![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1403452
°áÇÙ Áø´Ü ½ÃÀå ¿¹Ãø(-2030³â) : Á¦Ç° À¯Çü, °Ë»ç À¯Çü, ´Ü°è, ÃÖÁ¾ »ç¿ëÀÚ ¹× Áö¿ªº° ¼¼°è ºÐ¼®Tuberculosis Diagnostics Market Forecasts to 2030 - Global Analysis By Product Type, Test Type, Disease Stage, End User and By Geography |
Stratistics MRC¿¡ µû¸£¸é ¼¼°è °áÇÙ Áø´Ü ½ÃÀåÀº 2023³â 20¾ï 7,000¸¸ ´Þ·¯·Î ÃßÁ¤µÇ¸ç, ¿¹Ãø ±â°£ µ¿¾È ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR) 7.6%·Î ¼ºÀåÇØ 2030³â 34¾ï 6,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
°áÇÙÀº °áÇÙ±Õ¿¡ ÀÇÇÑ Àü¿°º´À¸·Î ÁַΠȯÀÚÀÇ Æó, ôÃß, ³ú¸¦ °ø°ÝÇÕ´Ï´Ù. °áÇÙ Áø´ÜÀº °áÇÙ °¨¿°À» °´°üÀûÀ̰í Á¤È®ÇÏ°Ô ½Äº°ÇÕ´Ï´Ù. °áÇÙ Áø´ÜÀº ºñ½ÁÇÑ Áõ»óÀ» °¡Áø ´Ù¸¥ È£Èí±â Áúȯ°ú °áÇÙÀ» ±¸º°ÇÏ´Â µ¥ µµ¿òÀÌµÇ¸ç ¿ÀÁø ¹× ºÒÇÊ¿äÇÑ Ä¡·á¸¦ ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù.
WHOÀÇ ¼¼°è °áÇÙ º¸°í¼ 2022¿¡ µû¸£¸é, 2021³â¿¡´Â Àü ¼¼°èÀûÀ¸·Î ¾à 1,060¸¸ ¸íÀÌ °áÇÙ¿¡ °É·ÈÀ¸¸ç, ÀÌ´Â 2020³â º¸°íµÈ 1,010¸¸ ¸íº¸´Ù 4.5% Áõ°¡ÇÑ ¼öÄ¡ÀÔ´Ï´Ù.
´ÙÁ¦³»¼º °áÇÙ(MDR-TB)°ú ±¤¹üÀ§ ¾àÁ¦³»¼º °áÇÙ(XDR-TB)°ú °°Àº ¾àÁ¦³»¼º °áÇÙ±ÕÀÇ ÃâÇöÀ¸·Î Á¤È®ÇÏ°í ½Å¼ÓÇÑ Áø´Ü °Ë»ç°¡ ¿ä±¸µÇ°í ÀÖ½À´Ï´Ù. ¾àÁ¦ ³»¼º °áÇÙ±ÕÀº Ç¥ÁØ 1Â÷ Ç×°áÇÙÁ¦¿¡ ¹ÝÀÀÇÏÁö ¾Ê±â ¶§¹®¿¡ À̸¦ ¹ß°ßÇϰí ÀûÀýÈ÷ Ä¡·áÇÏ´Â °ÍÀÌ Áß¿äÇÕ´Ï´Ù. ±âÁ¸ÀÇ Áø´Ü ¹æ¹ýÀ¸·Î´Â ¾àÁ¦ ³»¼º °áÇÙ±ÕÀ» ½Äº°ÇÏ±â ¾î·Æ±â ¶§¹®¿¡ Ä¡·á°¡ ´Ê¾îÁö°Å³ª È¿°ú°¡ ¾ø°Å³ª, °¨¿°ÀÌ È®»êµÇ°Å³ª ȯÀÚÀÇ ¿¹Èİ¡ ³ªºüÁú ¼ö ÀÖ½À´Ï´Ù. ÀÌ¿¡ µû¶ó ¾àÁ¦ ³»¼º °áÇÙÀ» Á¤È®ÇÏ°Ô °ËÃâÇÒ ¼ö Àִ ÷´Ü Áø´Ü¹ý¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.
