½ÃÀ庸°í¼­
»óǰÄÚµå
1489414

ÆäÀÌÅ© ¿µ»ó ŽÁö ½ÃÀå ¿¹Ãø(-2030³â) : Á¦°ø, µµÀÔ ¸ðµ¨, Á¶Á÷ ±Ô¸ð, ±â¼ú, ¿ëµµ, ÃÖÁ¾»ç¿ëÀÚ, Áö¿ªº° ¼¼°è ºÐ¼®

Fake Image Detection Market Forecasts to 2030 - Global Analysis By Offering (Solutions, Services and Other Offering), Deployment Model, Organization Size, Technology, Application, End User and By Geography

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Stratistics Market Research Consulting | ÆäÀÌÁö Á¤º¸: ¿µ¹® 200+ Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ ÆäÀÌÅ© ¿µ»ó ŽÁö ½ÃÀåÀº 2023³â¿¡ 4¾ï ´Þ·¯¸¦ Â÷ÁöÇϸç, ¿¹Ãø ±â°£ Áß CAGRÀº 43.6%·Î ¼ºÀåÇϸç, 2030³â¿¡´Â 52¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ°í ÀÖ½À´Ï´Ù.

ÆäÀÌÅ© ¿µ»ó ŽÁö´Â ¾Ë°í¸®Áò°ú ±â¼úÀ» »ç¿ëÇÏ¿© °¡°øµÇ°Å³ª Á¶ÀÛµÈ À̹ÌÁö¸¦ ½Äº°ÇÏ´Â °ÍÀ» Æ÷ÇÔÇÕ´Ï´Ù. ÀϹÝÀûÀ¸·Î À̹ÌÁö µ¥ÀÌÅÍÀÇ ºÒÀÏÄ¡³ª ÀÌ»ó ¡Èĸ¦ ¹ß°ßÇϱâ À§ÇØ ¿ª À̹ÌÁö °Ë»ö, ¸ÞŸµ¥ÀÌÅÍ ºÐ¼®, µðÁöÅÐ Æ÷·»½Ä µîÀÇ ±â¹ýÀ» »ç¿ëÇÕ´Ï´Ù. °í±Þ ¸Ó½Å·¯´× ¹× µö·¯´× Á¢±Ù¹ýµµ À̹ÌÁöÀÇ ÀÌÀ½»õ³ª °¡°øÀ¸·Î ÀÎÇÑ Àΰø¹° µî ¹Ì¹¦ÇÑ º¯Á¶¸¦ °¨ÁöÇÏ´Â µ¥ Ȱ¿ëµË´Ï´Ù.

¿Àº¸ÀÇ È®»ê

°¡Â¥ Á¤º¸ÀÇ ²÷ÀÓ¾ø´Â È®»êÀº °³¹ßÀڵ鿡°Ô À§Á¶ À̹ÌÁö °¨Áö ¾Ë°í¸®ÁòÀÇ Çõ½Å°ú °³¼±À» ¿ä±¸Çϰí ÀÖ½À´Ï´Ù. ÀÌ¿¡ µû¶ó À̹ÌÁö ºÐ¼®, ¸Ó½Å·¯´×, ÀΰøÁö´ÉÀÌ ¹ßÀüÇÏ¿© Á¶ÀÛµÈ À̹ÌÁö¿Í °¡Â¥ À̹ÌÁö¸¦ ´õ Àß ½Äº°ÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. Á¶Á÷°ú °³ÀÎÀº À߸øµÈ Á¤º¸ÀÇ È®»ê¿¡ ´ëÀÀÇϱâ À§ÇØ À̹ÌÁöÀÇ ÁøÀ§ ¿©ºÎ¸¦ °ËÁõÇÒ ¼ö ÀÖ´Â ½Å·ÚÇÒ ¼ö ÀÖ´Â ¹æ¹ýÀ» ã°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¼ºÀåÀº »õ·Î¿î ±â¾÷°ú ÅõÀÚ¸¦ ½ÃÀå¿¡ ²ø¾îµé¿© °æÀïÀ» ÃËÁøÇϰí Çõ½ÅÀ» ÃËÁøÇÕ´Ï´Ù.

