¬±¸, Çõ½Å ¹× ÀÓ»ó ÀÀ¿ë¿¡ ÃÊÁ¡À» ¸ÂÃß¾ú½À´Ï´Ù.

º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR)ÀÌ °¡Àå ³ôÀº Áö¿ª:

ºÏ¹Ì´Â À¯¸íÇÑ ¿¬±¸±â°ü, »ý¸í°øÇбâ¾÷, ÀÇ·á½Ã¼³ÀÌ ÀÌ Áö¿ª¿¡ ÀÖÀ¸¸ç, ¼¼Æ÷À¯ÀüÇÐÀÇ Çõ½Å°ú ¿¬±¸¸¦ Áö¿øÇϰí Àֱ⠶§¹®¿¡ ¿¹Ãø±â°£ Áß¿¡ À¯ÀÍÇÑ ¼ºÀåÀÌ º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. °Ô´Ù°¡, °ß°íÇÑ °Ç°­ °ü¸® ½Ã½ºÅÛ°ú Àû±ØÀûÀÎ Á¤ºÎ Á¤Ã¥Àº ¼¼Æ÷ À¯ÀüÇÐÀû °Ë»ç¸¦ ÀÓ»óÀ¸·Î µµÀÔÇÏ´Â °ÍÀ» ¿ëÀÌÇÏ°Ô Çϰí, °³ÀÎÈ­ ¹× Á¤¹ÐÀǷḦ ÃËÁøÇÕ´Ï´Ù. ¶ÇÇÑ ÀÌ Áö¿ªÀº ºÏ¹Ì ¼¼Æ÷ À¯ÀüÇÐÀÇ ¸®´õ½Ê°ú °­·ÂÇÑ ±ÔÁ¦ ȯ°æÀ» ÅëÇØ À¯ÀüÀÚ Áø´Ü°ú ¿¬±¸ÀÇ ÃÖÀü¼±¿¡ ÀÖÀ¸¸ç ½ÃÀåÀÇ ¼ºÀå°ú Áøº¸¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

¹«·á ¸ÂÃã¼³Á¤ ¼­ºñ½º

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½ ¹«·á ¸ÂÃã¼³Á¤ ¿É¼Ç Áß Çϳª¸¦ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ±â¾÷ ÇÁ·ÎÆÄÀÏ
    • Ãß°¡ ½ÃÀå ±â¾÷ÀÇ Á¾ÇÕÀû ÇÁ·ÎÆÄÀϸµ(3°³»ç±îÁö)
    • ÁÖ¿ä ±â¾÷ÀÇ SWOT ºÐ¼®(3°³»ç±îÁö)
  • Áö¿ª ¼¼ºÐÈ­
    • °í°´ÀÇ °ü½É¿¡ ÀÀÇÑ ÁÖ¿ä±¹ ½ÃÀå Ãß°è,¿¹Ãø ¹× º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR)(ÁÖ: Ÿ´ç¼º È®Àο¡ µû¸§)
  • °æÀï º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¸®Àû Á¸Àç, Àü·«Àû Á¦ÈÞ¿¡ ±â¹ÝÇÑ ÁÖ¿ä ±â¾÷ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

  • °³¿ä
  • ÀÌÇØ°ü°èÀÚ
  • Á¶»ç ¹üÀ§
  • Á¶»ç ¹æ¹ý
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ °ËÁõ
    • Á¶»ç Á¢±Ù
  • Á¶»ç ¼Ò½º
    • 1Â÷ Á¶»ç ¼Ò½º
    • 2Â÷ Á¶»ç ¼Ò½º
    • ÀüÁ¦Á¶°Ç

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

  • ¼Ò°³
  • ¼ºÀå ÃËÁø¿äÀÎ
  • ¾ïÁ¦¿äÀÎ
  • ±âȸ
  • À§Çù
  • Á¦Ç°ºÐ¼®
  • ¿ëµµ ºÐ¼®
  • ÃÖÁ¾ »ç¿ëÀÚ ºÐ¼®
  • ½ÅÈï ½ÃÀå
  • COVID-19ÀÇ ¿µÇâ

Á¦4Àå Porter's Five Forces ºÐ¼®

  • °ø±Þ±â¾÷ÀÇ Çù»ó·Â
  • ±¸¸ÅÀÚÀÇ Çù»ó·Â
  • ´ëüǰÀÇ À§Çù
  • ½Å±Ô Âü°¡¾÷üÀÇ À§Çù
  • °æÀï ±â¾÷°£ °æÀï °ü°è

