![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1454061
¼¼°èÀÇ Á÷Á¢°ø±âÆ÷Áý ½ÃÀå ¿¹Ãø(-2030³â) : ºÎ¹®º° ºÐ¼®Direct Air Capture Market Forecasts to 2030 - Global Analysis By Source (Electricity and Heat), Technology, Application, End User and By Geography |
¼¼°èÀÇ Á÷Á¢°ø±âÆ÷Áý(DAC, Direct Air Capture) ½ÃÀåÀº 2023³â¿¡ 6,200¸¸ ´Þ·¯¸¦ Â÷ÁöÇßÀ¸¸ç, 2030³â¿¡´Â 17¾ï 3,090¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ¿¹Ãø ±â°£ Áß CAGRÀº 60.9%·Î ÃßÀÌÇÏ¸ç ¼ºÀå ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
Á÷Á¢°ø±âÆ÷Áý(DAC)Àº ÁÖº¯ °ø±â¿¡¼ ÀÌ»êÈź¼Ò(CO2)¸¦ Á÷Á¢ Á¦°ÅÇÏ´Â ±â¼úÀÔ´Ï´Ù. ÀϹÝÀûÀ¸·Î ÈÇÐ °øÁ¤°ú ±â°èÀû ½Ã½ºÅÛÀÇ Á¶ÇÕÀ¸·Î ´ë±â Áß¿¡¼ ÀÌ»êÈź¼Ò ºÐÀÚ¸¦ ¹°¸®ÀûÀ¸·Î Æ÷ÂøÇÏ¿© ±âÈÄ º¯È¸¦ ¿ÏÈÇÏ´Â ¹æ¹ýÀÔ´Ï´Ù. ÀÌ ½Ã½ºÅÛÀº °ø±â¸¦ Èí¼öÇϰí CO2 ºÐÀÚ¸¦ ¼±ÅÃÀûÀ¸·Î Æ÷ÂøÇÏ´Â ÈíÂøÁ¦¿Í ÈÇÐ ¿ë¾×À» Åë°ú½ÃÄÑ ÀÛµ¿ÇÕ´Ï´Ù.
±¹Á¦¿¡³ÊÁö±â±¸(IEA)¿¡ µû¸£¸é CO2 Àú·ù Àü¿ë ÆÄÀÌÇÁ¶óÀÎ ÇÁ·ÎÁ§Æ®´Â 2030³â±îÁö ¿¬°£ 4¾ï 2,000¸¸ Åæ(Mt)À» ÃʰúÇÒ °¡´É¼ºÀÌ ÀÖ´Ù°í ÇÕ´Ï´Ù. ±×·¯³ª ÀÌ·¯ÇÑ Áøº¸¿¡µµ ºÒ±¸Çϰí 2030³â±îÁö ³Ý Á¦·Î ¹æÃâ(NZE) ½Ã³ª¸®¿À¿¡ Á¦½ÃµÈ ¿¬°£ ¾à 12¾ï ÅæÀÇ CO2 ÀúÀå Çʿ伺À» ÃæÁ·½ÃŰ±â¿¡´Â ¾ÆÁ÷ ºÒÃæºÐÇÕ´Ï´Ù.
ź¼Ò »ó¼â ¼ö¿ä Áõ°¡
½ÃÀå¿¡¼´Â ź¼Ò »ó¼â ¼ö¿ä°¡ ±ÞÁõÇϰí ÀÖ½À´Ï´Ù. ±â¾÷°ú °³ÀÎÀÌ Åº¼Ò ¹ßÀÚ±¹À» ÁÙÀÌ·Á°í ÇÏ´Â µ¿¾È, ÀÌ ±â¼úÀº ´ë±â¿¡¼ CO2¸¦ Á÷Á¢ Á¦°ÅÇÔÀ¸·Î½á À¯¸ÁÇÑ ÇØ°áÃ¥À» Á¦°øÇÕ´Ï´Ù. ź¼Ò »ó¼â¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡´Â ȯ°æ Ã¥ÀÓ°ú Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ Çå½Å Áõ°¡¸¦ ¹Ý¿µÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ±â¾÷µéÀº ÀÌ·¯ÇÑ ¼ö¿ä¿¡ ºÎÀÀÇϰí, Çõ½ÅÀ» ÃßÁøÇϰí, ±âÈÄ º¯È ´ëÃ¥¿¡ ´ëÇÑ ¼¼°èÀûÀÎ ³ë·Â¿¡ ±â¿©ÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» Çϴ ż¼¸¦ °®Ãß°í ÀÖ½À´Ï´Ù.