³ôÀº Á¦Á¶ ºñ¿ë°ú Àû¿ëÀÇ ¾î·Á¿ò

³ôÀº Á¦Á¶ ºñ¿ëÀ¸·Î ÀÎÇØ À§Á¶ À̹ÌÁö ŽÁö ¼Ö·ç¼ÇÀº ¼Ò±Ô¸ð ±â¾÷, Á¶Á÷, °³Àο¡°Ô ³Ê¹« ºñ½Î¼­ »ç¿ëÀÌ Á¦ÇÑµÉ ¼ö ÀÖ½À´Ï´Ù. ±× °á°ú, ¿¹»êÀÌ ¸¹Àº ´ë±â¾÷¸¸ÀÌ È¿°úÀûÀÎ À§Á¶ À̹ÌÁö ŽÁö ¼ö´ÜÀ» µµÀÔÇÒ ¼ö ÀÖ´Â ½Ã³ª¸®¿À°¡ ¹ß»ýÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÀáÀç °í°´µéÀº ÀÌ·¯ÇÑ À庮À» ÀνÄÇÏ°í µµÀÔÀ» ¹Ì·ç°Å³ª Æ÷±âÇÒ ¼ö ÀÖÀ¸¸ç, ÀÌ·Î ÀÎÇØ ½ÃÀå È®´ë¿Í ¼º¼÷¿¡ ¿À·£ ½Ã°£ÀÌ ¼Ò¿äµÉ ¼ö ÀÖ½À´Ï´Ù.

ÀΰøÁö´É(AI)°ú ¸Ó½Å·¯´×(ML)ÀÇ ¹ßÀü

ÀΰøÁö´É°ú ¸Ó½Å·¯´×Àº À§Á¶ À̹ÌÁö ŽÁö ÇÁ·Î¼¼½º¸¦ ÀÚµ¿È­ÇÏ¿© ¼öµ¿ °³ÀÔÀÇ Çʿ伺À» ÁÙ¿©ÁÝ´Ï´Ù. ÀÚµ¿È­µÈ ŽÁö ½Ã½ºÅÛÀº ´ë·®ÀÇ À̹ÌÁö¸¦ ½Å¼ÓÇÏ°Ô ºÐ¼®ÇÏ¿© Á¶ÀÛ °¡´É¼ºÀÌ ÀÖ´Â »ç·Ê¿¡ Ç÷¡±×¸¦ Ç¥½ÃÇϰí, Àü¹®°¡°¡ Ãß°¡ °ËÁõÀ» ÇÒ ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù. À̸¦ ÅëÇØ À̹ÌÁö ÀÎÁõ ¿öÅ©Ç÷οìÀÇ È¿À²¼ºÀ» ³ôÀÌ°í »õ·Î¿î À§Çù¿¡ ½Å¼ÓÇÏ°Ô ´ëÀÀÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌó·³ »õ·Î¿î ÇüÅÂÀÇ À̹ÌÁö Á¶ÀÛÀÌ µîÀåÇϸé ŽÁö ¾Ë°í¸®ÁòÀ» ¾÷µ¥ÀÌÆ®ÇÏ°í »õ·Î¿î À§Çù¿¡ ´ëÀÀÇÒ ¼ö ÀÖµµ·Ï Àç±³À°ÇÏ¿© À§Á¶ À̹ÌÁö¿¡ ´ëÇÑ Áö¼ÓÀûÀÎ È¿°ú¸¦ º¸ÀåÇÕ´Ï´Ù.

°æÀï ½ÉÈ­·Î ÀÎÇÑ ¿øÀÚÀç ¼ö±Þ °¡´É ¿©ºÎ

¿ø·á¸¦ µÑ·¯½Ñ Ä¡¿­ÇÑ °æÀïÀº ±â¼ú Çõ½ÅÀ» À§ÇÑ ¿¬±¸°³¹ß ³ë·Â¿¡¼­ ÀÚ¿ø°ú °ü½ÉÀ» ºÐ»ê½Ãų ¼ö ÀÖ½À´Ï´Ù. Á¦Á¶¾÷ü´Â »õ·Ó°í °³¼±µÈ À§Á¶ À̹ÌÁö °¨Áö ±â¼ú °³¹ß¿¡ ÅõÀÚÇϱ⺸´Ù´Â ºñ¿ë Àý°¨ ¹æ¾È°ú ±âÁ¸ Á¦Ç°ÀÇ ÃÖÀûÈ­¿¡ ´õ ÁýÁßÇÒ ¼ö ÀÖ½À´Ï´Ù. µû¶ó¼­ ½Å±Ô ÁøÃâ±â¾÷Àº °æÀï·Â ÀÖ´Â °¡°ÝÀ¸·Î ½Å·ÚÇÒ ¼ö ÀÖ´Â ¿øÀÚÀç °ø±Þó¸¦ È®º¸ÇÏ´Â µ¥ ¾î·Á¿òÀ» °ÞÀ» ¼ö ÀÖÀ¸¸ç, ÀÌ´Â ±âÁ¸ ±â¾÷°úÀÇ È¿°úÀûÀÎ °æÀï¿¡ ¹æÇذ¡ µÉ ¼ö ÀÖ½À´Ï´Ù.

