![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1438201
Àüµµ¼º Æú¸®¸Ó ½ÃÀå ¿¹Ãø(-2030³â) : Á¦Ç°, À¯Çü, Ŭ·¡½º, Àüµµ¼º ¸ÞÄ¿´ÏÁò, ÇÕ¼º °øÁ¤, ±â¼ú, ¿ëµµ, ÃÖÁ¾»ç¿ëÀÚ, Áö¿ªº° ¼¼°è ºÐ¼®Conducting Polymers Market Forecasts to 2030 - Global Analysis By Product, Type, Class, Conduction Mechanism, Synthesis Process, Technology, Application, End User and by Geography |
Stratistics MRC¿¡ µû¸£¸é Àüµµ¼º Æú¸®¸Ó ¼¼°è ½ÃÀåÀº 2023³â 64¾ï 3,000¸¸ ´Þ·¯·Î ¿¹Ãø ±â°£ µ¿¾È 10.8%ÀÇ CAGR·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 131¾ï 7,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
Àüµµ¼º Æú¸®¸Ó¶ó°í ºÒ¸®´Â Ư¼ö ¼ÒÀç´Â ±Ý¼ÓÀÇ Àüµµ¼º°ú °íºÐÀÚÀÇ ±â°èÀû Ư¼ºÀ» ¸ðµÎ °¡Áö°í ÀÖ½À´Ï´Ù. Àüµµ¼º Æú¸®¸Ó´Â ±âÁ¸ÀÇ Àý¿¬¼º °íºÐÀÚ¿Í ´Þ¸® °ø¾× °ñ°Ý ±¸Á¶¸¦ °¡Áö°í Àֱ⠶§¹®¿¡ Àü±â°¡ ÅëÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÈÇÐÀû µµÇÎÀ̳ª Àü±â ÈÇÐÀû ÀýÂ÷¸¦ ÅëÇØ ÀÌ Àüµµ¼ºÀ» Á¶ÀÛÇϰí Á¦¾îÇÒ ¼ö ÀÖ¾î ´Ù¾çÇÑ ÀÀ¿ë ºÐ¾ß°¡ °¡´ÉÇÕ´Ï´Ù.
¹Ì±¹ÈÇÐȸ¿¡ µû¸£¸é Àüµµ¼º Æú¸®¸Ó ¿¬±¸´Â µ¶Æ¯ÇÑ Àü±âÀû, ±â°èÀû Ư¼ºÀ» °¡Áø Àç·á¿¡ ´ëÇÑ ÀÌÇØ¸¦ Å©°Ô ¹ßÀü½ÃÄÑ ÀüÀÚ, °¨Áö ±â¼ú, ¿¡³ÊÁö ÀúÀå ½Ã½ºÅÛ µî¿¡ ȹ±âÀûÀÎ ÀÀ¿ëÀÇ ±æÀ» ¿¾ú´Ù°í ÇÕ´Ï´Ù.
À¯¿¬ÇÏ°í °¡º¿î ÀüÀÚÁ¦Ç°¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡
À¯¿¬ÇÏ°í °¡º¿î ÀüÀÚÁ¦Ç°¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡·Î ÀÎÇØ Àüµµ¼º Æú¸®¸Ó ½ÃÀåÀÌ ºü¸£°Ô ¼ºÀåÇϰí ÀÖ½À´Ï´Ù. Àüµµ¼º Æú¸®¸Ó´Â ±â°èÀû À¯¿¬¼º°ú Àü±â Àüµµ¼ºÀ» °âºñÇÑ Àüµµ¼º Æú¸®¸Ó´Â ¼ÒºñÀÚÀÇ ¼±È£µµ°¡ º¸´Ù È޴뼺°ú ÀûÀÀ¼ºÀÌ ¶Ù¾î³ ÀüÀÚ±â±â·Î À̵¿ÇÔ¿¡ µû¶ó ÀÌ¿¡ ´ëÇÑ ¼Ö·ç¼ÇÀ» Á¦°øÇÕ´Ï´Ù. ¶ÇÇÑ, ÀÌ·¯ÇÑ Ãß¼¼´Â ¿þ¾î·¯ºí ±â¼ú°ú °°Àº ºÐ¾ß¿¡¼ ƯÈ÷ µÎµå·¯Áö´Âµ¥, Àüµµ¼º Æú¸®¸Ó¸¦ »ç¿ëÇÏ¿© À¯¿¬Çϰí ÀûÀÀ¼ºÀÌ ³ôÀº ÀüÀÚºÎǰÀ» ¸¸µé ¼ö ÀÖ½À´Ï´Ù.