ºÐÀÚ °Ë»ç, À¯ÀüÀÚ °Ë»ç µî ÷´Ü Áø´Ü ±â¼úÀº °´´ã µµ¸» Çö¹Ì°æ °Ë»ç¿Í °°Àº ÀüÅëÀûÀÎ ¹æ¹ý¿¡ ºñÇØ ºñ¿ëÀÌ ¸¹ÀÌ µå´Â °æ¿ì°¡ ¸¹½À´Ï´Ù. ÀÌ·¯ÇÑ °Ë»ç ºñ¿ë¿¡´Â °Ë»ç ŰƮ»Ó¸¸ ¾Æ´Ï¶ó °Ë»ç¿¡ ÇÊ¿äÇÑ Àåºñ, °Ë»ç½Ç ÀÎÇÁ¶ó, ¼÷·ÃµÈ Àηµµ Æ÷ÇԵ˴ϴÙ. µû¶ó¼ ³ôÀº ºñ¿ëÀ¸·Î ÀÎÇØ ÀÇ·á ¼ºñ½º Á¦°ø¾÷ü°¡ ´õ Á¤±³Çϰí Á¤¹ÐÇÑ Áø´Ü ±â¼úÀ» µµÀÔÇÏ´Â °ÍÀ» ÁÖÀúÇÏ°Ô µÇ¾î ½ÃÀå ¼ºÀåÀ» ÀúÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.
ÁßÇÕÈ¿¼Ò¿¬¼â¹ÝÀÀ(PCR), ÇÙ»êÁõÆø°Ë»ç(NAAT) µî ºÐÀÚ±â¼úÀÇ È°¿ëÀ¸·Î °áÇÙÀÇ °ËÃ⠹ਵµ°¡ Çâ»óµÇ¾î ±Õ·®ÀÌ ÀûÀº °æ¿ì¿¡µµ Áø´ÜÀÌ °¡´ÉÇØÁ³½À´Ï´Ù. ¶ÇÇÑ, ÇöÀå °Ë»çÀÇ °³¼±À¸·Î Áø´ÜÀÌ È¯ÀÚ¿¡°Ô ´õ °¡±îÀÌ ´Ù°¡°¥ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ÀÌ´Â Ä¡·á ½ÃÀÛºÎÅÍ °á°ú±îÁö °É¸®´Â ½Ã°£ÀÌ ´ÜÃàµÇ±â ¶§¹®¿¡ ÀÚ¿øÀÌ ºÎÁ·ÇÑ È¯°æ¿¡¼ ƯÈ÷ À¯¸®ÇÕ´Ï´Ù. µû¶ó¼ ÀÌ·¯ÇÑ Ã·´Ü Áø´Ü ±â¼úÀº ½ÃÀå ¼ºÀåÀ» °¡¼ÓÈÇÒ °ÍÀÔ´Ï´Ù.
°¨¿° ¹æ½Ä¿¡ ´ëÇÑ ¿ÀÇØ, °¨¿°¿¡ ´ëÇÑ µÎ·Á¿ò, ºó°ï ¹× ¼Ò¿ÜµÈ Áý´Ü°úÀÇ ¿¬°ü¼º µîÀº °áÇÙÀ» µÑ·¯½Ñ ³«ÀÎÀ» Á¶ÀåÇÏ´Â ¿äÀÎ Áß ÀϺÎÀÔ´Ï´Ù. ±×·¯³ª ÀÌ·¯ÇÑ ³«ÀÎÀº °³ÀÎÀÌ ÀÚ½ÅÀÇ Áõ»óÀ» °ø°³Çϰųª, ÀÇ·á ¼ºñ½º¸¦ ¹Þ°Å³ª, °áÇÙ Áø´Ü °Ë»ç¸¦ ¹Þ´Â °ÍÀ» ²¨¸®°Ô ¸¸µå´Â ¿øÀÎÀÌ µË´Ï´Ù. »çȸÀû ¹èÁ¦³ª Â÷º°, »çȸÀû ÀνÄÀÌ ³ªºüÁú±îºÁ °áÇÙ Áø´Ü ¼ºñ½º¸¦ ¹ÞÁö ¸øÇÏ´Â °æ¿ìµµ ÀÖ½À´Ï´Ù. µû¶ó¼ Áø´ÜÀÌ ¹Ì·ïÁö°í Áúº´ÀÌ È®»êµÉ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿äÀεéÀÌ ½ÃÀå ¼ö¿ä¸¦ ÀúÇØÇϰí ÀÖ½À´Ï´Ù.