COVID-19ÀÇ ¿µÇâ

¿ø°Ý ±Ù¹«¿Í ¿Â¶óÀÎ ±³·ù´Â °¡°ø À̹ÌÁöÀÇ È®»êÀ» ÁõÆø½ÃÄÑ ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇϰí ÀÖ½À´Ï´Ù. ±×·¯³ª °æÁ¦ÀÇ ºÒÈ®½Ç¼ºÀº ÀϺΠÁ¶Á÷ÀÇ ¿¹»êÀ» Á¦ÇÑÇÏ°í ±¸¸Å °áÁ¤¿¡ ¿µÇâÀ» ¹ÌÄ¡°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ °ø±Þ¸ÁÀÇ È¥¶õ°ú ¹°·ù ¹®Á¦µµ »ý»ê°ú À¯Åë¿¡ ¿µÇâÀ» ¹ÌÄ¡°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Àå¾Ö¹°¿¡µµ ºÒ±¸Çϰí, À߸øµÈ Á¤º¸¿¡ ´ëÀÀÇØ¾ß ÇÒ Çʿ伺ÀÌ AI¿Í ¸Ó½Å·¯´×ÀÇ Çõ½ÅÀ» ÃËÁøÇϰí ŽÁö ´É·ÂÀ» Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù.

ÀüÀÚ ¿öÅ͸¶Å© ¹× µðÁöÅÐ ¼­¸í ºÐ¾ß´Â ¿¹Ãø ±â°£ Áß °¡Àå Å« ½ÃÀåÀ¸·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

ÀüÀÚ ¿öÅ͸¶Å©¿Í µðÁöÅÐ ¼­¸íÀÇ Á¸Àç´Â À̹ÌÁö Á¶ÀÛ ¹× º¯Á¶¿¡ ´ëÇÑ ¾ïÁö·ÂÀ¸·Î ÀÛ¿ëÇϱ⠶§¹®¿¡ ÀüÀÚ ¿öÅ͸¶Å© ¹× µðÁöÅÐ ¼­¸í ºÎ¹®Àº À¯¸®ÇÑ ¼ºÀå¼¼¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. À̹ÌÁö¿¡ ¿øº» À̹ÌÁö¸¦ ÃßÀûÇÒ ¼ö ÀÖ´Â ½Äº°ÀÚ°¡ ºÎÂøµÇ¾î ÀÖ´Ù´Â °ÍÀ» ¾Ë¸é ¾ÇÀÇÀûÀÎ ÇàÀ§ÀÚ°¡ °¡Â¥ ¶Ç´Â º¯Á¶µÈ À̹ÌÁö¸¦ ¸¸µé·Á´Â ½Ãµµ¸¦ ¾ïÁ¦Çϰí À߸øµÈ Á¤º¸ÀÇ È®»êÀ» ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù.

¿¹Ãø ±â°£ Áß ÇコÄÉ¾î ¹× ÀÇ·á ¿µ»ó ºÐ¾ß°¡ °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

ÇコÄÉ¾î ¹× ÀÇ·á ¿µ»ó ºÐ¾ß´Â ¿¹Ãø ±â°£ Áß °¡Àå ³ôÀº CAGR·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¹Ì±¹ÀÇ HIPAA(Health Insurance Portability and Accountability Act) ¹× À¯·´ÀÇ GDPR(EU °³ÀÎÁ¤º¸º¸È£±ÔÁ¤)(General Data Protection Regulation)°ú °°Àº ±ÔÁ¦ Áؼö¿¡ µû¶ó ±ÔÁ¤ Áؼö ¹× ¹ýÀû À§Çè °¨¼Ò¸¦ À§ÇÑ À§Á¶ À̹ÌÁö °¨Áö ±â¼ú äÅÃÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. À§Á¶ À̹ÌÁö ŽÁö ±â¼úÀÇ Ã¤ÅÃÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