ȯ°æÀû ¿äÀο¡ ´ëÇÑ Ãë¾à¼º
½À±â, ¿Âµµ º¯È, ÈÇÐÁ¦Ç° ³ëÃâ°ú °°Àº ȯ°æÀû ¿ä¼Ò´Â Àüµµ¼º Æú¸®¸Ó¿¡ ¿µÇâÀ» ¹ÌÄ¥ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¾àÁ¡Àº ½Ã°£ÀÌ Áö³²¿¡ µû¶ó Àç·á°¡ ¿ÈµÇ¾î ½Å·Ú¼º°ú Àå±âÀûÀÎ ¼º´É¿¡ ¿µÇâÀ» ¹ÌÄ¥ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ ½ÇÁ¦ ÀÀ¿ë ºÐ¾ß¿¡¼ ÀÌ·¯ÇÑ È¯°æ ¹Î°¨¼ºÀ» ÇØ°áÇÏ´Â °ÍÀº Àüµµ¼º Æú¸®¸ÓÀÇ ¾ÈÁ¤¼º°ú ³»±¸¼ºÀ» º¸ÀåÇÏ´Â µ¥ ÇʼöÀûÀ̸ç, ƯÈ÷ ´Ù¾çÇÑ ÀÛµ¿ Á¶°Ç¿¡ ³ëÃâµÇ´Â ÀüÀÚ ÀåÄ¡¿¡¼ ƯÈ÷ Áß¿äÇÕ´Ï´Ù.
Ç÷º¼ºí ÀÏ·ºÆ®·Î´Ð½ºÀÇ ±Þ¼ÓÇÑ ¹ßÀü
Ç÷º½Ãºí ÀÏ·ºÆ®·Î´Ð½ºÀÇ ²÷ÀÓ¾ø´Â ¹ßÀüÀº Àüµµ¼º Æú¸®¸Ó¿¡ Å« ÀáÀç·ÂÀ» ºÎ¿©Çϰí ÀÖ½À´Ï´Ù. Àüµµ¼º Æú¸®¸Ó´Â À¯¿¬ÇÑ È¸·Î, ¿þ¾î·¯ºí ±â¼ú ¹× Æí¾ÈÇÑ ÀüÀÚºÎǰÀÇ °³¹ßÀ» °¡´ÉÇÏ°Ô ÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÕ´Ï´Ù. ¶ÇÇÑ, ÀÌ·¯ÇÑ ±âȸ¸¦ ÃæºÐÈ÷ Ȱ¿ëÇϱâ À§Çؼ´Â Æú¸®¸Ó¿Í Ç÷º½Ãºí ±âÆÇ°úÀÇ È£È¯¼ºÀ» °³¼±Çϰí Ç÷º½Ãºí ÀüÀÚ ¾ÖÇø®ÄÉÀ̼ÇÀÇ ¼º´ÉÀ» ±Ø´ëÈÇϱâ À§ÇØ ´õ ¸¹Àº ¿¬±¸¿Í âÀǼºÀÌ ÇÊ¿äÇÕ´Ï´Ù.
ÀÎÁ¤µÈ Àç·áÀÇ °æÀïÀÚ
Àüµµ¼º Æú¸®¸Ó°¡ Á÷¸éÇÑ ÁÖ¿ä °úÁ¦ Áß Çϳª´Â ´Ù¾çÇÑ »ê¾÷ ºÐ¾ß¿¡¼ ÀÌ¹Ì Àß ¾Ë·ÁÁø Àç·á¿ÍÀÇ °æÀïÀÔ´Ï´Ù. ÀϺΠÀÀ¿ë ºÐ¾ß¿¡¼´Â ½Ç¸®ÄÜÀ̳ª ±Ý¼Ó°ú °°Àº ±âÁ¸ Àç·á°¡ ÀÌ¹Ì ÀÚ¸®¸¦ Àâ¾Ò±â ¶§¹®¿¡ Àüµµ¼º Æú¸®¸Ó°¡ ³Î¸® ¼ö¿ëµÇ±â°¡ ¾î·Æ½À´Ï´Ù. ¶ÇÇÑ, ÀÌ·¯ÇÑ À§Çè¿¡ ´ëÀÀÇϱâ À§Çؼ´Â Àüµµ¼º Æú¸®¸Ó°¡ ±âÁ¸ Àç·áº¸´Ù ´õ Àú·ÅÇÏ°í Æ¯º°ÇÑ ÇýÅÃÀÌ ÀÖ´Ù´Â °ÍÀ» º¸¿© ÁÖ¾î¾ß ÇÕ´Ï´Ù.