Äڷγª19ÀÇ ´ëÀ¯ÇàÀº °áÇÙ Áø´Ü ½ÃÀå¿¡ Å« ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. Ãʱ⿡´Â ÀÇ·á ½Ã½ºÅÛÀ» È¥¶õ¿¡ ºü¶ß¸®°í °áÇÙ Áø´Ü¿¡¼ ÀÚ¿øÀ» ÀüȯÇßÁö¸¸, µ¿½Ã¿¡ źźÇÑ Áø´Ü ÀÎÇÁ¶óÀÇ Á߿伺À» ºÎ°¢½ÃÄ×½À´Ï´Ù. Àü¿°º´ÀÌ ÁøÁ¤µÊ¿¡ µû¶ó ÀÇ·á ½Ã½ºÅÛ °ÈÀÇ Çʿ伺¿¡ ´ëÇÑ ÀνÄÀÌ ³ô¾ÆÁö¸é¼ °áÇÙ Áø´Ü¿¡ Àå±âÀûÀÎ ÀÌÀÍÀ» °¡Á®´Ù ÁÙ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ Äڷγª19´Â ¿ø°Ý ÀÇ·á¿Í µðÁöÅÐ °Ç°ÀÇ ¹ßÀüÀ» °¡¼ÓÈÇÏ¿© °áÇÙ Áø´Ü ´É·ÂÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù.
Áø´Ü °Ë»ç¹ý ºÎ¹®ÀÌ °¡Àå Å« Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ÃßÁ¤µË´Ï´Ù. Àü ¼¼°è ´ëºÎºÐÀÇ º´¿ø ¹× Áø·á¼Ò´Â µµ¸» Çö¹Ì°æ °Ë»ç»Ó¸¸ ¾Æ´Ï¶ó ¹è¾ç ±â¹Ý °Ë»çµµ ½ÃÇàÇϰí ÀÖ½À´Ï´Ù. ÀÌ´Â °í±Þ Áø´Ü ±â¹ýÀ» ÀÌ¿ëÇÒ ¼ö ¾ø´Â ȯÀڵ鿡°Ô °áÇÙ Áø´ÜÀ» À§ÇÑ À¯·ÂÇÑ ¼±ÅÃÀÌ µÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÇÙ»êÁõÆø°Ë»ç(NAAT)¿Í °°Àº »õ·Î¿î °Ë»ç°¡ ³Î¸® »ç¿ëµÇ°í ÀÖÁö¸¸, µµ¸» Çö¹Ì°æ °Ë»ç¿Í ¹è¾ç ±â¹Ý °Ë»ç´Â ¿©ÀüÈ÷ °áÇÙÀ» Áø´ÜÇÏ´Â °¡Àå Á¤È®ÇÑ °Ë»ç·Î ¿©°ÜÁö°í ÀÖ½À´Ï´Ù.
°´´ã µµ¸» Çö¹Ì°æ °Ë»ç ºÐ¾ß´Â ¿¹Ãø ±â°£ µ¿¾È À¯¸®ÇÑ ¼ºÀå¼¼¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. °´´ã µµ¸» Çö¹Ì°æ °Ë»ç´Â °´´ã »ùÇÿ¡¼ AFB(Acid-Fast Bacilli: Acid-Fast Bacilli)¸¦ °ËÃâÇÏ´Â µ¥ »ç¿ëµÇ´Â °£ÆíÇÏ°í ºñ¿ë È¿À²ÀûÀÎ ±â¼ú·Î, Æó°áÇÙ Áø´Ü¿¡ µµ¿òÀÌ µË´Ï´Ù. °´´ã µµ¸» Çö¹Ì°æ °Ë»ç´Â °íµµÀÇ °Ë»ç ÀÎÇÁ¶ó³ª °í°¡ÀÇ Àåºñ°¡ ÇÊ¿äÇÏÁö ¾Ê±â ¶§¹®¿¡ ÀÚ¿øÀÌ ºÎÁ·ÇÑ È¯°æ¿¡¼µµ ³Î¸® Ȱ¿ëµÉ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ½Å¼ÓÇÑ °á°ú Á¦°øÀ¸·Î ÀÇ·áÁøÀÌ °áÇÙ Ä¡·á¸¦ ½Å¼ÓÇÏ°Ô ½ÃÀÛÇÒ ¼ö ÀÖ¾î °¨¿°À» ÁÙÀ̰í ȯÀÚÀÇ °á°ú¸¦ °³¼±ÇÒ ¼ö ÀÖ½À´Ï´Ù.