Á¦ÇÑµÈ ÀúÀå ´É·Â
DAC ±â¼úÀº ´ë±â Áß¿¡¼ ÀÌ»êÈź¼Ò¸¦ Á÷Á¢ Á¦°ÅÇÏ´Â µ¥ µµ¿òÀÌ µÇÁö¸¸, ȸ¼öµÈ ÀÌ»êÈź¼ÒÀÇ ÀúÀåÀº º´¸ñ Çö»óÀÌ µÇ¾ú½À´Ï´Ù. Á¦ÇÑµÈ ¿ë·®Àº È®À强°ú ºñ¿ë È¿À²¼ºÀ» ¹æÇØÇÕ´Ï´Ù. ÀûÀýÇÑ ÀúÀå ¼Ö·ç¼ÇÀÌ ¾øÀ¸¸é ±âÈÄ º¯È¸¦ ¿ÏȽÃų °¡´É¼ºÀÌ Á¦Çѵ˴ϴÙ. ÀÌ Á¦ÇÑÀ» ÇØ°áÇϱâ À§Çؼ´Â È¿À²ÀûÀ̰í Áö¼Ó °¡´ÉÇÑ ¹æ½ÄÀ¸·Î ȸ¼öµÇ´Â ÀÌ»êÈź¼ÒÀÇ ¾çÀ» Áõ°¡½ÃŰ´Â Çõ½ÅÀûÀÎ ÀúÀå ¹æ¹ý¿¡ ´ëÇÑ ÅõÀÚ°¡ ÇÊ¿äÇÕ´Ï´Ù. À̰ÍÀÌ ½ÃÀå ¼ºÀåÀ» ¾ïÁ¦ÇÏ´Â ¿äÀÎÀÔ´Ï´Ù.
½ÅÀç»ý¿¡³ÊÁö È®´ë
½ÅÀç»ý¿¡³ÊÁöÀÇ È®´ë°¡ ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇϰí ÀÖ½À´Ï´Ù. Áö¼Ó°¡´É¼º°ú ÀÌ»êÈź¼Ò ¹èÃâ·®ÀÇ »è°¨ÀÌ Á߽õǰí, ž籤 ¹ßÀü°ú dz·Â ¹ßÀü°ú °°Àº Àç»ý °¡´É ¿¡³ÊÁö°¡ DAC ½Ã¼³¿¡ ÅëÇյǾî Á¶¾÷¿¡ Àü·ÂÀ» °ø±ÞÇÏ´Â °æ¿ì°¡ ´Ã°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¯È´Â ȯ°æ ¹®Á¦¸¦ ÇØ°áÇÒ »Ó¸¸ ¾Æ´Ï¶ó ȼ® ¿¬·á¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ÁÙÀÓÀ¸·Î½á ±â¼úÀÇ °æÁ¦Àû ½ÇÇà °¡´É¼ºÀ» ³ôÀÔ´Ï´Ù. ½ÅÀç»ý¿¡³ÊÁö¸¦ ÀÌ¿ëÇÔÀ¸·Î½á, ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº º¸´Ù È¿À²ÀûÀ¸·Î, º¸´Ù ³·Àº ź¼Ò ½ÇÀûÀ¸·Î ¿îÀüÇÒ ¼ö ÀÖ¾î, ¼¼°èÀÇ ±âÈÄ º¯È ¸ñÇ¥¿¡ µû¶ó ź¼Òȸ¼ö±â¼ú Áøº¸¿¡ °øÇå ¼ö ÀÖ½À´Ï´Ù.
¸íÈ®ÇÑ ±ÔÁ¦ ºÎÁ·
È®°íÇÑ ÁöħÀÌ ¾øÀ¸¸é ±â¾÷Àº ¹ýÀû ¿ä°Ç¿¡ ´ëÇÑ ´ëÀÀÀ» °ÆÁ¤ÇÒ °ÍÀ̸ç, ÀÌ Áß¿äÇÑ ºÐ¾ß¿¡ ´ëÇÑ ÅõÀÚ¿Í ±â¼ú Çõ½ÅÀ» ¹æÇØÇÕ´Ï´Ù. Ç¥ÁØÈµÈ ±ÔÁ¦°¡ ¾ø´Â °ÍÀº ÀáÀçÀûÀÎ ÅõÀÚÀÚ¿Í ÀÌÇØ°ü°èÀÚÀÇ ºÒÈ®½Ç¼ºÀ» ³ô¿© ½ÃÀå ¼ºÀå °¡´É¼ºÀ» ÀúÇØÇÕ´Ï´Ù. ¶ÇÇÑ, ¸ðÈ£ÇÑ ±ÔÁ¦´Â ¼·Î ´Ù¸¥ »ç¹ý °üÇÒ ±¸¿ª¿¡ °ÉÃÄ Àϰü¼º ¾ø´Â °üÇàÀ» ÃÊ·¡ÇÏ¿© ±âÈÄ º¯È¸¦ ÅëÀÏÀûÀ¸·Î ´Ù·ç´Â ³ë·ÂÀ» º¹ÀâÇÏ°Ô ÇÕ´Ï´Ù. ¸íÈ®ÇÑ ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©ÀÌ ¾ø±â ¶§¹®¿¡ ½ÃÀåÀº Å« ¹®Á¦¿¡ Á÷¸éÇϰí ÀÖ½À´Ï´Ù.