COVID-19´Â Àüµµ¼º Æú¸®¸Ó ½ÃÀå¿¡ Å« ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. »ý»ê °øÁ¤¿¡ ÁöÀåÀ» ÃÊ·¡ÇÏ°í ¼¼°è °ø±Þ¸ÁÀ» È¥¶õ¿¡ ºü¶ß¸®°í ¸¹Àº »ê¾÷ ºÐ¾ßÀÇ ¼ö¿ä¸¦ °¨¼Ò½ÃÄ×½À´Ï´Ù. Æó¼â, ¿©Çà Á¦ÇÑ, °æÁ¦ ºÒÈ®½Ç¼ºÀ¸·Î ÀÎÇØ ¿¬±¸ °³¹ß ³ë·ÂÀÌ ¹æÇظ¦ ¹Þ¾Æ ÀÌ ºÐ¾ßÀÇ ±â¼ú Çõ½ÅÀÌ µÐȵǾúÀ» ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÀÚº» ÅõÀÚ¿Í ÅõÀÚ ÆÐÅÏÀº Àü¿°º´À¸·Î ÀÎÇÑ °æ±â ħüÀÇ ¿µÇâÀ» ¹Þ¾Æ ½ÃÀå ¼ºÀå ±Ëµµ¿¡ ¿µÇâÀ» ¹ÌÄ¡°í ÀÖ½À´Ï´Ù.
À¯Àüü Àüµµ¼º Æú¸®¸Ó(ICP) ºÐ¾ß°¡ ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ºñÁßÀ» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»ó
Àüµµ¼º Æú¸®¸Ó Áß¿¡¼´Â ICP(Inherently Conductive Polymers) ºÐ¾ß°¡ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¿ÜºÎ µµÇÎÀ̳ª °³ÁúÀÌ ÇÊ¿ä ¾ø´Â °íÀ¯ Àüµµ¼º Æú¸®¸Ó´Â Àü±â¸¦ ÅëÇÒ ¼ö Àִ Ưº°ÇÑ Æ¯¼ºÀ» °¡Áö°í ÀÖ½À´Ï´Ù. ICP´Â ¼¾¼, Ç÷º¼ºí ÀüÀÚÁ¦Ç° ¹× ±âŸ ÀüÀÚºÎǰ °³¹ß¿¡ ³Î¸® »ç¿ëµÇ°í ÀÖÀ¸¸ç, ƯÈ÷ °¡°øÀÇ ¿ëÀ̼º, À¯¿¬¼º ¹× °æ·®È°¡ ÇʼöÀûÀÎ ÀÀ¿ë ºÐ¾ß¿¡¼ ³ôÀº ¼ö¿ä¸¦ º¸À̰í ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµÇ´Â ºÐ¾ß´Â ¹èÅ͸® ºÐ¾ß
Àüµµ¼º Æú¸®¸Ó ½ÃÀå¿¡¼ °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµÇ´Â ºÐ¾ß´Â ¹èÅ͸® ºÐ¾ßÀÔ´Ï´Ù. ¹èÅ͸® ±â¼ú¿¡¼ Àüµµ¼º Æú¸®¸ÓÀÇ »ç¿ëÀº È¿°úÀûÀ̰í ÈÞ´ë °¡´ÉÇÑ ¿¡³ÊÁö ÀúÀå ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡ÇÔ¿¡ µû¶ó ¹èÅ͸® ±â¼ú¿¡¼ Àüµµ¼º Æú¸®¸ÓÀÇ »ç¿ëÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. Àüµµ¼º Æú¸®¸Ó´Â ³ôÀº Ãâ·Â ¹Ðµµ, À¯¿¬¼º ¹× °¡°ø ¿ëÀ̼ºÀ¸·Î ÀÎÇØ ÃæÀü½Ä ¹èÅ͸®¿¡ »ç¿ëÇϱ⿡ À¯¸®ÇÕ´Ï´Ù. ¶ÇÇÑ, Àü±âÀÚµ¿Â÷ ¹× Àç»ý¿¡³ÊÁö·ÎÀÇ ÀüȯÀ¸·Î ÀÎÇØ ÷´Ü ¿¡³ÊÁö ÀúÀå ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖÀ¸¸ç, ÀÌ´Â Àüµµ¼º Æú¸®¸Ó ½ÃÀåÀÇ ¼ºÀåÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù.