°¡Àå Å« Á¡À¯À²À» Â÷ÁöÇÏ´Â Áö¿ª :

¾Æ½Ã¾ÆÅÂÆò¾çÀº ¿¹Ãø ±â°£ Áß °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ´Â ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ E-Commerce ¹× ¼Ò¼È¹Ìµð¾î ºÐ¾ß°¡ ±Þ¼ºÀåÇϸ鼭 À§Á¶ À̹ÌÁö °¨Áö ¼Ö·ç¼Ç¿¡ ´ëÇÑ ºñÁî´Ï½º ±âȸ¸¦ Á¦°øÇϰí ÀÖÀ¸¸ç, E-Commerce Ç÷§Æû°ú ¼Ò¼È¹Ìµð¾î ³×Æ®¿öÅ©´Â °¡Â¥ »óǰ À̹ÌÁö¿Í °¡°øµÈ À̹ÌÁöÀÇ È®»ê¿¡ ´ëÀÀÇϱâ À§ÇØ À§Á¶ À̹ÌÁö °¨Áö Åø¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. °¡Â¥ »óǰ À̹ÌÁö¿Í °¡°øµÈ ºñÁÖ¾óÀÇ È®»ê¿¡ ´ëÀÀÇÒ Çʿ䰡 ÀÖÀ¸¸ç, ŽÁö Åø¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÀÌ·¯ÇÑ ºÐ¾ßÀÇ ¹ßÀüÀº À§Á¶ À̹ÌÁö ŽÁöÀÇ ±â¼ú Çõ½ÅÀ» ÃËÁøÇÏ¿© º¸´Ù Á¤È®Çϰí È¿À²ÀûÀΠŽÁö ¾Ë°í¸®ÁòÀ¸·Î À̾îÁö°í ÀÖ½À´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª :

ºÏ¹Ì´Â ¼¼°è ÃÖ´ë ±Ô¸ðÀÇ E-Commerce Ç÷§Æû°ú ¼Ò¼È¹Ìµð¾î ³×Æ®¿öÅ©¸¦ º¸À¯Çϰí ÀÖÀ¸¸ç, ¿¹Ãø ±â°£ Áß °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ·¯ÇÑ Ç÷§ÆûÀº °¡Â¥ »óǰ À̹ÌÁö, Á¶ÀÛµÈ ºñÁÖ¾ó, °¡Â¥ Á¤º¸¸¦ ÆÛ¶ß¸®´Â ¾ÇÀÇÀûÀÎ ÇàÀ§ÀÚµéÀÇ Ç¥ÀûÀÌ µÇ°í ÀÖ½À´Ï´Ù. ÀÌ¿¡ µû¶ó µðÁöÅÐ ÄÁÅÙÃ÷ÀÇ ¹«°á¼ºÀ» º¸È£ÇÏ°í »ç±â·ÎºÎÅÍ ¼ÒºñÀÚ¸¦ º¸È£Çϱâ À§ÇØ À§Á¶ À̹ÌÁö °¨Áö ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ŽÁö ±â¼úÀÇ ¹ßÀü, Á¤È®µµ Çâ»ó, ½ÃÀå ¹üÀ§ È®´ë¸¦ À§ÇÑ Çù¾÷ÀÌ ½ÃÀåÀÇ ¼ºÀå°ú ¼º¼÷¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù.

¹«·á Ä¿½ºÅ͸¶ÀÌ¡ Á¦°ø:

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½°ú °°Àº ¹«·á ¸ÂÃãÈ­ ¿É¼Ç Áß Çϳª¸¦ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. :

  • ±â¾÷ °³¿ä
    • Ãß°¡ ½ÃÀå ±â¾÷ÀÇ Á¾ÇÕÀûÀÎ ÇÁ·ÎÆÄÀϸµ(ÃÖ´ë 3»ç)
    • ÁÖ¿ä ±â¾÷ÀÇ SWOT ºÐ¼®(ÃÖ´ë 3»ç)
  • Áö¿ª ¼¼ºÐÈ­
    • °í°´ÀÇ °ü½É¿¡ µû¸¥ ÁÖ¿ä ±¹°¡º° ½ÃÀå ÃßÁ¤Ä¡, ¿¹Ãø, CAGR(ÁÖ: Ÿ´ç¼º È®Àο¡ µû¸§)
  • °æÀï»ç º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¿ªÀû ÀÔÁö, Àü·«Àû Á¦ÈÞ¸¦ ±â¹ÝÀ¸·Î ÇÑ ÁÖ¿ä ±â¾÷ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