Á¦5Àå ¼¼°è ¼¼Æ÷À¯ÀüÇÐ ½ÃÀå : Á¦Ç°º°

  • ¼Ò°³
  • ¼Ò¸ðǰ
    • °Ë»ç ŰƮ, ¹èÁö ¹× ½Ã¾à
    • ÇÁ·Îºê
    • ģȭ¼º ½Ã¾à°ú ¿°»öÁ¦
    • ±âŸ ¼Ò¸ðǰ
  • ¾Ç±â
  • ¼ÒÇÁÆ®¿þ¾î ¹× ¼­ºñ½º
  • ±âŸ Á¦Ç°

Á¦6Àå ¼¼°è ¼¼Æ÷À¯ÀüÇÐ ½ÃÀå : ±â¼úº°

  • ¼Ò°³
  • Comparitive Genome Hybridization
  • Fluorescence In Situ Hybridization
  • Karyotyping
  • Immunohistochemistry
  • ±âŸ ±â¼ú

Á¦7Àå ¼¼°è ¼¼Æ÷À¯ÀüÇÐ ½ÃÀå : ¿ëµµº°

  • ¼Ò°³
  • À¯Àü¼º Áúȯ
  • ¾Ï
  • ¸ÂÃãÇü ÀÇ·á
  • ±âŸ ¿ëµµ

Á¦8Àå ¼¼°è ¼¼Æ÷À¯ÀüÇÐ ½ÃÀå : ÃÖÁ¾ »ç¿ëÀÚº°

  • ¼Ò°³
  • ÀÓ»ó Á¶»ç½Ç
  • Á¦¾à ¹× »ý¸í °øÇÐ ±â¾÷
  • Çмú¿¬±¸
  • ±âŸ ÃÖÁ¾ »ç¿ëÀÚ

Á¦9Àå ¼¼°è ¼¼Æ÷À¯ÀüÇÐ ½ÃÀå : Áö¿ªº°

  • ¼Ò°³
  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ´ºÁú·£µå
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ³²¹Ì
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • Ä¥·¹
    • ±âŸ ³²¹Ì
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
    • īŸ¸£
    • ³²¾ÆÇÁ¸®Ä«
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦10Àå ÁÖ¿ä ¹ßÀü

  • °è¾à, ÆÄÆ®³Ê½Ê, Çù¾÷ ¹× ÇÕÀÛÅõÀÚ(JV)
  • Àμö ¹× ÇÕº´
  • ½ÅÁ¦Ç° ¹ß¸Å
  • »ç¾÷ È®´ë
  • ±âŸ ÁÖ¿ä Àü·«

Á¦11Àå ±â¾÷ ÇÁ·ÎÆÄÀÏ

  • Thermo Fisher Scientific, Inc.
  • Sysmex Corporation
  • PerkinElmer, Inc.
  • OPKO Health, Inc.
  • Irvine Scientific
  • Abbott Laboratories
  • Agilent Technologies, Inc.
  • Applied Spectrial Imaging, Inc.
  • Empire Genomics, LLC
JHS 23.11.10

According to Stratistics MRC, the Global Cytogenetics Market is accounted for $2.7 billion in 2023 and is expected to reach $6.1 billion by 2030 growing at a CAGR of 11.8% during the forecast period. The study of chromosomes, genes, and their structural and numerical variations within an organism's genetic makeup falls under the broad category of cytogenetics, which includes a wide range of methods, instruments, and services. It helps in locating genetic anomalies, detecting genetic disorders, and comprehending the genetic underpinnings of diseases like cancer, this field is crucial. Its applications are in clinical diagnostics, research, and personalized medicine.

According to WHO, in the year 2018 around 18.1 million new cases were diagnosed and 9.6 million individuals died out of cancer.

Market Dynamics:

Driver:

High demand for cytogenetics

Numerous reasons have contributed to the rise in cytogenetic demand. First of all, it is essential to comprehending cancer, birth deformities, and hereditary diseases. Moreover, genetic diagnosis and individualized treatment plans are becoming more and more important as precision medicine becomes more and more popular, cytogenetic testing is now more widely available, precise, and economical thanks to technological improvements. Furthermore, the demand for cytogenetics in clinical, research, and diagnostic applications keeps rising as a result of expanding understanding of the genetic contributions to health and illness as well as an aging population. Therefore, the expansion of research into the human genome and the genetics of diseases have increased demand.

Restraint:

High cost

Cytogenetic testing necessitates the use of specialized tools, consumables, and trained workers, all of which can be expensive. Patients are frequently charged for these costs, which restricts their ability to get genetic diagnostics and counseling. They can present financial difficulties for hospitals and research facilities. The creation and use of new cytogenetic technologies are also hampered by high costs. Hence, these aspects hinder the market growth.