COVID-19ÀÇ ÆÒµ¥¹ÍÀº ½ÃÀå¿¡ Å« ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. °æ±â ħü¿Í °ø±Þ¸ÁÀÇ È¥¶õÀ¸·Î ÀÎÇØ DAC ±â¼ú¿¡ ´ëÇÑ ÅõÀÚ´Â ¾î·Á¿ò¿¡ Á÷¸éÇß½À´Ï´Ù. ¸¹Àº ÇÁ·ÎÁ§Æ®°¡ ÀçÁ¤ÀûÀÎ ºÒ¾È°ú ¹°·ù ¹®Á¦·Î ÀÎÇØ Áö¿¬°ú Áß´ÜÀ» °¿äÇß½À´Ï´Ù. ±×·¯³ª ȯ°æ¹®Á¦¿¡ ´ëÇÑ ¿ì·Á°¡ »Ñ¸®³»¸®°í ÀÖ´Â °¡¿îµ¥, °¢±¹ Á¤ºÎ°¡ ±âÈÄ º¯È ¿ÏÈ¿¡ ´Ù½Ã ÁÖ·ÂÇÔÀ¸·Î½á, ÆÒµ¥¹Í ÀÌÈÄ DAC ½ÃÀåÀÇ È¸º¹°ú ¼ºÀåÀÌ ÃËÁøµÉ ¼ö ÀÖ½À´Ï´Ù. ÁÂÀý¿¡µµ ºÒ±¸Çϰí ź¼Ò ¹èÃâ°ú ½Î¿ì´Â ±ä±Þ¼ºÀº Áö¼Ó °¡´ÉÇÑ ±âÈÄ ¼Ö·ç¼ÇÀ» À§ÇÑ DAC ±â¼ú¿¡ ´ëÇÑ Çõ½Å°ú ÅõÀÚ¿¡ ¹ÚÂ÷¸¦ °¡ÇÒ ¼ö ÀÖ½À´Ï´Ù.
¿¹Ãø±â°£ µ¿¾È Àü±âÈÇÐ-DAC(E-DAC) ºÐ¾ß°¡ ÃÖ´ë°¡ µÉ Àü¸Á
¿¹Ãø±â°£ µ¿¾È Àü±âÈÇÐ-DAC(E-DAC) ºÐ¾ß°¡ ÃÖ´ë°¡ µÉ Àü¸ÁÀÔ´Ï´Ù. E-DAC ½Ã½ºÅÛÀº Àü±âÈÇÐ °øÁ¤À» ÀÌ¿ëÇÏ¿© ÁÖº¯ °ø±â·ÎºÎÅÍ CO2¸¦ Á÷Á¢ ȸ¼öÇÏ¿© ¿Â½Ç°¡½º ¹èÃâ ¿ÏÈ¿¡ ±â¿©ÇÕ´Ï´Ù. È®À强ÀÌ ¶Ù¾î³ª°í ¿¡³ÊÁö ¼Òºñ°¡ Àû°í ºñ¿ë È¿°ú°¡ ¿ì¼öÇϱ⠶§¹®¿¡ ±âÈÄ º¯È¿Í ½Î¿ò¿¡ Å« ¿µÇâ·ÂÀ» °¡Áö°í ÀÖ½À´Ï´Ù. ź¼Ò Á¦°Å ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó E-DACÀº ź¼Ò Æ÷Âø ±â¼úÀÇ ¹Ì·¡¸¦ Çü¼ºÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ÇÒ °ÍÀÔ´Ï´Ù.
