½ÃÀ庸°í¼­
»óǰÄÚµå
1476323

¼¼°èÀÇ ÀÚµ¿Â÷¿ë ÇÏÀÌÆÛ¹ÙÀÌÀú ½ÃÀå Àü¸Á(-2030³â) : ºÎǰº°, Â÷Á¾º°, Ä¿³ØÆ¼ºñƼº°, ±â¼úº°, ¿ëµµº°, ÃÖÁ¾ »ç¿ëÀÚº°, Áö¿ªº° ºÐ¼®

Automotive Hypervisors Market Forecasts to 2030 - Global Analysis By Component, Vehicle Type, Connectivity, Technology, Application, End User and By Geography

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Stratistics Market Research Consulting | ÆäÀÌÁö Á¤º¸: ¿µ¹® 200+ Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Stratistics MRC¿¡ µû¸£¸é, ÀÚµ¿Â÷¿ë ÇÏÀÌÆÛ¹ÙÀÌÀú ¼¼°è ½ÃÀåÀº 2023³â 3¾ï 6,516¸¸ ´Þ·¯·Î Æò°¡µÇ¾ú°í, ¿¹Ãø ±â°£ µ¿¾È 38.6%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)À» ³ªÅ¸³»°í, 2030³â¿¡´Â 35¾ï 8,779¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

ÀÚµ¿Â÷¿ë ÇÏÀÌÆÛ¹ÙÀÌÀú´Â ¾ÈÀü ¹× º¸¾È ¿ä±¸»çÇ×ÀÌ ¼­·Î ´Ù¸¥ ¿©·¯ ÀÚµ¿Â÷ ¿ëµµ¸¦ ´ÜÀÏ Çϵå¿þ¾î Ç÷§Æû¿¡¼­ ½ÇÇàÇÒ ¼ö ÀÖµµ·Ï ÇÏ´Â ¼ÒÇÁÆ®¿þ¾î ½Ã½ºÅÛÀÔ´Ï´Ù. ÇÏÀÌÆÛ¹ÙÀÌÀú´Â Çϵå¿þ¾î ¸®¼Ò½º¸¦ ºÐÇÒÇÏ°í ºÐ¸®µÈ ½ÇÇà ȯ°æÀ» Á¦°øÇÔÀ¸·Î½á ¿£Áø Á¦¾î ¹× Á¦µ¿ ½Ã½ºÅÛ°ú °°Àº Áß¿äÇÑ ±â´ÉÀÌ ÀÎÆ÷Å×ÀÎ¸ÕÆ® ½Ã½ºÅÛ°ú °°Àº Áß¿äÇÏÁö ¾ÊÀº ±â´É°ú µ¶¸³ÀûÀ¸·Î ÀÛµ¿ÇÒ ¼ö ÀÖµµ·Ï º¸ÀåÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ºÐ¸®´Â ¿ëµµ °£ÀÇ °£¼·À» ¹æÁöÇÏ°í »çÀ̹ö °ø°ÝÀÇ À§ÇèÀ» ÃÖ¼ÒÈ­ÇÏ¿© Â÷·®ÀÇ ¾ÈÀü°ú º¸¾ÈÀ» °­È­ÇÕ´Ï´Ù.

Statista¿¡ µû¸£¸é, 2021³â ÇöÀç 8,400¸¸ ´ëÀÇ Ä¿³ØÆ¼µåÄ«°¡ ¿îÇàµÇ°í ÀÖ½À´Ï´Ù.

Â÷·®¿ë ÀüÀÚÁ¦Ç°ÀÇ º¹À⼺ Áõ°¡

ADAS ¹× ÀÚÀ² ÁÖÇà°ú °°Àº ±â´ÉÀÇ ¹ßÀüÀ¸·Î ÀÚµ¿Â÷¿ë ÀÏ·ºÆ®·Î´Ð½ºÀÇ º¹À⼺ÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ÀÚµ¿Â÷¿ë ÇÏÀÌÆÛ¹ÙÀÌÀú¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÇÏÀÌÆÛ¹ÙÀÌÀú´Â ¿©·¯ ¿ëµµÀÌ µ¿ÀÏÇÑ Çϵå¿þ¾î¿¡¼­ ºÐ¸®µÈ »óÅ·Π½ÇÇàµÉ ¼ö ÀÖµµ·Ï ÇÔÀ¸·Î½á º¹ÀâÇÑ ÀüÀÚ ½Ã½ºÅÛÀ» °ü¸®ÇÏ´Â µ¥ Áß¿äÇÑ ¼Ö·ç¼ÇÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù. ÀÚµ¿Â÷°¡ °íµµ·Î »óÈ£ ¿¬°áµÈ ¼ÒÇÁÆ®¿þ¾î Á᫐ Ç÷§ÆûÀ¸·Î ÁøÈ­ÇÔ¿¡ µû¶ó, ÀÚµ¿Â÷¿ë ÇÏÀÌÆÛ¹ÙÀÌÀú´Â °³¹ßÀ» °£¼ÒÈ­ÇÏ°í º¸¾ÈÀ» °­È­ÇÏ¸ç ¸®¼Ò½º Ȱ¿ëÀ» ÃÖÀûÈ­ÇÒ ¼ö ÀÖ´Â °­·ÂÇÑ Á¢±Ù ¹æ½ÄÀ» Á¦°øÇÔÀ¸·Î½á ÀÚµ¿Â÷ »ê¾÷¿¡¼­ äÅÃÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