Opportunity:

New innovations in cancer treatment

Numerous molecular cytogenetics techniques are being employed more frequently for cancer diagnosis as the incidence of the disease rises. In addition, as more is understood about cancer at the chromosomal level, this is causing the cytogenetics revenue to expand, which is being fueled by the growth of cancer research. For instance, the development of the market is facilitated by the use of FISH and CGH procedures, which offer vital information on cancer-related genetic markers. FISH, chromosomal image analysis, flow sorting, and genomic in-situ hybridization (GISH), methods used for the creation of synthetic plant chromosomes, are employed in the creation of genetic, physical, molecular, and comparative maps. Moreover, the rising application field and advantages of molecular cytogenetics in crop improvement are therefore assisting the market's growth.

Threat:

Unfavourable compensation

Unfavourable reimbursement practices have been detrimental to the cytogenetics industry. Healthcare providers are less likely to give cytogenetic testing and treatments as a result of inconsistent or insufficient payment, which restricts patient access. Moreover, in turn, this has an impact on the market by decreasing demand and the financial incentives for R&D. Additionally, it may result in disagreements over access to cutting-edge cytogenetic testing, preventing patients from receiving vital genetic diagnostics for diseases like cancer and genetic disorders. Therefore, it is significantly hindering market expansion.

COVID-19 Impact

The cytogenetics market was negatively impacted by the COVID-19 pandemic. Due to lockdowns and resource redistribution, it interfered with laboratory operations, causing delays in genetic testing and problems with patient access. Furthermore, economic uncertainty limited funding for research and testing projects, while supply chain interruptions hindered the accessibility of necessary testing supplies. Moreover, academic and clinical research operations were impeded, which resulted in clinical and scientific setbacks. Therefore, these factors significantly hampered the market growth.

The karyotyping segment is expected to be the largest during the forecast period

The karyotyping segment is estimated to hold the largest share. It entails the visualization and examination of a person's whole chromosomal set, usually from a blood or tissue sample. Additionally, karyotyping aids in the detection of chromosomal structure and numerical anomalies, which aid in the diagnosis of cancer, genetic diseases, and prenatal testing. Moreover, more sophisticated techniques like spectral karyotyping and fluorescent in situ hybridization (FISH) offer higher resolution, traditional karyotyping procedures include staining and microscopic inspection of chromosomes. Therefore, with the invaluable insights into chromosomal abnormalities and genetic illnesses, karyotyping continues to be a cornerstone in clinical and research cytogenetics.

The personalized medicine segment is expected to have the highest CAGR during the forecast period

The personalized medicine segment is anticipated to have highest CAGR during the forecast period, due to a quickly expanding area that adapts medical care to a patient's genetic profile. Clinicians can find genetic differences that affect a person's response to medication, susceptibility to diseases, and general health by utilizing cytogenetic procedures such as chromosomal analysis and molecular testing. Additionally, this method allows for more exact diagnostic and treatment choices, improving therapeutic results and reducing negative effects. Moreover, with improvements in genomics and cytogenetic technology, personalized medicine is playing a crucial role in the identification of uncommon diseases, pharmacogenomics, and cancers, revolutionizing healthcare by offering patients personalized and targeted treatment plans based on their genetic profiles. Thus, helps in expanding the market size.

Region with largest share:

Asia Pacific commanded the largest market share during the extrapolated period owing to a number of initiatives, through funding and cooperative initiatives, governments and academic institutions from all around the region are actively encouraging genetic research and diagnostics. For instance, the "Genome India Project" in India attempts to produce an exhaustive map of the Indian genome. Moreover, nations like China and Japan have launched genomics efforts to advance genetic diagnoses and tailored medicine. Furthermore, the Asia-Pacific area is becoming a focus point for genetic studies, innovations, and clinical applications due to these programs, which are supported by a sizable and diversified population.

Region with highest CAGR:

North America is expected to witness profitable growth over the projection period, owing to renowned research institutions, biotech firms, and medical facilities are located in the area, which supports cytogenetics innovation and study. Additionally, robust healthcare systems and proactive government policies have made it easier to incorporate cytogenetic testing into clinical practice, promoting personalized and precision medicine. Furthermore, the region is at the forefront of genetic diagnostics and research due to North America's leadership in cytogenetics and a strong regulatory environment, which promotes market growth and advancements.

Key players in the market:

Some of the key players in the Cytogenetics Market include: Thermo Fisher Scientific Inc., Sysmex Corporation, PerkinElmer, Inc., OPKO Health, Inc., Irvine Scientific, Abbott Laboratories, Agilent Technologies, Inc., Applied Spectrial Imaging, Inc. and Empire Genomics, LLC.