¾Æ½Ã¾ÆÅÂÆò¾çÀº ³ôÀº ºÎ´ã°ú ÀÌ Áúº´ÀÇ ±Þ¼ÓÇÑ È®»êÀ¸·Î ÀÎÇØ ½ÃÀåÀ» µ¶Á¡ÇÏ°í °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇϰí ÀÖ½À´Ï´Ù. ÀÌ Áö¿ªÀÇ ¿©·¯ ±¹°¡¿¡¼ °áÇÙ ¹ßº´·üÀÌ Áõ°¡ÇÏ´Â °ÍÀÌ ½ÃÀå ¼öÀÍ Áõ°¡ÀÇ ÁÖ¿ä ¿äÀÎ Áß ÇϳªÀÔ´Ï´Ù. ¶ÇÇÑ, ÀÌ Áö¿ªÀÇ ³ôÀº »ç¸Á·ü°ú ³·Àº Àΰ£ °³¹ß Áö¼ö´Â ½ÃÀå ¼öÀÍ ¼ºÀåÀ» µÞ¹ÞħÇÏ´Â Áß¿äÇÑ ¿ä¼ÒÀÔ´Ï´Ù. ¹æ±Û¶óµ¥½Ã, Áß±¹, Àεµ, Àεµ³×½Ã¾Æ, ÆÄŰ½ºÅº, Çʸ®ÇÉÀº ÀÌ Áö¿ªÀÇ ¿µÇâÀ» ¹Þ´Â ±¹°¡ Áß ÇϳªÀÔ´Ï´Ù.
ºÏ¹Ì´Â ¼ºÀÎ ¹× ¼Ò¾Æ °áÇÙ À¯º´·ü Áõ°¡·Î ÀÎÇØ ¿¹Ãø ±â°£ µ¿¾È ¼öÀͼº ÀÖ´Â ¼ºÀåÀ» ÀÌ·ê °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ Áö¿ªÀÇ ÀÇ·á ¿¬±¸ ±â°ü¿¡¼ º´¿øÃ¼ ƯÀÌÀû ´ë»ç °æ·Î¿Í °ü·ÃµÈ À¯ÀÍÇÑ ¹ß°ßÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ´Â º´¿øÃ¼ ¸é¿ª ¹ÝÀÀ, ¹ÚÅ׸®¾Æ Áõ½Ä ¶Ç´Â ¹ÚÅ׸®¾Æ ÇÙ»ê ÁõÆø °ËÃâ¿¡ ÃÊÁ¡À» ¸ÂÃá ±âÁ¸ ±â¼úÀ» ´ëüÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ AI¿Í ³ª³ë ±â¼úÀÇ Á¶ÇÕÀº ºÏ¹Ì ȯÀÚÀÇ °áÇÙ Áø´Ü °úÁ¤À» °³¼±ÇÏ´Â µ¥ Å« µµ¿òÀÌ µÉ °ÍÀÔ´Ï´Ù.
According to Stratistics MRC, the Global Tuberculosis Diagnostics Market is accounted for $2.07 billion in 2023 and is expected to reach $3.46 billion by 2030 growing at a CAGR of 7.6% during the forecast period. Tuberculosis (TB) is a contagious disease caused by Mycobacterium tuberculosis and it mainly attacks the lungs, spine, and brain of the patients. Tuberculosis diagnostics provide objective and precise identification of TB infection. They help differentiate TB from other respiratory diseases with similar symptoms, reducing misdiagnosis and unnecessary treatments.
According to the WHO Global Tuberculosis report 2022, in 2021, approximately 10.6 million individuals fell ill with tuberculosis globally, representing 4.5% rise from 10.1 million cases reported in 2020.
The emergence of drug-resistant strains, such as multidrug-resistant tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB), has created a need for accurate and rapid diagnostic tests. Drug-resistant TB strains do not respond to the standard first-line anti TB medications, making their detection and appropriate treatment critical. Traditional diagnostic methods may not be effective in identifying drug-resistant strains, leading to delayed or ineffective treatment, increased transmission, and poor patient outcomes. As a result, there is a growing demand for advanced diagnostics that can accurately detect drug-resistant TB.