½Ã½ºÅÛÀÇ µð¹ö±ë ¹× À¯Áöº¸¼ö º¹À⼺

Â÷·®¿ë ÇÏÀÌÆÛ¹ÙÀÌÀúÀÇ µð¹ö±ë ¹× À¯Áöº¸¼ö´Â °øÀ¯ Çϵå¿þ¾î¿¡¼­ ½ÇÇàµÇ´Â ¿©·¯ °¡»óÈ­ ȯ°æÀ» Æ÷ÇÔÇÏ´Â °èÃþÈ­µÈ ¾ÆÅ°ÅØÃ³·Î ÀÎÇØ º¹ÀâÇØÁý´Ï´Ù. ¸®¼Ò½º Ãæµ¹, ŸÀÌ¹Ö À§¹Ý, Åë½Å ¿À·ù¿Í °°Àº ¹®Á¦¸¦ ½Äº°ÇÏ°í ¹®Á¦¸¦ ÇØ°áÇϱâ À§Çؼ­´Â Àü¹®ÀûÀÎ ±â¼ú°ú µµ±¸°¡ ÇÊ¿äÇÕ´Ï´Ù. ÀÌ·¯ÇÑ º¹À⼺Àº °³¹ß ½Ã°£°ú ºñ¿ëÀ» Áõ°¡½Ã۰í, ÀÚµ¿Â÷ Á¦Á¶¾÷üÀÇ Ã¤ÅÃÀ» ¹æÇØÇϸç, ¿£Áö´Ï¾îÀÇ ´ë±Ô¸ð ±³À°ÀÌ ÇÊ¿äÇϱ⠶§¹®¿¡ ½ÃÀå ÁøÃâ¿¡ °É¸²µ¹ÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù.

Àü±âÂ÷ ¹× ÀÚÀ²ÁÖÇàÂ÷ µµÀÔ È®´ë

ÀÚµ¿Â÷¿ë ÇÏÀÌÆÛ¹ÙÀÌÀú´Â Àü±âÂ÷¿Í ÀÚÀ²ÁÖÇàÂ÷¿¡ ÇÊ¿äÇÑ º¹ÀâÇÑ ¼ÒÇÁÆ®¿þ¾î ¾ÆÅ°ÅØÃ³¸¦ °ü¸®ÇÕ´Ï´Ù. ÇÏÀÌÆÛ¹ÙÀÌÀú´Â ¾ÈÀü¼º°ú ½Å·Ú¼ºÀ» À¯ÁöÇϸ鼭 ¹èÅ͸® °ü¸®, Àü·Â ºÐ¹è, ¼¾¼­ À¶ÇÕ, ÀÇ»ç°áÁ¤ ¾Ë°í¸®Áò µîÀÇ ±â´ÉÀ» È¿À²ÀûÀ¸·Î ¿ÀÄɽºÆ®·¹À̼ÇÇÒ ¼ö ÀÖµµ·Ï Áö¿øÇÕ´Ï´Ù. ÀÚµ¿Â÷¿ë ÇÏÀÌÆÛ¹ÙÀÌÀú´Â ¿©·¯ ÀüÀÚ Á¦¾î ÀåÄ¡¸¦ ´õ ÀûÀº ¼öÀÇ Çϵå¿þ¾î ±¸¼º ¿ä¼Ò¿¡ ÅëÇÕÇÔÀ¸·Î½á ºñ¿ëÀ» Àý°¨Çϰí À¯¿¬¼ºÀ» ³ôÀÌ¸ç ´Ù¾çÇÑ ½Ã½ºÅÛ ÅëÇÕÀ» Áö¿øÇÕ´Ï´Ù.