Àüµµ¼º Æú¸®¸ÓÀÇ °æ¿ì, ¾Æ½Ã¾ÆÅÂÆò¾çÀÌ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ Áö¿ªÀº ƯÈ÷ Áß±¹, ÀϺ», Çѱ¹ÀÇ ÀüÀÚÁ¦Ç° Á¦Á¶ »ê¾÷ÀÌ È£È²À» ´©¸®°í ÀÖ´Â °ÍÀÌ ÁÖ¿ä ¿äÀÎÀ¸·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù. ¾Æ½Ã¾ÆÅÂÆò¾çÀº °¡Àü, ÀÚµ¿Â÷, Åë½Å µîÀÇ »ê¾÷ÀÌ °ßÁ¶ÇÑ ¼ºÀå¼¼¸¦ º¸À̸ç Àüµµ¼º Æú¸®¸Ó ¼ö¿ä¸¦ °ßÀÎÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀÌ Áö¿ªÀº ±â¼ú ¹ßÀü¿¡ ÁßÁ¡À» µÎ°í ÀÖÀ¸¸ç, À¯¿¬ÇÏ°í °¡º¿î ÀüÀÚºÎǰ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó Àüµµ¼º Æú¸®¸ÓÀÇ Ã¤ÅÃÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.
Àüµµ¼º Æú¸®¸Ó ½ÃÀåÀº ¾Æ½Ã¾ÆÅÂÆò¾ç¿¡¼ °¡Àå ³ôÀº CAGR·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Àüµµ¼º Æú¸®¸Ó¿¡ ´ëÇÑ ¼ö¿ä´Â ÀüÀÚ, ÀÚµ¿Â÷, ÇコÄÉ¾î µî ´Ù¾çÇÑ »ê¾÷¿¡¼ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¾Æ½Ã¾ÆÅÂÆò¾ç¿¡¼ Àüµµ¼º Æú¸®¸ÓÀÇ °ßÁ¶ÇÑ ¼ºÀåÀº ÀüÀÚÁ¦Ç° Á¦Á¶ ºÎ¹®ÀÇ È®´ë¿Í Çõ½ÅÀûÀÎ ±â¼ú äÅÃÀÌ È®´ëµÇ°í Àֱ⠶§¹®ÀÔ´Ï´Ù. ¶ÇÇÑ, Àç»ý¿¡³ÊÁö¿¡ ´ëÇÑ °ü½É°ú ¿¡³ÊÁö ÀúÀå ±â¼ú(ƯÈ÷ žçÀüÁö ¹× ¹èÅ͸®)ÀÇ ¹ßÀüÀ¸·Î ÀÎÇØ Àüµµ¼º Æú¸®¸Ó¿¡ ´ëÇÑ ¼ö¿ä´Â ´õ¿í Áõ°¡Çϰí ÀÖ½À´Ï´Ù.
According to Stratistics MRC, the Global Conducting Polymers Market is accounted for $6.43 billion in 2023 and is expected to reach $13.17 billion by 2030 growing at a CAGR of 10.8% during the forecast period. A special class of materials known as conducting polymers combines the electrical conductivity of metals with the mechanical characteristics of polymers. Conducting polymers can conduct electricity because, in contrast to conventional insulating polymers, they have a conjugated backbone structure. Moreover, a multitude of uses are possible by manipulating and controlling this conductivity via chemical doping or electrochemical procedures.
According to the American Chemical Society, the study of conducting polymers has significantly advanced our understanding of materials with unique electrical and mechanical properties, opening up avenues for groundbreaking applications in electronics, sensing technologies, and energy storage systems.
Growing need for flexible and lightweight electronics
The market for conducting polymers is expanding at a rapid pace due to the rising demand for flexible and lightweight electronics. Because conducting polymers have a special blend of mechanical flexibility and electrical conductivity, they offer a solution as consumer preferences shift toward more portable and adaptable electronic devices. Furthermore, this trend is especially noticeable in sectors like wearable technology, where the creation of flexible and conformable electronic components is made possible by the use of conducting polymers.
Environmental factors vulnerability
Environmental elements, including moisture, temperature changes, and chemical exposure, can affect conducting polymers. These weaknesses could cause the material to deteriorate over time, which would affect its dependability and long-term performance. Moreover, in practical applications, addressing these environmental sensitivities is essential to guaranteeing the stability and durability of conducting polymers, particularly in electronic devices subjected to a range of operating conditions.