¿¹Ãø±â°£ µ¿¾È ¿î¼Û ºÐ¾ß°¡ °¡Àå ³ôÀº CAGRÀÌ ¿¹»ó
¿¹Ãø ±â°£ µ¿¾È CAGRÀÌ °¡Àå ³ôÀ» °ÍÀ¸·Î ¿¹»óµÇ´Â °ÍÀº ¿î¼Û ºÐ¾ßÀÔ´Ï´Ù. ÆÄÀÌÇÁ¶óÀΰú ÅÊÅ©·Î¸®¸¦ Æ÷ÇÔÇÑ È¿À²ÀûÀÎ ¿î¼Û¸ÁÀº ºñ¿ë È¿À²ÀûÀÎ ½Ã±âÀûÀýÇÑ ¹è¼Û¿¡ ÇʼöÀûÀÔ´Ï´Ù. ¶ÇÇÑ ÃÖÀûÈµÈ ¶ó¿ìÆÃ ¾Ë°í¸®Áò ¹× Ư¼ö ÀúÀå ¿ë±â¿Í °°Àº ¿î¼Û ±â¼úÀÇ ¹ßÀüÀº DAC ½Ã½ºÅÛÀÇ Àü¹ÝÀûÀÎ ½ÇÇà °¡´É¼º°ú È®À强À» ³ôÀÌ´Â µ¥ ¸Å¿ì Áß¿äÇÕ´Ï´Ù. È¿°úÀûÀÎ ¿î¼Û ¼Ö·ç¼ÇÀº º¸´Ù ±¤¹üÀ§ÇÑ Åº¼Ò °ü¸® Àü·«¿¡ DACÀÇ ¿øÈ°ÇÑ ÅëÇÕÀ» º¸ÀåÇÕ´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì°¡ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À̴ ȯ°æ ¹®Á¦¿¡ ´ëÇÑ °ü½É Áõ°¡¿Í ÀÌ»êÈź¼Ò ¹èÃâ·® °¨¼Ò¸¦ À§ÇÑ ±ÔÁ¦ ¾Ð·Â ¶§¹®ÀÔ´Ï´Ù. ´ë±â·ÎºÎÅÍ Á÷Á¢ CO2¸¦ ȸ¼öÇÏ´Â DAC ±â¼úÀº ź¼Ò Á¦°Å¸¦ À§ÇÑ ½ÇÇà °¡´ÉÇÑ ¼Ö·ç¼ÇÀ¸·Î ÁöÁö¸¦ ¸ðÀ¸°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ Á¤ºÎÀÇ Àå·ÁÃ¥°ú »ê¾÷°è¿Í Á¦ÈÞ°¡ ½ÃÀå È®´ë¸¦ ÃËÁøÇÏ°í ´Ù¾çÇÑ ºÐ¾ß¿¡¼ DAC Àü°³¿¡ À¯¸ÁÇÑ ±âȸ¸¦ ³ªÅ¸³»°í ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ CAGRÀÌ °¡Àå ³ôÀ» °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ ±â¼úÀÇ Ã¤Åðú ¼ºÀåÀº Á¤ºÎÀÇ Á¤Ã¥°ú ±ÔÁ¦¿¡ Å©°Ô ¿µÇâÀ» ¹ÞÀ» ¼ö ÀÖ½À´Ï´Ù. ÀÌ Áö¿ª¿¡¼´Â Á¤ºÎ°¡ ±â¼ú °³¹ß°ú °³¹ßÀ» ÃËÁøÇϱâ À§ÇØ Àμ¾Æ¼ºê, º¸Á¶±Ý ¹× ±ÔÁ¦¸¦ µµÀÔ ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¿¬±¸ ±â°ü, ´ëÇÐ ¹× ºñ°ø°³ ȸ»ç °£ÀÇ Çù¾÷ÀÌ ±â¼ú ¹ßÀü¿¡ ±â¿©ÇÒ ¼ö ÀÖ½À´Ï´Ù.
According to Stratistics MRC, the Global Direct Air Capture Market is accounted for $62.0 million in 2023 and is expected to reach $1,730.9 million by 2030 growing at a CAGR of 60.9% uring the forecast period. Direct Air Capture (DAC) is a technology designed to remove carbon dioxide (CO2) directly from the ambient air. It's a method for mitigating climate change by physically capturing CO2 molecules from the atmosphere, typically through a combination of chemical processes and mechanical systems. These systems work by pulling in air and passing it through a sorbent material or chemical solution that selectively captures CO2 molecules.
According to the International Energy Agency (IEA), the pipeline projects dedicated to CO2 storage capacity has the potential to surpass 420 million metric tons (Mt) annually by 2030. Nevertheless, despite these strides, it remains insufficient to meet the projected storage needs of approximately 1,200 million metric tons (Mt) of CO2 per year by 2030, as delineated in the Net Zero Emissions (NZE) Scenario.