º¥´õÀÇ ¶ôÀÎ(Lock-in)

ÀÚµ¿Â÷¿ë ÇÏÀÌÆÛ¹ÙÀÌÀúÀÇ °æ¿ì, ÀÚµ¿Â÷ Á¦Á¶¾÷ü°¡ ¼ÒÇÁÆ®¿þ¾î ¼Ö·ç¼ÇÀ» ƯÁ¤ ÇÏÀÌÆÛ¹ÙÀÌÀú º¥´õ¿¡ Å©°Ô ÀÇÁ¸ÇÏ°Ô µÇ¸é º¥´õ Á¾¼Ó¼ºÀÌ ¹ß»ýÇÕ´Ï´Ù. ÀÌ·¯ÇÑ Á¾¼Ó¼ºÀº ȣȯ¼º ¹®Á¦¿Í ÅëÇÕÀÇ º¹À⼺À¸·Î ÀÎÇØ ´Ù¸¥ º¥´õ·Î ÀüȯÇÏ±â ¾î·Æ°Ô ¸¸µé¾î À¯¿¬¼ºÀ» Á¦ÇÑÇÕ´Ï´Ù. °á°úÀûÀ¸·Î ÀÚµ¿Â÷ Á¦Á¶¾÷ü´Â ÁøÈ­ÇÏ´Â ±â¼ú Ç¥ÁØ¿¡ ÀûÀÀÇÏ´Â µ¥ ¾î·Á¿òÀ» °ÞÀ» ¼ö ÀÖ½À´Ï´Ù. ÀÌ´Â °æÀïÀ» Á¦ÇÑÇϰí, ±â¼ú ¹ßÀüÀ» ÀúÇØÇϸç, ÀÚµ¿Â÷ OEMÀÇ ºñ¿ë »ó½ÂÀ¸·Î À̾îÁ® ½ÃÀå ¼ºÀåÀ» ÀúÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.

COVID-19ÀÇ ¿µÇâ

Äڷγª19´Â ÀÚµ¿Â÷¿ë ÇÏÀÌÆÛ¹ÙÀÌÀú ½ÃÀå¿¡ Å« ¿µÇâÀ» ¹ÌÃÄ °ø±Þ¸Á È¥¶õ, »ý»ê Áß´Ü, ¼¼°è ÀÚµ¿Â÷ ÆÇ¸Å °¨¼Ò¸¦ ÃÊ·¡Çß½À´Ï´Ù. ÀÚµ¿Â÷ Á¦Á¶¾÷üµéÀº »õ·Î¿î ±â¼ú µµÀÔ¿¡ ¾î·Á¿òÀ» °ÞÀ¸¸é¼­ ÇÏÀÌÆÛ¹ÙÀÌÀú ¼Ö·ç¼Ç äÅÃÀÌ Áö¿¬µÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÀÚµ¿Â÷¿¡ ´ëÇÑ ¼ÒºñÀÚ ¼ö¿ä °¨¼Ò·Î ÀÎÇØ ÀÚµ¿Â÷ ¼ÒÇÁÆ®¿þ¾î ¹× ÀüÀÚ Àåºñ¿¡ ´ëÇÑ ÅõÀÚ°¡ °¨¼ÒÇß½À´Ï´Ù. ÀÌ·¯ÇÑ µµÀü¿¡µµ ºÒ±¸Çϰí, ÆÒµ¥¹ÍÀº Àü±âÂ÷ ¹× ÀÚÀ²ÁÖÇàÂ÷·ÎÀÇ ÀüȯÀ» °¡¼ÓÈ­Çϰí, ÁøÈ­ÇÏ´Â »ê¾÷ ¿ªÇп¡ µû¶ó º¹ÀâÇØÁö´Â ÀÚµ¿Â÷ ¼ÒÇÁÆ®¿þ¾î ¾ÆÅ°ÅØÃ³¸¦ °ü¸®ÇÏ´Â ÇÏÀÌÆÛ¹ÙÀÌÀú ¼Ö·ç¼Ç¿¡ ´ëÇÑ Àå±âÀûÀÎ ¼ö¿ä¸¦ ÃËÁøÇß½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È À¯Çü 1 ÇÏÀÌÆÛ¹ÙÀÌÀú ºÎ¹®ÀÌ °¡Àå Å« ºñÁßÀ» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