Quick developments in flexible electronics
The continuous progress in flexible electronics offers conducting polymers a great deal of promise. Conducting polymers can be crucial in enabling the development of flexible circuits, wearable technology, and conformable electronic components, as the demand for bendable, stretchable, and lightweight electronic devices keeps growing. Furthermore, to fully take advantage of this opportunity, more study and creativity are needed to improve polymer compatibility with flexible substrates and maximize their performance in flexible electronic applications.
Rivalry from recognized materials
One of the main challenges that conducting polymers face is competition from materials that is well-established in different industries. In some applications, conventional materials like silicon and metals may already be well-established, making it difficult for conducting polymers to become widely accepted. Additionally, to counter this danger, conducting polymers must be shown to have special benefits and to be more affordable than conventional materials.
The COVID-19 pandemic has had a major effect on the conducting polymer market. It has hampered production processes, disrupted the global supply chain, and decreased demand in a number of industries. Research and development efforts have been hindered by lockdowns, travel restrictions, and economic uncertainties, which may have slowed down innovation in the field. Furthermore, capital expenditures and investment patterns have been impacted by the pandemic-caused economic downturn, which has impacted the market's growth trajectory.
The Inherently Conductive Polymers (ICP) segment is expected to be the largest during the forecast period
It is projected that the Inherently Conductive Polymers (ICP) segment will command the largest market share for conducting polymers. Without the need for external doping or modifications, intrinsically conductive polymers have special properties that enable them to conduct electricity. Moreover, this market has seen strong demand, especially in applications where processing simplicity, flexibility, and lightweight qualities are essential. ICPs are widely used in sensors, flexible electronics, and other electronic component development.
The Batteries segment is expected to have the highest CAGR during the forecast period
The conducting polymers market's highest CAGR is anticipated for the battery segment. The use of conducting polymers in battery technology has been driven by the growing need for effective and portable energy storage solutions. Conducting polymers are advantageous for use in rechargeable batteries because of their high power density, flexibility, and ease of processing. Furthermore, the need for sophisticated energy storage systems increases as the world shifts to electric cars and renewable energy sources, which propels the conducting polymers market's growth.
With regard to conducting polymers, the Asia-Pacific region is projected to hold the largest market share. The region's booming electronics manufacturing industry, especially in China, Japan, and South Korea, is responsible for much of its dominance. Asia-Pacific's robust growth in industries like consumer electronics, automotive, and telecommunications is driving demand for conducting polymers. Additionally, the region has been a leader in the adoption of conducting polymers due to its focus on technological advancements and the growing demand for flexible and lightweight electronic components.
The conducting polymer market is expected to grow at the highest CAGR in the Asia-Pacific region. The demand for conducting polymers is rising across a range of industries, including electronics, automotive, and healthcare, thanks to the region's dynamic economic landscape, which is especially evident in nations like China, India, and South Korea. The robust growth of conducting polymers in the region is attributed to the expanding electronics manufacturing sector and the growing adoption of innovative technologies. Moreover, the need for conducting polymers is further fueled by the focus on renewable energy sources and developments in energy storage technologies, particularly solar cells and batteries.
Key players in the market
Some of the key players in Conducting Polymers market include DSM, Solvay SA, Avient Corporation, Celanese Corporation, 3M Company, Parker Hannifin Corp, Heraeus Holding GMBH, KEMET Corporation, SABIC, Henkel AG & Co. KGaA, Agfa-Gevaert Group, The Lubrizol Corporation and Integral Technologies, Inc.
In January 2024, A Joint venture between Cargill and dsm-firmenich, Avansya, has confirmed that its EverSweet stevia-based sweetener has gained a positive response from the European Food Safety Authority (EFSA), and UK Food Standards Agency (FSA), writes Neill Barston. Confectionery Production first discussed the potential for the new series with the company's teams at Sweets & Snacks Expo last year in the US, and the company has continued to drive innovation within the segment.
In May 2023, Parker Aerospace, a business segment of Parker Hannifin Corporation, the global leader in motion and control technologies, today announces an agreement with the U.S. Army for a five-year contract providing overhaul and upgrade to the UH-60 Blackhawk hydraulic pump and flight control actuation. The agreement includes provisions for firm-fixed price (FFP) indefinite delivery indefinite quantity (IDIQ) for the Army's aircraft.
In May 2023, 3M today announced it has entered into agreements to sell certain assets associated with its dental local anesthetic portfolio, based in Seefeld, Germany, to Pierrel S.p.A. ("Pierrel"), a global provider of services for the pharmaceutical industry, for a purchase price of $70 million, subject to closing and other adjustments.