  • °³¿ä
  • ÀÌÇØ°ü°èÀÚ
  • Á¶»ç ¹üÀ§
  • Á¶»ç ¹æ¹ý
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ °ËÁõ
    • Á¶»ç ¾îÇÁ·ÎÄ¡
  • Á¶»ç Á¤º¸¿ø
    • 1Â÷ Á¶»ç Á¤º¸¿ø
    • 2Â÷ Á¶»ç Á¤º¸¿ø
    • ÀüÁ¦Á¶°Ç

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

  • ÃËÁø¿äÀÎ
  • ¾ïÁ¦¿äÀÎ
  • ±âȸ
  • À§Çù
  • ±â¼ú ºÐ¼®
  • ¿ëµµ ºÐ¼®
  • ÃÖÁ¾»ç¿ëÀÚ ºÐ¼®
  • ½ÅÈï ½ÃÀå
  • COVID-19ÀÇ ¿µÇâ

Á¦4Àå Porter's Five Forces ºÐ¼®

  • °ø±Þ ±â¾÷ÀÇ ±³¼··Â
  • ±¸¸ÅÀÚÀÇ ±³¼··Â
  • ´ëüǰÀÇ À§Çù
  • ½Å±Ô ÁøÃâ¾÷üÀÇ À§Çù
  • °æÀï ±â¾÷°£ °æÀï °ü°è

Á¦5Àå ¼¼°èÀÇ ÆäÀÌÅ© ¿µ»ó ŽÁö ½ÃÀå : Á¦°øº°

  • ¼Ö·ç¼Ç
    • ÄÁÅÙÃ÷ ÁøÁ¤¼º °ËÁõ
    • AI »ý¼º ÄÁÅÙÃ÷ ŽÁö
    • µöÆäÀÌÅ© ¿µ»ó ŽÁö
    • Æ÷Åä¼¥ À̹ÌÁö ŽÁö
    • ½Ç½Ã°£ ŽÁö
    • ¸ð¹ÙÀÏ ¾Û
    • ºê¶ó¿ìÀú È®Àå ±â´É
  • ¼­ºñ½º
    • Áö¿ø°ú Á¤ºñ
    • µµÀÔ°ú ÅëÇÕ
    • ÄÁ¼³ÆÃ
  • ±âŸ Á¦°ø

Á¦6Àå ¼¼°èÀÇ ÆäÀÌÅ© ¿µ»ó ŽÁö ½ÃÀå : µµÀÔ ¸ðµ¨º°

  • ¿ÂÇÁ·¹¹Ì½º
  • Ŭ¶ó¿ìµå

Á¦7Àå ¼¼°èÀÇ ÆäÀÌÅ© ¿µ»ó ŽÁö ½ÃÀå : Á¶Á÷ ±Ô¸ðº°

  • ´ë±â¾÷
  • Áß¼Ò±â¾÷

Á¦8Àå ¼¼°èÀÇ ÆäÀÌÅ© ¿µ»ó ŽÁö ½ÃÀå : ±â¼úº°

  • ±â°èÇнÀ(ML)°ú µö·¯´×(DL)
    • Convolutional Neural Networks
    • »ý¼ºÀû Àû´ë ³×Æ®¿öÅ©(GAN)
  • ¿µ»ó °¨Á¤
    • ¸ÞŸµ¥ÀÌÅÍ ºÐ¼®
    • ¿¡·¯ ·¹º§ ºÐ¼®
  • ¿öÅ͸¶Å©¿Í µðÁöÅÐ ¼­¸í
  • AI ±â¹Ý ŽÁö ¾Ë°í¸®Áò
  • ºí·ÏüÀÎ ±â¹Ý °ËÁõ ½Ã½ºÅÛ
  • ±âŸ ±â¼ú