À¯Çü 1 ÇÏÀÌÆÛ¹ÙÀÌÀú ºÎ¹®Àº À¯¸®ÇÑ ¼ºÀå¼¼¸¦ º¸ÀÏ °ÍÀ¸·Î ÃßÁ¤µË´Ï´Ù. À¯Çü 1 ÀÚµ¿Â÷¿ë ÇÏÀÌÆÛ¹ÙÀÌÀú´Â ´ÜÀÏ Çϵå¿þ¾î Ç÷§Æû¿¡¼­ ¿©·¯ ¿ëµµ°ú ¿î¿µÃ¼Á¦¸¦ °ü¸®Çϱâ À§ÇØ ÀÚµ¿Â÷¸¦ À§ÇØ ¼³°èµÈ ¼ÒÇÁÆ®¿þ¾î Ç÷§ÆûÀÔ´Ï´Ù. À¯Çü1 ÇÏÀÌÆÛ¹ÙÀÌÀú´Â ÀÚµ¿Â÷ Çϵå¿þ¾î¿¡¼­ Á÷Á¢ ÀÛµ¿ÇÏ¸ç ´õ ³ªÀº ¼º´É°ú º¸¾ÈÀ» Á¦°øÇÕ´Ï´Ù. ÀÎÆ÷Å×ÀÎ¸ÕÆ®, ¿îÀü º¸Á¶, Â÷·® Á¦¾î ½Ã½ºÅÛ µî ´Ù¾çÇÑ ÀÚµ¿Â÷ ±â´ÉÀ» ´ÜÀÏ Çϵå¿þ¾î Ç÷§Æû¿¡ ÅëÇÕÇÏ¿© ÀÚµ¿Â÷ ¼ÒÇÁÆ®¿þ¾î °³¹ßÀÇ È¿À²¼º°ú À¯¿¬¼ºÀ» ³ôÀÌ´Â µ¿½Ã¿¡ ¿î¿µ ½Ã ¾ÈÀü¼º°ú ½Å·Ú¼ºÀ» º¸ÀåÇÕ´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È ÀÎÆ÷Å×ÀÎ¸ÕÆ® ½Ã½ºÅÛ ºÐ¾ß°¡ °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

ÀÎÆ÷Å×ÀÎ¸ÕÆ® ½Ã½ºÅÛ ºÐ¾ß´Â ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGR ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÎÆ÷Å×ÀÎ¸ÕÆ® ½Ã½ºÅÛÀÇ Â÷·®¿ë ÇÏÀÌÆÛ¹ÙÀÌÀú´Â ¼­·Î ´Ù¸¥ ¼ÒÇÁÆ®¿þ¾î ±¸¼º ¿ä¼Ò °£ÀÇ ºÐ¸®¸¦ Á¦°øÇÏ¿© Â÷·® Á¦¾î ½Ã½ºÅÛ°ú °°Àº Áß¿äÇÑ ±â´ÉÀÌ ´ú Áß¿äÇÑ ¿ëµµ°ú ºÐ¸®µÈ »óÅ·ΠÀ¯ÁöµÉ ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù. ¸®¼Ò½º¸¦ ºÐÇÒÇÏ°í ¼ÒÇÁÆ®¿þ¾î ÀνºÅϽº °£ÀÇ Åë½ÅÀ» °ü¸®ÇÔÀ¸·Î½á Â÷·®¿ë ÇÏÀÌÆÛ¹ÙÀÌÀú´Â ÃֽŠÀÚµ¿Â÷ÀÇ ¾ÈÀü, º¸¾È ¹× ¼º´ÉÀ» Çâ»ó½ÃÄÑ ¿øÈ°Çϰí È¿À²ÀûÀÎ »ç¿ëÀÚ °æÇèÀ» Á¦°øÇÏ´Â µ¿½Ã¿¡ ÀÚµ¿Â÷¿¡ ÇʼöÀûÀÎ ±â´ÉÀÇ ¹«°á¼ºÀ» À¯ÁöÇÒ ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù.

°¡Àå Å« Á¡À¯À²À» Â÷ÁöÇÏ´Â Áö¿ª

¾Æ½Ã¾ÆÅÂÆò¾çÀº ƯÈ÷ Áß±¹, ÀϺ», Çѱ¹, Àεµ µîÀÇ ±¹°¡¿¡¼­ ÀÚµ¿Â÷ »ê¾÷ÀÇ ±Þ¼ÓÇÑ ¼ºÀåÀ¸·Î ÀÎÇØ ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Àü±âÂ÷¿Í ÀÚÀ²ÁÖÇàÂ÷¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿Í ÀÚµ¿Â÷ ÀüÀÚ°øÇÐÀÇ ¹ßÀüÀº ÇÏÀÌÆÛ¹ÙÀÌÀú ±â¼úÀÇ Ã¤ÅÃÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ½º¸¶Æ®Ä« ¹× Ä¿³ØÆ¼µåÄ« °³¹ßÀ» ÃËÁøÇϱâ À§ÇÑ Á¤ºÎÀÇ Àû±ØÀûÀÎ ³ë·ÂÀÌ ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇϰí ÀÖ½À´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª :

ºÏ¹Ì´Â ÀÚµ¿Â÷ »ê¾÷ÀÌ ¹ß´ÞÇÏ°í ±â¼ú ¹ßÀü°ú ÀÚµ¿Â÷ ¾ÈÀü ¹× Ä¿³ØÆ¼ºñƼ¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼­ ADAS(÷´Ü ¿îÀüÀÚ º¸Á¶ ½Ã½ºÅÛ) ¹× ÀÚÀ²ÁÖÇà ±â¼úÀÇ º¸±Þ°ú ÇÔ²² Àü±âÀÚµ¿Â÷ÀÇ Ã¤ÅÃÀÌ Áõ°¡Çϸ鼭 ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù, ÇÏÀÌÆÛ¹ÙÀÌÀú ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÁÖ¿ä ½ÃÀå ±â¾÷ÀÇ Á¸Àç¿Í °­·ÂÇÑ R&D Ȱµ¿Àº ½ÃÀå È®´ë¸¦ ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

¹«·á Ä¿½ºÅ͸¶ÀÌ¡ Á¦°ø:

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½°ú °°Àº ¹«·á ¸ÂÃãÈ­ ¿É¼Ç Áß Çϳª¸¦ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.
  • ±â¾÷ ÇÁ·ÎÆÄÀÏ
    • Ãß°¡ ½ÃÀå ±â¾÷ÀÇ Á¾ÇÕÀûÀÎ ÇÁ·ÎÆÄÀϸµ(ÃÖ´ë 3°³»ç±îÁö)
    • ÁÖ¿ä ±â¾÷ÀÇ SWOT ºÐ¼®(ÃÖ´ë 3°³»ç)
  • Áö¿ª ¼¼ºÐÈ­
    • °í°´ÀÇ °ü½É¿¡ µû¸¥ ÁÖ¿ä ±¹°¡º° ½ÃÀå ÃßÁ¤Ä¡, ¿¹Ãø, CAGR(ÁÖ: Ÿ´ç¼º È®Àο¡ µû¶ó ´Ù¸§)
  • °æÀï»ç º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¸®Àû ÀÔÁö, Àü·«Àû Á¦ÈÞ¸¦ ±â¹ÝÀ¸·Î ÇÑ ÁÖ¿ä ±â¾÷ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

  • °³¿ä
  • ÀÌÇØ°ü°èÀÚ
  • Á¶»ç ¹üÀ§
  • Á¶»ç ¹æ¹ý
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ °ËÁõ
    • Á¶»ç Á¢±Ù
  • Á¶»ç Á¤º¸¿ø
    • 1Â÷ Á¶»ç Á¤º¸¿ø
    • 2Â÷ Á¶»ç Á¤º¸¿ø
    • ÀüÁ¦Á¶°Ç

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

  • ¼ºÀå ÃËÁø¿äÀÎ
  • ¼ºÀå ¾ïÁ¦¿äÀÎ
  • ±âȸ
  • À§Çù
  • ±â¼ú ºÐ¼®
  • ¿ëµµ ºÐ¼®
  • ÃÖÁ¾»ç¿ëÀÚ ºÐ¼®
  • ½ÅÈï ½ÃÀå
  • COVID-19ÀÇ ¿µÇâ

Á¦4Àå PorterÀÇ Five Forces ºÐ¼®

  • °ø±Þ ±â¾÷ÀÇ ±³¼··Â
  • ¹ÙÀ̾îÀÇ ±³¼··Â
  • ´ëüǰÀÇ À§Çù
  • ½Å±Ô ÁøÃâ¾÷üÀÇ À§Çù
  • °æÀï ±â¾÷°£ °æÀï °ü°è

Á¦5Àå ¼¼°èÀÇ ÀÚµ¿Â÷¿ë ÇÏÀÌÆÛ¹ÙÀÌÀú ½ÃÀå : ÄÄÆ÷³ÍÆ®º°

  • Çϵå¿þ¾î
  • ¼ÒÇÁÆ®¿þ¾î
  • ¼­ºñ½º

Á¦6Àå ¼¼°èÀÇ ÀÚµ¿Â÷¿ë ÇÏÀÌÆÛ¹ÙÀÌÀú ½ÃÀå : Â÷Á¾º°

  • ½Â¿ëÂ÷
  • »ó¿ëÂ÷
  • Àü±âÀÚµ¿Â÷
  • ÇÏÀ̺긮µåÂ÷

Á¦7Àå ¼¼°èÀÇ ÀÚµ¿Â÷¿ë ÇÏÀÌÆÛ¹ÙÀÌÀú ½ÃÀå : Ä¿³ØÆ¼ºñƼº°

  • À¯¼±
    • ÀÌ´õ³Ý
    • ÄÁÆ®·Ñ·¯ ¿¡¾î¸®¾î ³×Æ®¿öÅ©(CAN)
    • Ç÷º½º ·¹ÀÌ
    • ·ÎÄà »óÈ£ Á¢¼Ó ³×Æ®¿öÅ©(LIN)
  • ¹«¼±
    • Wi-Fi
    • ºí·çÅõ½º(Bluetooth)
    • ¼¿·ê·¯