Advanced diagnostic technologies, such as molecular tests and genotypic assays, often come with a higher price tag compared to traditional methods like sputum smear microscopy. The cost of these tests includes not only the test kits but also the equipment, laboratory infrastructure, and skilled personnel required for their implementation. Therefore, high costs may deter healthcare providers from implementing more advanced and precise diagnostic techniques, impeding the growth of the market.
The utilization of molecular techniques, such as polymerase chain reaction (PCR) and nucleic acid amplification tests (NAATs), allows for the detection of TB with enhanced sensitivity, enabling diagnosis even in cases with low bacterial loads. Additionally, improvements in point-of-care testing bring diagnostics closer to the patient. This is especially advantageous in settings with limited resources because it shortens the time between starting treatment and receiving results. Therefore, these advanced diagnostic technologies accelerate market growth.
Misconceptions regarding the mode of transmission, fear of infection, and associations with poverty or marginalized groups are some of the factors that contribute to the stigma surrounding tuberculosis. However, this stigma can lead to reluctance among individuals to disclose their symptoms, seek healthcare, or undergo TB diagnostic testing. People may be unable to receive TB diagnostic services because of fear of social exclusion, discrimination, or unfavourable societal perceptions. This can postpone diagnosis and contribute to the disease's spread. These factors hamper market demand.
The COVID-19 pandemic has had a significant impact on the tuberculosis diagnostics market. While it initially disrupted healthcare systems, diverting resources away from TB diagnostics, it also highlighted the importance of robust diagnostic infrastructure. Long-term benefits for TB diagnostics could result from increased awareness of the need for strengthening healthcare systems as the pandemic fades. Furthermore, COVID-19 may have accelerated advancements in telemedicine and digital health, which could improve the capacity for tuberculosis diagnosis.
The diagnostic laboratory methods segment is estimated to hold the largest share. Most hospitals and clinics globally provide culture-based tests as well as smear microscopy. Due to this, they are a viable choice for tuberculosis diagnosis for patients who might not have access to more sophisticated diagnostic procedures. Moreover, while newer tests, such as nucleic acid amplification tests (NAATs), are becoming more widely available, smear microscopy and culture-based tests are still considered to be the most accurate tests for diagnosing tuberculosis.
The sputum smear microscopy segment is anticipated to have lucrative growth during the forecast period. It is a simple and cost-effective technique used to detect acid-fast bacilli (AFB) in sputum samples, aiding in the diagnosis of pulmonary TB. Sputum smear microscopy is widely available, even in resource-limited settings, as it does not require sophisticated laboratory infrastructure or expensive equipment. Moreover, it provides rapid results, enabling healthcare providers to initiate TB treatment promptly, reducing transmission, and improving patient outcomes.
Asia Pacific dominated the market and accounted for the largest market share due to its high burden as well as the rapid proliferation of this disease. The rising rates of tuberculosis in several of the countries in this region are one of the primary drivers of the increase in market revenue. Furthermore, the high mortality rate and low human development index in this region are important factors that support the growth in market revenue. Bangladesh, China, India, Indonesia, Pakistan, and the Philippines are among the affected nations in this region.
North America is expected to witness profitable growth over the projection period, owing to the rising prevalence of tuberculosis among adults and children. Medical research institutes in this region are discovering an increasing number of benefits associated with pathogen-specific metabolic pathways. This could serve as a substitute for the existing techniques that focus on the detection of pathogen immune responses, bacterial growth, or bacterial nucleic acid amplification. Additionally, AI and nanotechnology combined significantly aid in improving the tuberculosis diagnosis process among patients in North America.
Some of the key players in the Tuberculosis Diagnostics Market include Becton Dickinson and Company, Qiagen NV, Thermo Fisher Scientific Inc., Oxford Immunotec Ltd., Hoffmann-La Roche Ltd., Hologic Inc., BioMerieux SA, Akonni Biosystems Inc., Cepheid Inc., Alere Inc., PAR Pharmaceuticals, Hain Life Science and Lionex GmbH.
In February 2022 - QIAGEN announced that its QuantiFERON tuberculosis testing solution received the approval of the fourth generation of a modern gold standard test in China.
In March 2022, Thermo Fisher Scientific Inc. launched the SeqStudio Flex Series Genetic Analyzer for research & development of infectious disease detection, which is expected to expand the company's product portfolio in the market.