Á¦9Àå ¼¼°èÀÇ ÆäÀÌÅ© ¿µ»ó ŽÁö ½ÃÀå : ¿ëµµº°

  • ¼Ò¼È¹Ìµð¾î Ç÷§Æû
  • E-Commerce¿Í ¿Â¶óÀÎ ¸¶ÄÏÇ÷¹À̽º
  • ´º½º ¹× ¹Ìµð¾î Á¶Á÷
  • ÇコÄɾî¿Í ÀÇ·á ¿µ»ó
  • ºÎÁ¤ ŽÁö
  • ±âŸ ¿ëµµ

Á¦10Àå ¼¼°èÀÇ ÆäÀÌÅ© ¿µ»ó ŽÁö ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚº°

  • ÀºÇà, ±ÝÀ¶ ¼­ºñ½º, º¸Çè(BFSI)
  • Á¤ºÎ
  • Åë½Å
  • ºÎµ¿»ê
  • ±³À°±â°ü
  • ±âŸ ÃÖÁ¾»ç¿ëÀÚ

Á¦11Àå ¼¼°èÀÇ ÆäÀÌÅ© ¿µ»ó ŽÁö ½ÃÀå : Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ´ºÁú·£µå
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ³²¹Ì
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • Ä¥·¹
    • ±âŸ ³²¹Ì
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®
    • īŸ¸£
    • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦12Àå ÁÖ¿ä ¹ßÀü

  • °è¾à, ÆÄÆ®³Ê½Ê, Çù¾÷, ÇÕº´»ç¾÷
  • ÀμöÇÕº´
  • ½ÅÁ¦Ç° ¹ß¸Å
  • »ç¾÷ È®´ë
  • ±âŸ ÁÖ¿ä Àü·«

Á¦13Àå ±â¾÷ ÇÁ·ÎÆÄÀϸµ

  • Adobe Inc
  • BioID
  • Blackbird.AI
  • CyberExtruder
  • Deepware Scannerand
  • DuckDuckGoose AI
  • Facia
  • Gradiant
  • Hitachi Terminal Solutions Korea Co. Ltd
  • Honeywell International
  • iDenfy
  • Image Forgery Detector
  • InVID
  • iProov
  • Microsoft Corporation
  • Q-integrity
  • Reality Defender
  • Sensity AI
  • Truepic
KSA 24.06.10

According to Stratistics MRC, the Global Fake Image Detection Market is accounted for $0.4 billion in 2023 and is expected to reach $5.2 billion by 2030 growing at a CAGR of 43.6% during the forecast period. Fake image detection involves the use of algorithms and techniques to identify manipulated or fabricated images. It typically employs methods such as reverse image search, metadata analysis, and digital forensics to uncover inconsistencies or anomalies in the image data. Advanced machine learning and deep learning approaches are also utilized to detect subtle alterations, such as image splicing or manipulation artifacts.

Market Dynamics:

Driver:

Proliferation of misinformation

The continuous spread of misinformation challenges developers to innovate and improve fake image detection algorithms. This leads to advancements in image analysis, machine learning, and artificial intelligence to better identify manipulated or fake images. Organizations and individuals seek reliable methods to verify the authenticity of images to combat the spread of misinformation. This growth attracts new players and investments into the market, fostering competition and driving innovation.

Restraint:

High production costs and difficulty in application

High production costs may make fake image detection solutions prohibitively expensive for smaller businesses, organizations, or individuals, limiting their accessibility. This could result in a scenario where only larger entities with substantial budgets can afford to implement effective fake image detection measures. Moreover potential customers may delay or forgo adoption due to perceived barriers, resulting in a longer timeframe for market expansion and maturity.

Opportunity:

Advancements in artificial intelligence (AI) and machine learning (ML)

Artificial intelligence and machine learning enable automation of fake image detection processes, reducing the need for manual intervention. Automated detection systems can quickly analyze large volumes of images, flagging potential instances of manipulation for further review by human experts. This increases the efficiency of image authentication workflows and enables faster response to emerging threats. Thus as new forms of image manipulation emerge, detection algorithms can be updated and retrained to stay ahead of emerging threats, ensuring continued effectiveness in combating fake images.

Threat:

Availability of raw materials with intense competition

Intense competition for raw materials may divert resources and attention away from research and development efforts aimed at innovation. Manufacturers may focus more on cost-cutting measures and optimizing existing products rather than investing in the development of new and improved fake image detection technologies. Hence new entrants may struggle to secure reliable sources of raw materials at competitive prices, hindering their ability to compete effectively with established companies.