Á¦8Àå ¼¼°èÀÇ ÀÚµ¿Â÷¿ë ÇÏÀÌÆÛ¹ÙÀÌÀú ½ÃÀå : ±â¼úº°

  • ŸÀÔ 1 ÇÏÀÌÆÛ¹ÙÀÌÀú
  • ŸÀÔ 2 ÇÏÀÌÆÛ¹ÙÀÌÀú
  • Çϵå¿þ¾î Áö¿ø¿¡ ÀÇÇÑ °¡»óÈ­
  • º¸¾È Á߽à ÇÏÀÌÆÛ¹ÙÀÌÀú
  • ±âŸ ±â¼ú

Á¦9Àå ¼¼°èÀÇ ÀÚµ¿Â÷¿ë ÇÏÀÌÆÛ¹ÙÀÌÀú ½ÃÀå : ¿ëµµº°

  • ÀÎÆ÷Å×ÀÎ¸ÕÆ® ½Ã½ºÅÛ
  • ÷´Ü ¿îÀüÀÚ º¸Á¶ ½Ã½ºÅÛ(ADAS)
  • Çø´ °ü¸®
  • ÅÚ·¹¸Åƽ½º
  • »çÀ̹ö º¸¾È
  • ±âŸ ¿ëµµ

Á¦10Àå ¼¼°èÀÇ ÀÚµ¿Â÷¿ë ÇÏÀÌÆÛ¹ÙÀÌÀú ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚº°

  • OEM
  • ¾ÖÇÁÅ͸¶ÄÏ

Á¦11Àå ¼¼°èÀÇ ÀÚµ¿Â÷¿ë ÇÏÀÌÆÛ¹ÙÀÌÀú ½ÃÀå : Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ´ºÁú·£µå
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ³²¹Ì
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • Ä¥·¹
    • ±âŸ ³²¹Ì
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
    • īŸ¸£
    • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦12Àå ÁÖ¿ä ¹ßÀü

  • °è¾à/ÆÄÆ®³Ê½Ê/Çù¾÷/ÇÕÀÛÅõÀÚ(JV)
  • Àμö¿Í ÇÕº´
  • ½ÅÁ¦Ç° ¹ß¸Å
  • »ç¾÷ È®´ë
  • ±âŸ ÁÖ¿ä Àü·«

Á¦13Àå ±â¾÷ ÇÁ·ÎÆÄÀϸµ

  • NXP Semiconductors
  • Renesas Electronics Corporation
  • Siemens AG
  • Wind River Systems
  • STMicroelectronics
  • Sysgo AG
  • Green Hills Software
  • Virtutech Inc.
  • QNX Software Systems
  • Stellantis N.V.
  • BlackBerry QNX
  • Elektrobit(EB)
  • KPIT Technologies
  • Continental AG
  • Denso Corporation
  • Visteon Corporation
  • NVIDIA Corporation
  • Texas Instruments
  • OpenSynergy
  • Harman International
LSH 24.05.21

According to Stratistics MRC, the Global Automotive Hypervisors Market is accounted for $365.16 million in 2023 and is expected to reach $3587.79 million by 2030 growing at a CAGR of 38.6% during the forecast period. Automotive hypervisors are software systems that enable multiple automotive applications with different safety and security requirements to run on a single hardware platform. By partitioning the hardware resources and providing isolated execution environments, hypervisors ensure that critical functions, such as engine control and braking systems, operate independently from non-critical functions like infotainment systems. This segregation enhances vehicle safety and security by preventing interference between applications and minimizing the risk of cyber attacks.

According to Statista, as of 2021, there are 84 million connected vehicles on the road.

Market Dynamics:

Driver:

Increased complexity in automotive electronics

The escalating complexity of automotive electronics, driven by advancements in features like ADAS and autonomous driving, fuels the demand for automotive hypervisors. These hypervisors serve as vital solutions for managing intricate electronic systems by enabling multiple applications to run on the same hardware while maintaining isolation. As vehicles evolve into highly interconnected and software-driven platforms, automotive hypervisors offer a robust approach to streamline development, enhance security, and optimize resource utilization, thereby driving their adoption within the automotive industry.

Restraint:

Complexity of system debugging & maintenance

Complexity arises in debugging and maintaining automotive hypervisors due to their layered architecture, which includes multiple virtualized environments running on shared hardware. Identifying and troubleshooting issues like resource contention, timing violations, and communication errors require specialized skills and tools. This complexity can hamper market growth by increasing development time and costs, deterring adoption among automotive manufacturers, and necessitating extensive training for engineers.