Key Developments:

In September 2023, Abbott announced it has completed the acquisition of Bigfoot Biomedical, a leader in developing smart insulin management systems for people with diabetes.

In August 2023, Thermo Fisher Scientific Inc. the world leader in serving science, announced that it has completed the acquisition of CorEvitas, LLC ("CorEvitas"), a leading provider of regulatory-grade, real-world evidence for approved medical treatments and therapies, from Audax Private Equity ("Audax).

In August 2023, Thermo Fisher Scientific, the world leader in serving science, announced the commercial launch of the EXENT® Solution, after receiving IVDR certification*. The EXENT solution is a fully integrated and automated mass spectrometry system designed to transform diagnosis and assessment for patients with monoclonal gammopathies, including multiple myeloma.

Products Covered:

  • Consumable
  • Instrument
  • Software & Service
  • Other Products

Techniques Covered:

  • Comparitive Genome Hybridization
  • Fluorescence In Situ Hybridization
  • Karyotyping
  • Immunohistochemistry
  • Other Techniques

Applications Covered:

  • Genetic Disorder
  • Cancer
  • Personalized Medicine
  • Other Applications

End Users Covered:

  • Clinical and Research Laboratory
  • Pharmaceutical and Biotechnology Company
  • Academic Research Institute
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2021, 2022, 2023, 2026, and 2030
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Product Analysis
  • 3.7 Application Analysis
  • 3.8 End User Analysis
  • 3.9 Emerging Markets
  • 3.10 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Cytogenetics Market, By Product

  • 5.1 Introduction
  • 5.2 Consumable
    • 5.2.1 Testing Kits, Media, and Reagents
    • 5.2.2 Probes
    • 5.2.3 Affinity Reagents and Stains
    • 5.2.4 Other Consumables
  • 5.3 Instrument
  • 5.4 Software & Service
  • 5.5 Other Products

6 Global Cytogenetics Market, By Technique

  • 6.1 Introduction
  • 6.2 Comparitive Genome Hybridization
  • 6.3 Fluorescence In Situ Hybridization
  • 6.4 Karyotyping
  • 6.5 Immunohistochemistry
  • 6.6 Other Techniques

7 Global Cytogenetics Market, By Application

  • 7.1 Introduction
  • 7.2 Genetic Disorder
  • 7.3 Cancer
  • 7.4 Personalized Medicine
  • 7.5 Other Applications

8 Global Cytogenetics Market, By End User

  • 8.1 Introduction
  • 8.2 Clinical and Research Laboratory
  • 8.3 Pharmaceutical and Biotechnology Company
  • 8.4 Academic Research Institute
  • 8.5 Other End Users

9 Global Cytogenetics Market, By Geography

  • 9.1 Introduction
  • 9.2 North America
    • 9.2.1 US
    • 9.2.2 Canada
    • 9.2.3 Mexico
  • 9.3 Europe
    • 9.3.1 Germany
    • 9.3.2 UK
    • 9.3.3 Italy
    • 9.3.4 France
    • 9.3.5 Spain
    • 9.3.6 Rest of Europe
  • 9.4 Asia Pacific
    • 9.4.1 Japan
    • 9.4.2 China
    • 9.4.3 India
    • 9.4.4 Australia
    • 9.4.5 New Zealand
    • 9.4.6 South Korea
    • 9.4.7 Rest of Asia Pacific
  • 9.5 South America
    • 9.5.1 Argentina
    • 9.5.2 Brazil
    • 9.5.3 Chile
    • 9.5.4 Rest of South America
  • 9.6 Middle East & Africa
    • 9.6.1 Saudi Arabia
    • 9.6.2 UAE
    • 9.6.3 Qatar
    • 9.6.4 South Africa
    • 9.6.5 Rest of Middle East & Africa

10 Key Developments

  • 10.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 10.2 Acquisitions & Mergers
  • 10.3 New Product Launch
  • 10.4 Expansions
  • 10.5 Other Key Strategies

11 Company Profiling

  • 11.1 Thermo Fisher Scientific, Inc.
  • 11.2 Sysmex Corporation
  • 11.3 PerkinElmer, Inc.
  • 11.4 OPKO Health, Inc.
  • 11.5 Irvine Scientific
  • 11.6 Abbott Laboratories
  • 11.7 Agilent Technologies, Inc.
  • 11.8 Applied Spectrial Imaging, Inc.
  • 11.9 Empire Genomics, LLC
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