Covid-19 Impact

Remote work and online interactions have amplified the dissemination of manipulated images, driving market growth. However, economic uncertainties have constrained budgets for some organizations, impacting purchasing decisions. Additionally, supply chain disruptions and logistical challenges have affected production and distribution. Despite these hurdles, the necessity of combating misinformation has propelled innovation in AI and machine learning, enhancing detection capabilities.

The watermarking & digital signatures segment is expected to be the largest during the forecast period

The watermarking & digital signatures segment is estimated to have a lucrative growth, owing to the presence of watermarks or digital signatures acts as a deterrent against image manipulation or tampering. Knowing that images are marked with identifiers that can be traced back to their original source discourages malicious actors from attempting to create fake or altered images, thereby reducing the prevalence of misinformation.

The healthcare & medical imaging segment is expected to have the highest CAGR during the forecast period

The healthcare & medical imaging segment is anticipated to witness the highest CAGR growth during the forecast period, healthcare organizations are subject to strict regulatory requirements regarding data integrity, patient privacy, and medical image authenticity. Compliance with regulations such as the Health Insurance Portability and Accountability Act (HIPAA) in the United States and the General Data Protection Regulation (GDPR) in Europe drives the adoption of fake image detection technologies to maintain compliance and mitigate legal risks.

Region with largest share:

Asia Pacific is projected to hold the largest market share during the forecast period owing to the booming e-commerce and social media sectors in Asia Pacific present opportunities for fake image detection solutions. E-commerce platforms and social media networks are increasingly under pressure to combat the spread of fake product images and manipulated visuals, driving demand for detection tools. Moreover advances in these fields are driving innovation in fake image detection, leading to more accurate and efficient detection algorithms.

Region with highest CAGR:

North America is projected to have the highest CAGR over the forecast period, as North America is home to some of the world's largest e-commerce platforms and social media networks. These platforms are increasingly targeted by malicious actors spreading fake product images, manipulated visuals, and disinformation. As a result, there is a growing demand for fake image detection solutions to safeguard the integrity of digital content and protect consumers from fraudulent activities. Collaborations aimed at advancing detection technologies, improving accuracy, and expanding market reach contribute to the growth and maturity of the market.

Key players in the market

Some of the key players in the Fake Image Detection Market include Adobe Inc, BioID, Blackbird.AI, CyberExtruder, Deepware Scannerand, DuckDuckGoose AI, Facia, Gradiant, Hitachi Terminal Solutions Korea Co. Ltd, Honeywell International, iDenfy, Image Forgery Detector, InVID, iProov, Microsoft Corporation, Q-integrity, Reality Defender, Sensity AI and Truepic

Key Developments:

In April 2024, Adobe introduces firefly image 3 foundation model to take creative exploration and ideation to new heights. Significant advancements in speed of generation make the ideation and creation process more productive and efficient

In April 2024, Cognizant and Microsoft announce global partnership to expand adoption of generative AI in the enterprise, and drive industry transformation. This partnership also has the potential to significantly accelerate AI adoption and innovation in India.

In March 2024, Adobe expands collaboration with marriott international to deepen guest relationships through digital services and one-to-one personalization. This can help the company match individuals with the best options across its portfolio of more than 30 brands and nearly 8,800 properties.

Offerings Covered:

  • Solutions
  • Services
  • Other Offerings

Deployment Models Covered:

  • On-Premises
  • Cloud

Organization Sizes Covered:

  • Large Enterprises
  • Small & Medium Scale Enterprises

Technologies Covered:

  • Machine Learning (ML) & Deep Learning (DL)
  • Image Forensics
  • Watermarking & Digital Signatures
  • AI-Based Detection Algorithms
  • Blockchain-Based Verification Systems
  • Other Technologies

Applications Covered:

  • Social Media Platforms
  • E-commerce & Online Marketplaces
  • News & Media Organizations
  • Healthcare & Medical Imaging
  • Fraud Detection
  • Other Applications

End Users Covered:

  • Banking, Financial Services and Insurance (BFSI)
  • Government
  • Telecom
  • Real Estate
  • Educational Institutions
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2021, 2022, 2023, 2026, and 2030
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Technology Analysis
  • 3.7 Application Analysis
  • 3.8 End User Analysis
  • 3.9 Emerging Markets
  • 3.10 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Fake Image Detection Market, By Offering