Increasing demand for carbon offsets
The market is experiencing a surge in demand for carbon offsets. As businesses and individuals seek to mitigate their carbon footprints, this technology offers a promising solution by directly removing CO2 from the atmosphere. This increased demand for carbon offsets reflects a growing commitment to environmental responsibility and sustainability. These companies are poised to play a crucial role in meeting these demands, driving innovation, and contributing to global efforts to combat climate change.
Limited storage capacity
DAC technology is instrumental in removing carbon dioxide directly from the atmosphere, but the storage of captured CO2 is a bottleneck. Limited capacity hampers scalability and cost-effectiveness. Without adequate storage solutions, the potential to mitigate climate change is constrained. Addressing this limitation requires investment in innovative storage methods to accommodate the increasing volumes of captured carbon dioxide efficiently and sustainably. This is the factor restraining the growth of the market.
Expansion of renewable energy
The expansion of renewable energy sources has catalyzed growth within the market. With the growing emphasis on sustainability and reducing carbon emissions, renewable energy, such as solar and wind power, is increasingly integrated into DAC facilities to power their operations. This shift not only addresses environmental concerns but also enhances the economic viability of technology by reducing reliance on fossil fuels. By harnessing renewable energy, these systems can operate more efficiently and with lower carbon footprints, thereby contributing to the advancement of carbon capture technologies while aligning with global climate goals.
Lack of clear regulatory
Without robust guidelines, companies may struggle to navigate legal requirements, hindering investment and innovation in this crucial field. The absence of standardized regulations also heightens uncertainty for potential investors and stakeholders, impeding the market's growth potential. Moreover, ambiguous regulations can lead to inconsistent practices across different jurisdictions, complicating efforts to address climate change uniformly. The market faces significant challenges due to the lack of clear regulatory frameworks.
The COVID-19 pandemic has significantly impacted the market. With economic downturns and disruptions in supply chains, investment in DAC technology faced hurdles. Many projects experienced delays or cancellations due to financial uncertainties and logistical challenges. However, as environmental concerns persist, governments' renewed focus on climate change mitigation could drive recovery and growth in the DAC market post-pandemic. Despite setbacks, the urgency to combat carbon emissions may spur innovation and investment in DAC technology for sustainable climate solutions.
The electrochemical-DAC (E-DAC) segment is expected to be the largest during the forecast period
The electrochemical-DAC (E-DAC) segment is expected to be the largest during the forecast period. E-DAC systems utilize electrochemical processes to capture CO2 directly from ambient air, contributing to the mitigation of greenhouse gas emissions. With its potential for scalability, low energy consumption, and cost-effectiveness, it holds significant traction in the quest for combating climate change. As the demand for carbon removal solutions intensifies, E-DAC stands poised to play a pivotal role in shaping the future of carbon capture technologies.
The transportation segment is expected to have the highest CAGR during the forecast period
The transportation segment is expected to have the highest CAGR during the forecast period. Efficient transportation networks, including pipelines and tanker trucks, are essential for cost-effective and timely delivery. Additionally, advancements in transportation technologies, such as optimized routing algorithms and specialized storage vessels, are crucial for enhancing the overall viability and scalability of DAC systems. Effective transportation solutions ensure the seamless integration of DAC into broader carbon management strategies.
North America is projected to hold the largest market share during the forecast period driven by increasing environmental concerns and regulatory pressures to reduce carbon emissions. DAC technologies, designed to capture CO2 directly from the atmosphere, are gaining traction as a viable solution for carbon removal. Additionally, government incentives and partnerships with industries are fostering market expansion, signaling promising opportunities for DAC deployment across various sectors.
Asia Pacific is projected to hold the highest CAGR over the forecast period. The adoption and growth of the technology can be influenced significantly by government policies and regulations. In the region, governments may introduce incentives, subsidies, or regulations to promote the development and deployment of technology. Collaborations between research institutions, universities, and private companies may contribute to technological advancements.
Key players in the market
Some of the key players in Direct Air Capture market include Climeworks, Carbon Engineering, Global Thermostat, Infinitree, Skytree, Heirloom, Carbon Direct, Chevron Corporation, Solidia Technologies, IBM, Blue Planet, Energy Climate House, Microsoft, Arizona Clean Fuels Yuma and Shell.
In September 2023, Climeworks collaborated with Great Carbon valley, a pioneering Kenyan systems integrator and project development venture to explore the development of large-scale projects.
In November 2023, Heirloom Carbon Technologies signed an agreement with CarbonCure, a manufacturer of carbon removal or carbon utilization technologies to capture CO2 from the atmosphere and permanently embed it in concrete. Under this agreement CarbonCure permanently store CO2 captured by Heirloom's DAC facilities in nearby concrete plants.