Opportunity:

Growing adoption of electric & autonomous vehicles

Automotive hypervisors manages the complex software architectures required for the electric & autonomous vehicles. They enable efficient orchestration of functions such as battery management, power distribution, sensor fusion, and decision-making algorithms while maintaining safety and reliability. By facilitating the consolidation of multiple electronic control units onto fewer hardware components, automotive hypervisors reduce costs, enhance flexibility, and support the integration of diverse systems, thus fueling their market growth in the rapidly evolving electric and autonomous vehicle landscape.

Threat:

Vendor lock-in

Vendor lock-in occurs in automotive hypervisors when automotive manufacturers become heavily reliant on specific hypervisor vendors for their software solutions. This dependency limits flexibility, as switching to alternative vendors becomes difficult due to compatibility issues and integration complexities. Consequently, automotive manufacturers may face challenges in adapting to evolving technology standards. It thereby hampers market growth by restricting competition, inhibiting technological advancements, and potentially leading to higher costs for automotive OEMs.

Covid-19 Impact

The covid-19 pandemic significantly impacted the automotive hypervisors market, causing disruptions in supply chains, production slowdowns, and decreased vehicle sales globally. Automotive manufacturers faced challenges in implementing new technologies, leading to delays in the adoption of hypervisor solutions. Furthermore, reduced consumer demand for vehicles resulted in decreased investments in automotive software and electronics. Despite these challenges, the pandemic also accelerated the shift towards electric and autonomous vehicles, driving the long-term demand for hypervisor solutions to manage the increasing complexity of vehicle software architectures amidst evolving industry dynamics.

The type 1 hypervisor segment is expected to be the largest during the forecast period

The type 1 hypervisor segment is estimated to have a lucrative growth. A Type 1 Automotive Hypervisor is a software platform designed for vehicles to manage multiple applications and operating systems on a single hardware platform. Type 1 hypervisors operate directly on the vehicle's hardware, providing better performance and security. They enable the consolidation of various automotive functions such as infotainment, driver assistance, and vehicle control systems onto a single hardware platform, promoting efficiency and flexibility in automotive software development while ensuring safety and reliability in operation.

The infotainment system segment is expected to have the highest CAGR during the forecast period

The infotainment system segment is anticipated to witness the highest CAGR growth during the forecast period. An automotive hypervisor in an infotainment system provides isolation between different software components, ensuring that critical functions like vehicle control systems remain separate from less critical applications. By partitioning resources and managing communication between software instances, automotive hypervisors enhance safety, security, and performance in modern vehicles, offering a seamless and efficient user experience while maintaining the integrity of essential vehicle functions.

Region with largest share:

Asia Pacific is projected to hold the largest market share during the forecast period attributed by the rapid expansion of the automotive industry, particularly in countries like China, Japan, South Korea, and India. The increasing demand for electric and autonomous vehicles, coupled with advancements in automotive electronics, is driving the adoption of hypervisor technology. Furthermore, favourable government initiatives promoting the development of smart and connected vehicles are propelling market growth.

Region with highest CAGR:

North America is projected to have the highest CAGR over the forecast period, owing to the region's prominent automotive industry, technological advancements, and emphasis on vehicle safety and connectivity. The growing adoption of electric vehicles, coupled with the proliferation of advanced driver assistance systems (ADAS) and autonomous driving technologies, is driving the demand for hypervisor solutions. Moreover, the presence of key market players and strong research and development activities further fuel market expansion.

Key players in the market

Some of the key players profiled in the Automotive Hypervisors Market include NXP Semiconductors, Renesas Electronics Corporation, Siemens AG, Wind River Systems, STMicroelectronics, Sysgo AG, Green Hills Software, Virtutech Inc., QNX Software Systems, Stellantis N.V., BlackBerry QNX, Elektrobit (EB), KPIT Technologies, Continental AG, Denso Corporation, Visteon Corporation, NVIDIA Corporation, Texas Instruments, OpenSynergy and Harman International.

Key Developments:

In January 2024, Global automaker Stellantis N.V. led the creation of the world's first virtual cockpit platform as part of its Stellantis Virtual Engineering Workbench (VEW). The new platform uses the QNX Hypervisor in the cloud from BlackBerry, which is now on early access release via AWS Marketplace within the QNX Accelerate portfolio of cloud-based tools. Stellantis can now create realistic virtual versions of car controls and systems, making them behave just like they would in a real car, but without needing to change the main software that runs them.

In October 2022, Elektrobit announced the first automotive-grade, embedded, real-time operating system (OS) and hypervisor for the new AURIX TC4x microcontroller (MCU) from Infineon Technologies AG. The EB tresos AutoCore OS and new EB tresos Embedded Hypervisor enable OEMs and Tier 1s to more easily develop and deploy automotive E/E architectures based on the AUTOSAR Classic standard, helping accelerate the development of next-generation vehicles.