  • 5.1 Introduction
  • 5.2 Solutions
    • 5.2.1 Content Authenticity Verification
    • 5.2.2 AI-generated Content Detection
    • 5.2.3 Deepfake Image Detection
    • 5.2.4 Photoshopped Image Detection
    • 5.2.5 Real-Time Detection
    • 5.2.6 Mobile Apps
    • 5.2.7 Browser Extensions
  • 5.3 Services
    • 5.3.1 Support & Maintenance
    • 5.3.2 Deployment & Integration
    • 5.3.3 Consulting
  • 5.4 Other Offering

6 Global Fake Image Detection Market, By Deployment Model

  • 6.1 Introduction
  • 6.2 On-Premises
  • 6.3 Cloud

7 Global Fake Image Detection Market, By Organization Size

  • 7.1 Introduction
  • 7.2 Large Enterprises
  • 7.3 Small & Medium Scale Enterprises

8 Global Fake Image Detection Market, By Technology

  • 8.1 Introduction
  • 8.2 Machine Learning (ML) & Deep Learning (DL)
    • 8.2.1 Convolutional Neural Networks
    • 8.2.2 Generative Adversarial Networks(GANs)
  • 8.3 Image Forensics
    • 8.3.1 Metadata Analysis
    • 8.3.2 Error Level Analysis
  • 8.4 Watermarking & Digital Signatures
  • 8.5 AI-Based Detection Algorithms
  • 8.6 Blockchain-Based Verification Systems
  • 8.7 Other Technologies

9 Global Fake Image Detection Market, By Application

  • 9.1 Introduction
  • 9.2 Social Media Platforms
  • 9.3 E-commerce & Online Marketplaces
  • 9.4 News & Media Organizations
  • 9.5 Healthcare & Medical Imaging
  • 9.6 Fraud Detection
  • 9.7 Other Applications

10 Global Fake Image Detection Market, By End User

  • 10.1 Introduction
  • 10.2 Banking, Financial Services and Insurance (BFSI)
  • 10.3 Government
  • 10.4 Telecom
  • 10.5 Real Estate
  • 10.6 Educational Institutions
  • 10.7 Other End Users

11 Global Fake Image Detection Market, By Geography

  • 11.1 Introduction
  • 11.2 North America
    • 11.2.1 US
    • 11.2.2 Canada
    • 11.2.3 Mexico
  • 11.3 Europe
    • 11.3.1 Germany
    • 11.3.2 UK
    • 11.3.3 Italy
    • 11.3.4 France
    • 11.3.5 Spain
    • 11.3.6 Rest of Europe
  • 11.4 Asia Pacific
    • 11.4.1 Japan
    • 11.4.2 China
    • 11.4.3 India
    • 11.4.4 Australia
    • 11.4.5 New Zealand
    • 11.4.6 South Korea
    • 11.4.7 Rest of Asia Pacific
  • 11.5 South America
    • 11.5.1 Argentina
    • 11.5.2 Brazil
    • 11.5.3 Chile
    • 11.5.4 Rest of South America
  • 11.6 Middle East & Africa
    • 11.6.1 Saudi Arabia
    • 11.6.2 UAE
    • 11.6.3 Qatar
    • 11.6.4 South Africa
    • 11.6.5 Rest of Middle East & Africa

12 Key Developments

  • 12.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 12.2 Acquisitions & Mergers
  • 12.3 New Product Launch
  • 12.4 Expansions
  • 12.5 Other Key Strategies

13 Company Profiling

  • 13.1 Adobe Inc
  • 13.2 BioID
  • 13.3 Blackbird.AI
  • 13.4 CyberExtruder
  • 13.5 Deepware Scannerand
  • 13.6 DuckDuckGoose AI
  • 13.7 Facia
  • 13.8 Gradiant
  • 13.9 Hitachi Terminal Solutions Korea Co. Ltd
  • 13.10 Honeywell International
  • 13.11 iDenfy
  • 13.12 Image Forgery Detector
  • 13.13 InVID
  • 13.14 iProov
  • 13.15 Microsoft Corporation
  • 13.16 Q-integrity
  • 13.17 Reality Defender
  • 13.18 Sensity AI
  • 13.19 Truepic
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