Components Covered:

  • Hardware
  • Software
  • Services

Vehicle Types Covered:

  • Passenger Vehicles
  • Commercial Vehicles
  • Electric Vehicles
  • Hybrid Vehicles

Connectivities Covered:

  • Wired
  • Wireless

Technologies Covered:

  • Type 1 Hypervisor
  • Type 2 Hypervisor
  • Hardware-Assisted Virtualization
  • Security-focused Hypervisor
  • Other Technologies

Applications Covered:

  • Infotainment System
  • Advanced Driver Assistance System (ADAS)
  • Fleet Management
  • Telematics
  • Cybersecurity
  • Other Applications

End Users Covered:

  • Original Equipment Manufacturers (OEMs)
  • Aftermarket

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2021, 2022, 2023, 2026, and 2030
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Technology Analysis
  • 3.7 Application Analysis
  • 3.8 End User Analysis
  • 3.9 Emerging Markets
  • 3.10 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Automotive Hypervisors Market, By Component

  • 5.1 Introduction
  • 5.2 Hardware
  • 5.3 Software
  • 5.4 Services

6 Global Automotive Hypervisors Market, By Vehicle Type

  • 6.1 Introduction
  • 6.2 Passenger Vehicles
  • 6.3 Commercial Vehicles
  • 6.4 Electric Vehicles
  • 6.5 Hybrid Vehicles

7 Global Automotive Hypervisors Market, By Connectivity

  • 7.1 Introduction
  • 7.2 Wired
    • 7.2.1 Ethernet
    • 7.2.2 Controller Area Network (CAN)
    • 7.2.3 FlexRay
    • 7.2.4 Local Interconnect Network (LIN)
  • 7.3 Wireless
    • 7.3.1 Wi-Fi
    • 7.3.2 Bluetooth
    • 7.3.3 Cellular

8 Global Automotive Hypervisors Market, By Technology

  • 8.1 Introduction
  • 8.2 Type 1 Hypervisor
  • 8.3 Type 2 Hypervisor
  • 8.4 Hardware-Assisted Virtualization
  • 8.5 Security-focused Hypervisor
  • 8.6 Other Technologies

9 Global Automotive Hypervisors Market, By Application

  • 9.1 Introduction
  • 9.2 Infotainment System
  • 9.3 Advanced Driver Assistance System (ADAS)
  • 9.4 Fleet Management
  • 9.5 Telematics
  • 9.6 Cybersecurity
  • 9.7 Other Applications

10 Global Automotive Hypervisors Market, By End User

  • 10.1 Introduction
  • 10.2 Original Equipment Manufacturers (OEMs)
  • 10.3 Aftermarket

11 Global Automotive Hypervisors Market, By Geography

  • 11.1 Introduction
  • 11.2 North America
    • 11.2.1 US
    • 11.2.2 Canada
    • 11.2.3 Mexico
  • 11.3 Europe
    • 11.3.1 Germany
    • 11.3.2 UK
    • 11.3.3 Italy
    • 11.3.4 France
    • 11.3.5 Spain
    • 11.3.6 Rest of Europe
  • 11.4 Asia Pacific
    • 11.4.1 Japan
    • 11.4.2 China
    • 11.4.3 India
    • 11.4.4 Australia
    • 11.4.5 New Zealand
    • 11.4.6 South Korea
    • 11.4.7 Rest of Asia Pacific
  • 11.5 South America
    • 11.5.1 Argentina
    • 11.5.2 Brazil
    • 11.5.3 Chile
    • 11.5.4 Rest of South America
  • 11.6 Middle East & Africa
    • 11.6.1 Saudi Arabia
    • 11.6.2 UAE
    • 11.6.3 Qatar
    • 11.6.4 South Africa
    • 11.6.5 Rest of Middle East & Africa

12 Key Developments

  • 12.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 12.2 Acquisitions & Mergers
  • 12.3 New Product Launch
  • 12.4 Expansions
  • 12.5 Other Key Strategies

13 Company Profiling

  • 13.1 NXP Semiconductors
  • 13.2 Renesas Electronics Corporation
  • 13.3 Siemens AG
  • 13.4 Wind River Systems
  • 13.5 STMicroelectronics
  • 13.6 Sysgo AG
  • 13.7 Green Hills Software
  • 13.8 Virtutech Inc.
  • 13.9 QNX Software Systems
  • 13.10 Stellantis N.V.
  • 13.11 BlackBerry QNX
  • 13.12 Elektrobit (EB)
  • 13.13 KPIT Technologies
  • 13.14 Continental AG
  • 13.15 Denso Corporation
  • 13.16 Visteon Corporation
  • 13.17 NVIDIA Corporation
  • 13.18 Texas Instruments
  • 13.19 OpenSynergy
  • 13.20 Harman International
»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